308 lines
9.3 KiB
Python
308 lines
9.3 KiB
Python
# Copyright 2015 Google Inc. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import math
|
|
|
|
from fontTools.misc.transform import Transform
|
|
import numpy as np
|
|
from numpy.linalg import norm
|
|
from scipy.sparse.linalg import cg
|
|
from scipy.ndimage.filters import gaussian_filter1d as gaussian
|
|
from scipy.cluster.vq import vq, whiten
|
|
|
|
from fontbuild.alignpoints import alignCorners
|
|
from fontbuild.curveFitPen import fitGlyph, segmentGlyph
|
|
|
|
|
|
def italicizeGlyph(f, g, angle=10, stemWidth=185, meanYCenter=-825, narrowAmount=1):
|
|
unic = g.unicode #save unicode
|
|
|
|
glyph = f[g.name]
|
|
slope = np.tanh(math.pi * angle / 180)
|
|
|
|
# determine how far on the x axis the glyph should slide
|
|
# to compensate for the slant.
|
|
# meanYCenter:
|
|
# -600 is a magic number that assumes a 2048 unit em square,
|
|
# and -825 for a 2816 unit em square. (UPM*0.29296875)
|
|
m = Transform(1, 0, slope, 1, 0, 0)
|
|
xoffset, junk = m.transformPoint((0, meanYCenter))
|
|
m = Transform(narrowAmount, 0, slope, 1, xoffset, 0)
|
|
|
|
if len(glyph) > 0:
|
|
g2 = italicize(f[g.name], angle, xoffset=xoffset, stemWidth=stemWidth)
|
|
f.insertGlyph(g2, g.name)
|
|
|
|
transformFLGlyphMembers(f[g.name], m)
|
|
|
|
if unic > 0xFFFF: #restore unicode
|
|
g.unicode = unic
|
|
|
|
|
|
def italicize(glyph, angle=12, stemWidth=180, xoffset=-50):
|
|
CURVE_CORRECTION_WEIGHT = .03
|
|
CORNER_WEIGHT = 10
|
|
|
|
# decompose the glyph into smaller segments
|
|
ga, subsegments = segmentGlyph(glyph,25)
|
|
va, e = glyphToMesh(ga)
|
|
n = len(va)
|
|
grad = mapEdges(lambda a,(p,n): normalize(p-a), va, e)
|
|
cornerWeights = mapEdges(lambda a,(p,n): normalize(p-a).dot(normalize(a-n)), grad, e)[:,0].reshape((-1,1))
|
|
smooth = np.ones((n,1)) * CURVE_CORRECTION_WEIGHT
|
|
|
|
controlPoints = findControlPointsInMesh(glyph, va, subsegments)
|
|
smooth[controlPoints > 0] = 1
|
|
smooth[cornerWeights < .6] = CORNER_WEIGHT
|
|
# smooth[cornerWeights >= .9999] = 1
|
|
|
|
out = va.copy()
|
|
hascurves = False
|
|
for c in glyph.contours:
|
|
for s in c.segments:
|
|
if s.type == "curve":
|
|
hascurves = True
|
|
break
|
|
if hascurves:
|
|
break
|
|
if stemWidth > 100:
|
|
outCorrected = skewMesh(recompose(skewMesh(out, angle * 1.6), grad, e, smooth=smooth), -angle * 1.6)
|
|
# out = copyMeshDetails(va, out, e, 6)
|
|
else:
|
|
outCorrected = out
|
|
|
|
# create a transform for italicizing
|
|
normals = edgeNormals(out, e)
|
|
center = va + normals * stemWidth * .4
|
|
if stemWidth > 130:
|
|
center[:, 0] = va[:, 0] * .7 + center[:,0] * .3
|
|
centerSkew = skewMesh(center.dot(np.array([[.97,0],[0,1]])), angle * .9)
|
|
|
|
# apply the transform
|
|
out = outCorrected + (centerSkew - center)
|
|
out[:,1] = outCorrected[:,1]
|
|
|
|
# make some corrections
|
|
smooth = np.ones((n,1)) * .1
|
|
out = alignCorners(glyph, out, subsegments)
|
|
out = copyMeshDetails(skewMesh(va, angle), out, e, 7, smooth=smooth)
|
|
# grad = mapEdges(lambda a,(p,n): normalize(p-a), skewMesh(outCorrected, angle*.9), e)
|
|
# out = recompose(out, grad, e, smooth=smooth)
|
|
|
|
out = skewMesh(out, angle * .1)
|
|
out[:,0] += xoffset
|
|
# out[:,1] = outCorrected[:,1]
|
|
out[va[:,1] == 0, 1] = 0
|
|
gOut = meshToGlyph(out, ga)
|
|
# gOut.width *= .97
|
|
# gOut.width += 10
|
|
# return gOut
|
|
|
|
# recompose the glyph into original segments
|
|
return fitGlyph(glyph, gOut, subsegments)
|
|
|
|
|
|
def transformFLGlyphMembers(g, m, transformAnchors = True):
|
|
# g.transform(m)
|
|
g.width = g.width * m[0]
|
|
p = m.transformPoint((0,0))
|
|
for c in g.components:
|
|
d = m.transformPoint(c.offset)
|
|
c.offset = (d[0] - p[0], d[1] - p[1])
|
|
if transformAnchors:
|
|
for a in g.anchors:
|
|
aa = m.transformPoint((a.x,a.y))
|
|
a.x = aa[0]
|
|
# a.x,a.y = (aa[0] - p[0], aa[1] - p[1])
|
|
# a.x = a.x - m[4]
|
|
|
|
|
|
def glyphToMesh(g):
|
|
points = []
|
|
edges = {}
|
|
offset = 0
|
|
for c in g.contours:
|
|
if len(c) < 2:
|
|
continue
|
|
for i,prev,next in rangePrevNext(len(c)):
|
|
points.append((c[i].points[0].x, c[i].points[0].y))
|
|
edges[i + offset] = np.array([prev + offset, next + offset], dtype=int)
|
|
offset += len(c)
|
|
return np.array(points), edges
|
|
|
|
|
|
def meshToGlyph(points, g):
|
|
g1 = g.copy()
|
|
j = 0
|
|
for c in g1.contours:
|
|
if len(c) < 2:
|
|
continue
|
|
for i in range(len(c)):
|
|
c[i].points[0].x = points[j][0]
|
|
c[i].points[0].y = points[j][1]
|
|
j += 1
|
|
return g1
|
|
|
|
|
|
def quantizeGradient(grad, book=None):
|
|
if book == None:
|
|
book = np.array([(1,0),(0,1),(0,-1),(-1,0)])
|
|
indexArray = vq(whiten(grad), book)[0]
|
|
out = book[indexArray]
|
|
for i,v in enumerate(out):
|
|
out[i] = normalize(v)
|
|
return out
|
|
|
|
|
|
def findControlPointsInMesh(glyph, va, subsegments):
|
|
controlPointIndices = np.zeros((len(va),1))
|
|
index = 0
|
|
for i,c in enumerate(subsegments):
|
|
segmentCount = len(glyph.contours[i].segments) - 1
|
|
for j,s in enumerate(c):
|
|
if j < segmentCount:
|
|
if glyph.contours[i].segments[j].type == "line":
|
|
controlPointIndices[index] = 1
|
|
index += s[1]
|
|
return controlPointIndices
|
|
|
|
|
|
def recompose(v, grad, e, smooth=1, P=None, distance=None):
|
|
n = len(v)
|
|
if distance == None:
|
|
distance = mapEdges(lambda a,(p,n): norm(p - a), v, e)
|
|
if (P == None):
|
|
P = mP(v,e)
|
|
P += np.identity(n) * smooth
|
|
f = v.copy()
|
|
for i,(prev,next) in e.iteritems():
|
|
f[i] = (grad[next] * distance[next] - grad[i] * distance[i])
|
|
out = v.copy()
|
|
f += v * smooth
|
|
for i in range(len(out[0,:])):
|
|
out[:,i] = cg(P, f[:,i])[0]
|
|
return out
|
|
|
|
|
|
def mP(v,e):
|
|
n = len(v)
|
|
M = np.zeros((n,n))
|
|
for i, edges in e.iteritems():
|
|
w = -2 / float(len(edges))
|
|
for index in edges:
|
|
M[i,index] = w
|
|
M[i,i] = 2
|
|
return M
|
|
|
|
|
|
def normalize(v):
|
|
n = np.linalg.norm(v)
|
|
if n == 0:
|
|
return v
|
|
return v/n
|
|
|
|
|
|
def mapEdges(func,v,e,*args):
|
|
b = v.copy()
|
|
for i, edges in e.iteritems():
|
|
b[i] = func(v[i], [v[j] for j in edges], *args)
|
|
return b
|
|
|
|
|
|
def getNormal(a,b,c):
|
|
"Assumes TT winding direction"
|
|
p = np.roll(normalize(b - a), 1)
|
|
n = -np.roll(normalize(c - a), 1)
|
|
p[1] *= -1
|
|
n[1] *= -1
|
|
# print p, n, normalize((p + n) * .5)
|
|
return normalize((p + n) * .5)
|
|
|
|
|
|
def edgeNormals(v,e):
|
|
"Assumes a mesh where each vertex has exactly least two edges"
|
|
return mapEdges(lambda a,(p,n) : getNormal(a,p,n),v,e)
|
|
|
|
|
|
def rangePrevNext(count):
|
|
c = np.arange(count,dtype=int)
|
|
r = np.vstack((c, np.roll(c, 1), np.roll(c, -1)))
|
|
return r.T
|
|
|
|
|
|
def skewMesh(v,angle):
|
|
slope = np.tanh([math.pi * angle / 180])
|
|
return v.dot(np.array([[1,0],[slope,1]]))
|
|
|
|
|
|
def labelConnected(e):
|
|
label = 0
|
|
labels = np.zeros((len(e),1))
|
|
for i,(prev,next) in e.iteritems():
|
|
labels[i] = label
|
|
if next <= i:
|
|
label += 1
|
|
return labels
|
|
|
|
|
|
def copyGradDetails(a,b,e,scale=15):
|
|
n = len(a)
|
|
labels = labelConnected(e)
|
|
out = a.astype(float).copy()
|
|
for i in range(labels[-1]+1):
|
|
mask = (labels==i).flatten()
|
|
out[mask,:] = gaussian(b[mask,:], scale, mode="wrap", axis=0) + a[mask,:] - gaussian(a[mask,:], scale, mode="wrap", axis=0)
|
|
return out
|
|
|
|
|
|
def copyMeshDetails(va,vb,e,scale=5,smooth=.01):
|
|
gradA = mapEdges(lambda a,(p,n): normalize(p-a), va, e)
|
|
gradB = mapEdges(lambda a,(p,n): normalize(p-a), vb, e)
|
|
grad = copyGradDetails(gradA, gradB, e, scale)
|
|
grad = mapEdges(lambda a,(p,n): normalize(a), grad, e)
|
|
return recompose(vb, grad, e, smooth=smooth)
|
|
|
|
|
|
def condenseGlyph(glyph, scale=.8, stemWidth=185):
|
|
ga, subsegments = segmentGlyph(glyph, 25)
|
|
va, e = glyphToMesh(ga)
|
|
n = len(va)
|
|
|
|
normals = edgeNormals(va,e)
|
|
cn = va.dot(np.array([[scale, 0],[0,1]]))
|
|
grad = mapEdges(lambda a,(p,n): normalize(p-a), cn, e)
|
|
# ograd = mapEdges(lambda a,(p,n): normalize(p-a), va, e)
|
|
|
|
cn[:,0] -= normals[:,0] * stemWidth * .5 * (1 - scale)
|
|
out = recompose(cn, grad, e, smooth=.5)
|
|
# out = recompose(out, grad, e, smooth=.1)
|
|
out = recompose(out, grad, e, smooth=.01)
|
|
|
|
# cornerWeights = mapEdges(lambda a,(p,n): normalize(p-a).dot(normalize(a-n)), grad, e)[:,0].reshape((-1,1))
|
|
# smooth = np.ones((n,1)) * .1
|
|
# smooth[cornerWeights < .6] = 10
|
|
#
|
|
# grad2 = quantizeGradient(grad).astype(float)
|
|
# grad2 = copyGradDetails(grad, grad2, e, scale=10)
|
|
# grad2 = mapEdges(lambda a,e: normalize(a), grad2, e)
|
|
# out = recompose(out, grad2, e, smooth=smooth)
|
|
out[:,0] += 15
|
|
out[:,1] = va[:,1]
|
|
# out = recompose(out, grad, e, smooth=.5)
|
|
gOut = meshToGlyph(out, ga)
|
|
gOut = fitGlyph(glyph, gOut, subsegments)
|
|
for i,seg in enumerate(gOut):
|
|
gOut[i].points[0].y = glyph[i].points[0].y
|
|
return gOut
|