422 lines
15 KiB
Python
422 lines
15 KiB
Python
#! /opt/local/bin/pythonw2.7
|
|
#
|
|
# Copyright 2015 Google Inc. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
__all__ = ["SubsegmentPen","SubsegmentsToCurvesPen", "segmentGlyph", "fitGlyph"]
|
|
|
|
|
|
from fontTools.pens.basePen import BasePen
|
|
import numpy as np
|
|
from numpy import array as v
|
|
from numpy.linalg import norm
|
|
from robofab.pens.adapterPens import GuessSmoothPointPen
|
|
from robofab.pens.pointPen import BasePointToSegmentPen
|
|
|
|
|
|
class SubsegmentsToCurvesPointPen(BasePointToSegmentPen):
|
|
def __init__(self, glyph, subsegmentGlyph, subsegments):
|
|
BasePointToSegmentPen.__init__(self)
|
|
self.glyph = glyph
|
|
self.subPen = SubsegmentsToCurvesPen(None, glyph.getPen(), subsegmentGlyph, subsegments)
|
|
|
|
def setMatchTangents(self, b):
|
|
self.subPen.matchTangents = b
|
|
|
|
def _flushContour(self, segments):
|
|
#
|
|
# adapted from robofab.pens.adapterPens.rfUFOPointPen
|
|
#
|
|
assert len(segments) >= 1
|
|
# if we only have one point and it has a name, we must have an anchor
|
|
first = segments[0]
|
|
segmentType, points = first
|
|
pt, smooth, name, kwargs = points[0]
|
|
if len(segments) == 1 and name != None:
|
|
self.glyph.appendAnchor(name, pt)
|
|
return
|
|
else:
|
|
segmentType, points = segments[-1]
|
|
movePt, smooth, name, kwargs = points[-1]
|
|
if smooth:
|
|
# last point is smooth, set pen to start smooth
|
|
self.subPen.setLastSmooth(True)
|
|
if segmentType == 'line':
|
|
del segments[-1]
|
|
|
|
self.subPen.moveTo(movePt)
|
|
|
|
# do the rest of the segments
|
|
for segmentType, points in segments:
|
|
isSmooth = True in [smooth for pt, smooth, name, kwargs in points]
|
|
pp = [pt for pt, smooth, name, kwargs in points]
|
|
if segmentType == "line":
|
|
assert len(pp) == 1
|
|
if isSmooth:
|
|
self.subPen.smoothLineTo(pp[0])
|
|
else:
|
|
self.subPen.lineTo(pp[0])
|
|
elif segmentType == "curve":
|
|
assert len(pp) == 3
|
|
if isSmooth:
|
|
self.subPen.smoothCurveTo(*pp)
|
|
else:
|
|
self.subPen.curveTo(*pp)
|
|
elif segmentType == "qcurve":
|
|
assert 0, "qcurve not supported"
|
|
else:
|
|
assert 0, "illegal segmentType: %s" % segmentType
|
|
self.subPen.closePath()
|
|
|
|
def addComponent(self, glyphName, transform):
|
|
self.subPen.addComponent(glyphName, transform)
|
|
|
|
|
|
class SubsegmentsToCurvesPen(BasePen):
|
|
def __init__(self, glyphSet, otherPen, subsegmentGlyph, subsegments):
|
|
BasePen.__init__(self, None)
|
|
self.otherPen = otherPen
|
|
self.ssglyph = subsegmentGlyph
|
|
self.subsegments = subsegments
|
|
self.contourIndex = -1
|
|
self.segmentIndex = -1
|
|
self.lastPoint = (0,0)
|
|
self.lastSmooth = False
|
|
self.nextSmooth = False
|
|
|
|
def setLastSmooth(self, b):
|
|
self.lastSmooth = b
|
|
|
|
def _moveTo(self, (x, y)):
|
|
self.contourIndex += 1
|
|
self.segmentIndex = 0
|
|
self.startPoint = (x,y)
|
|
p = self.ssglyph.contours[self.contourIndex][0].points[0]
|
|
self.otherPen.moveTo((p.x, p.y))
|
|
self.lastPoint = (x,y)
|
|
|
|
def _lineTo(self, (x, y)):
|
|
self.segmentIndex += 1
|
|
index = self.subsegments[self.contourIndex][self.segmentIndex][0]
|
|
p = self.ssglyph.contours[self.contourIndex][index].points[0]
|
|
self.otherPen.lineTo((p.x, p.y))
|
|
self.lastPoint = (x,y)
|
|
self.lastSmooth = False
|
|
|
|
def smoothLineTo(self, (x, y)):
|
|
self.lineTo((x,y))
|
|
self.lastSmooth = True
|
|
|
|
def smoothCurveTo(self, (x1, y1), (x2, y2), (x3, y3)):
|
|
self.nextSmooth = True
|
|
self.curveTo((x1, y1), (x2, y2), (x3, y3))
|
|
self.nextSmooth = False
|
|
self.lastSmooth = True
|
|
|
|
def _curveToOne(self, (x1, y1), (x2, y2), (x3, y3)):
|
|
self.segmentIndex += 1
|
|
c = self.ssglyph.contours[self.contourIndex]
|
|
n = len(c)
|
|
startIndex = (self.subsegments[self.contourIndex][self.segmentIndex-1][0])
|
|
segmentCount = (self.subsegments[self.contourIndex][self.segmentIndex][1])
|
|
endIndex = (startIndex + segmentCount + 1) % (n)
|
|
|
|
indices = [(startIndex + i) % (n) for i in range(segmentCount + 1)]
|
|
points = np.array([(c[i].points[0].x, c[i].points[0].y) for i in indices])
|
|
prevPoint = (c[(startIndex - 1)].points[0].x, c[(startIndex - 1)].points[0].y)
|
|
nextPoint = (c[(endIndex) % n].points[0].x, c[(endIndex) % n].points[0].y)
|
|
prevTangent = prevPoint - points[0]
|
|
nextTangent = nextPoint - points[-1]
|
|
|
|
tangent1 = points[1] - points[0]
|
|
tangent3 = points[-2] - points[-1]
|
|
prevTangent /= np.linalg.norm(prevTangent)
|
|
nextTangent /= np.linalg.norm(nextTangent)
|
|
tangent1 /= np.linalg.norm(tangent1)
|
|
tangent3 /= np.linalg.norm(tangent3)
|
|
|
|
tangent1, junk = self.smoothTangents(tangent1, prevTangent, self.lastSmooth)
|
|
tangent3, junk = self.smoothTangents(tangent3, nextTangent, self.nextSmooth)
|
|
if self.matchTangents == True:
|
|
cp = fitBezier(points, tangent1, tangent3)
|
|
cp[1] = norm(cp[1] - cp[0]) * tangent1 / norm(tangent1) + cp[0]
|
|
cp[2] = norm(cp[2] - cp[3]) * tangent3 / norm(tangent3) + cp[3]
|
|
else:
|
|
cp = fitBezier(points)
|
|
# if self.ssglyph.name == 'r':
|
|
# print "-----------"
|
|
# print self.lastSmooth, self.nextSmooth
|
|
# print "%i %i : %i %i \n %i %i : %i %i \n %i %i : %i %i"%(x1,y1, cp[1,0], cp[1,1], x2,y2, cp[2,0], cp[2,1], x3,y3, cp[3,0], cp[3,1])
|
|
self.otherPen.curveTo((cp[1,0], cp[1,1]), (cp[2,0], cp[2,1]), (cp[3,0], cp[3,1]))
|
|
self.lastPoint = (x3, y3)
|
|
self.lastSmooth = False
|
|
|
|
def smoothTangents(self,t1,t2,forceSmooth = False):
|
|
if forceSmooth or (abs(t1.dot(t2)) > .95 and norm(t1-t2) > 1):
|
|
# print t1,t2,
|
|
t1 = (t1 - t2) / 2
|
|
t2 = -t1
|
|
# print t1,t2
|
|
return t1 / norm(t1), t2 / norm(t2)
|
|
|
|
def _closePath(self):
|
|
self.otherPen.closePath()
|
|
|
|
def _endPath(self):
|
|
self.otherPen.endPath()
|
|
|
|
def addComponent(self, glyphName, transformation):
|
|
self.otherPen.addComponent(glyphName, transformation)
|
|
|
|
|
|
class SubsegmentPointPen(BasePointToSegmentPen):
|
|
def __init__(self, glyph, resolution):
|
|
BasePointToSegmentPen.__init__(self)
|
|
self.glyph = glyph
|
|
self.resolution = resolution
|
|
self.subPen = SubsegmentPen(None, glyph.getPen())
|
|
|
|
def getSubsegments(self):
|
|
return self.subPen.subsegments[:]
|
|
|
|
def _flushContour(self, segments):
|
|
#
|
|
# adapted from robofab.pens.adapterPens.rfUFOPointPen
|
|
#
|
|
assert len(segments) >= 1
|
|
# if we only have one point and it has a name, we must have an anchor
|
|
first = segments[0]
|
|
segmentType, points = first
|
|
pt, smooth, name, kwargs = points[0]
|
|
if len(segments) == 1 and name != None:
|
|
self.glyph.appendAnchor(name, pt)
|
|
return
|
|
else:
|
|
segmentType, points = segments[-1]
|
|
movePt, smooth, name, kwargs = points[-1]
|
|
if segmentType == 'line':
|
|
del segments[-1]
|
|
|
|
self.subPen.moveTo(movePt)
|
|
|
|
# do the rest of the segments
|
|
for segmentType, points in segments:
|
|
points = [pt for pt, smooth, name, kwargs in points]
|
|
if segmentType == "line":
|
|
assert len(points) == 1
|
|
self.subPen.lineTo(points[0])
|
|
elif segmentType == "curve":
|
|
assert len(points) == 3
|
|
self.subPen.curveTo(*points)
|
|
elif segmentType == "qcurve":
|
|
assert 0, "qcurve not supported"
|
|
else:
|
|
assert 0, "illegal segmentType: %s" % segmentType
|
|
self.subPen.closePath()
|
|
|
|
def addComponent(self, glyphName, transform):
|
|
self.subPen.addComponent(glyphName, transform)
|
|
|
|
|
|
class SubsegmentPen(BasePen):
|
|
|
|
def __init__(self, glyphSet, otherPen, resolution=25):
|
|
BasePen.__init__(self,glyphSet)
|
|
self.resolution = resolution
|
|
self.otherPen = otherPen
|
|
self.subsegments = []
|
|
self.startContour = (0,0)
|
|
self.contourIndex = -1
|
|
|
|
def _moveTo(self, (x, y)):
|
|
self.contourIndex += 1
|
|
self.segmentIndex = 0
|
|
self.subsegments.append([])
|
|
self.subsegmentCount = 0
|
|
self.subsegments[self.contourIndex].append([self.subsegmentCount, 0])
|
|
self.startContour = (x,y)
|
|
self.lastPoint = (x,y)
|
|
self.otherPen.moveTo((x,y))
|
|
|
|
def _lineTo(self, (x, y)):
|
|
count = self.stepsForSegment((x,y),self.lastPoint)
|
|
if count < 1:
|
|
count = 1
|
|
self.subsegmentCount += count
|
|
self.subsegments[self.contourIndex].append([self.subsegmentCount, count])
|
|
for i in range(1,count+1):
|
|
x1 = self.lastPoint[0] + (x - self.lastPoint[0]) * i/float(count)
|
|
y1 = self.lastPoint[1] + (y - self.lastPoint[1]) * i/float(count)
|
|
self.otherPen.lineTo((x1,y1))
|
|
self.lastPoint = (x,y)
|
|
|
|
def _curveToOne(self, (x1, y1), (x2, y2), (x3, y3)):
|
|
count = self.stepsForSegment((x3,y3),self.lastPoint)
|
|
if count < 2:
|
|
count = 2
|
|
self.subsegmentCount += count
|
|
self.subsegments[self.contourIndex].append([self.subsegmentCount,count])
|
|
x = self.renderCurve((self.lastPoint[0],x1,x2,x3),count)
|
|
y = self.renderCurve((self.lastPoint[1],y1,y2,y3),count)
|
|
assert len(x) == count
|
|
if (x3 == self.startContour[0] and y3 == self.startContour[1]):
|
|
count -= 1
|
|
for i in range(count):
|
|
self.otherPen.lineTo((x[i],y[i]))
|
|
self.lastPoint = (x3,y3)
|
|
|
|
def _closePath(self):
|
|
if not (self.lastPoint[0] == self.startContour[0] and self.lastPoint[1] == self.startContour[1]):
|
|
self._lineTo(self.startContour)
|
|
|
|
# round values used by otherPen (a RoboFab SegmentToPointPen) to decide
|
|
# whether to delete duplicate points at start and end of contour
|
|
#TODO(jamesgk) figure out why we have to do this hack, then remove it
|
|
c = self.otherPen.contour
|
|
for i in [0, -1]:
|
|
c[i] = [[round(n, 5) for n in c[i][0]]] + list(c[i][1:])
|
|
|
|
self.otherPen.closePath()
|
|
|
|
def _endPath(self):
|
|
self.otherPen.endPath()
|
|
|
|
def addComponent(self, glyphName, transformation):
|
|
self.otherPen.addComponent(glyphName, transformation)
|
|
|
|
def stepsForSegment(self, p1, p2):
|
|
dist = np.linalg.norm(v(p1) - v(p2))
|
|
out = int(dist / self.resolution)
|
|
return out
|
|
|
|
def renderCurve(self,p,count):
|
|
curvePoints = []
|
|
t = 1.0 / float(count)
|
|
temp = t * t
|
|
|
|
f = p[0]
|
|
fd = 3 * (p[1] - p[0]) * t
|
|
fdd_per_2 = 3 * (p[0] - 2 * p[1] + p[2]) * temp
|
|
fddd_per_2 = 3 * (3 * (p[1] - p[2]) + p[3] - p[0]) * temp * t
|
|
|
|
fddd = fddd_per_2 + fddd_per_2
|
|
fdd = fdd_per_2 + fdd_per_2
|
|
fddd_per_6 = fddd_per_2 * (1.0 / 3)
|
|
|
|
for i in range(count):
|
|
f = f + fd + fdd_per_2 + fddd_per_6
|
|
fd = fd + fdd + fddd_per_2
|
|
fdd = fdd + fddd
|
|
fdd_per_2 = fdd_per_2 + fddd_per_2
|
|
curvePoints.append(f)
|
|
|
|
return curvePoints
|
|
|
|
|
|
def fitBezierSimple(pts):
|
|
T = [np.linalg.norm(pts[i]-pts[i-1]) for i in range(1,len(pts))]
|
|
tsum = np.sum(T)
|
|
T = [0] + T
|
|
T = [np.sum(T[0:i+1])/tsum for i in range(len(pts))]
|
|
T = [[t**3, t**2, t, 1] for t in T]
|
|
T = np.array(T)
|
|
M = np.array([[-1, 3, -3, 1],
|
|
[ 3, -6, 3, 0],
|
|
[-3, 3, 0, 0],
|
|
[ 1, 0, 0, 0]])
|
|
T = T.dot(M)
|
|
T = np.concatenate((T, np.array([[100,0,0,0], [0,0,0,100]])))
|
|
# pts = np.vstack((pts, pts[0] * 100, pts[-1] * 100))
|
|
C = np.linalg.lstsq(T, pts)
|
|
return C[0]
|
|
|
|
|
|
def subdivideLineSegment(pts):
|
|
out = [pts[0]]
|
|
for i in range(1, len(pts)):
|
|
out.append(pts[i-1] + (pts[i] - pts[i-1]) * .5)
|
|
out.append(pts[i])
|
|
return np.array(out)
|
|
|
|
|
|
def fitBezier(pts,tangent0=None,tangent3=None):
|
|
if len(pts < 4):
|
|
pts = subdivideLineSegment(pts)
|
|
T = [np.linalg.norm(pts[i]-pts[i-1]) for i in range(1,len(pts))]
|
|
tsum = np.sum(T)
|
|
T = [0] + T
|
|
T = [np.sum(T[0:i+1])/tsum for i in range(len(pts))]
|
|
T = [[t**3, t**2, t, 1] for t in T]
|
|
T = np.array(T)
|
|
M = np.array([[-1, 3, -3, 1],
|
|
[ 3, -6, 3, 0],
|
|
[-3, 3, 0, 0],
|
|
[ 1, 0, 0, 0]])
|
|
T = T.dot(M)
|
|
n = len(pts)
|
|
pout = pts.copy()
|
|
pout[:,0] -= (T[:,0] * pts[0,0]) + (T[:,3] * pts[-1,0])
|
|
pout[:,1] -= (T[:,0] * pts[0,1]) + (T[:,3] * pts[-1,1])
|
|
|
|
TT = np.zeros((n*2,4))
|
|
for i in range(n):
|
|
for j in range(2):
|
|
TT[i*2,j*2] = T[i,j+1]
|
|
TT[i*2+1,j*2+1] = T[i,j+1]
|
|
pout = pout.reshape((n*2,1),order="C")
|
|
|
|
if tangent0 != None and tangent3 != None:
|
|
tangentConstraintsT = np.array([
|
|
[tangent0[1], -tangent0[0], 0, 0],
|
|
[0, 0, tangent3[1], -tangent3[0]]
|
|
])
|
|
tangentConstraintsP = np.array([
|
|
[pts[0][1] * -tangent0[0] + pts[0][0] * tangent0[1]],
|
|
[pts[-1][1] * -tangent3[0] + pts[-1][0] * tangent3[1]]
|
|
])
|
|
TT = np.concatenate((TT, tangentConstraintsT * 1000))
|
|
pout = np.concatenate((pout, tangentConstraintsP * 1000))
|
|
C = np.linalg.lstsq(TT,pout)[0].reshape((2,2))
|
|
return np.array([pts[0], C[0], C[1], pts[-1]])
|
|
|
|
|
|
def segmentGlyph(glyph,resolution=50):
|
|
g1 = glyph.copy()
|
|
g1.clear()
|
|
dp = SubsegmentPointPen(g1, resolution)
|
|
glyph.drawPoints(dp)
|
|
return g1, dp.getSubsegments()
|
|
|
|
|
|
def fitGlyph(glyph, subsegmentGlyph, subsegmentIndices, matchTangents=True):
|
|
outGlyph = glyph.copy()
|
|
outGlyph.clear()
|
|
fitPen = SubsegmentsToCurvesPointPen(outGlyph, subsegmentGlyph, subsegmentIndices)
|
|
fitPen.setMatchTangents(matchTangents)
|
|
# smoothPen = GuessSmoothPointPen(fitPen)
|
|
glyph.drawPoints(fitPen)
|
|
outGlyph.width = subsegmentGlyph.width
|
|
return outGlyph
|
|
|
|
|
|
if __name__ == '__main__':
|
|
p = SubsegmentPen(None, None)
|
|
pts = np.array([
|
|
[0,0],
|
|
[.5,.5],
|
|
[.5,.5],
|
|
[1,1]
|
|
])
|
|
print np.array(p.renderCurve(pts,10)) * 10
|