[11659] Rewrite object pos selector.

* Instead coordinates use angle projections to expected pos distance circle.
  This let do mostly only angle comparison and then speedup checks.
* Fixed some long existed bugs in algo and simplify code. Possible more work need.
This commit is contained in:
VladimirMangos 2011-06-21 21:43:06 +04:00
parent e776dbbfc8
commit 15bb164d72
4 changed files with 292 additions and 294 deletions

View file

@ -1703,8 +1703,8 @@ namespace MaNGOS
class NearUsedPosDo
{
public:
NearUsedPosDo(WorldObject const& obj, WorldObject const* searcher, float angle, ObjectPosSelector& selector)
: i_object(obj), i_searcher(searcher), i_angle(angle), i_selector(selector) {}
NearUsedPosDo(WorldObject const& obj, WorldObject const* searcher, float absAngle, ObjectPosSelector& selector)
: i_object(obj), i_searcher(searcher), i_absAngle(absAngle), i_selector(selector) {}
void operator()(Corpse*) const {}
void operator()(DynamicObject*) const {}
@ -1712,13 +1712,12 @@ namespace MaNGOS
void operator()(Creature* c) const
{
// skip self or target
if(c==i_searcher || c==&i_object)
if (c == i_searcher || c == &i_object)
return;
float x,y,z;
float x, y, z;
if( !c->isAlive() || c->hasUnitState(UNIT_STAT_NOT_MOVE) ||
!c->GetMotionMaster()->GetDestination(x,y,z) )
if (c->IsStopped() || !c->GetMotionMaster()->GetDestination(x, y, z))
{
x = c->GetPositionX();
y = c->GetPositionY();
@ -1728,10 +1727,10 @@ namespace MaNGOS
}
template<class T>
void operator()(T* u) const
void operator()(T* u) const
{
// skip self or target
if(u==i_searcher || u==&i_object)
if (u == i_searcher || u == &i_object)
return;
float x,y;
@ -1745,26 +1744,32 @@ namespace MaNGOS
// we must add used pos that can fill places around center
void add(WorldObject* u, float x, float y) const
{
// dist include size of u and i_object
float dx = i_object.GetPositionX() - x;
float dy = i_object.GetPositionY() - y;
float dist2d = sqrt((dx * dx) + (dy * dy));
float delta = i_selector.m_searcherSize + u->GetObjectBoundingRadius();
// u is too nearest/far away to i_object
if(!i_object.IsInRange2d(x,y,i_selector.m_dist - i_selector.m_size,i_selector.m_dist + i_selector.m_size))
if (dist2d < i_selector.m_searcherDist - delta ||
dist2d >= i_selector.m_searcherDist + delta)
return;
float angle = i_object.GetAngle(u)-i_angle;
float angle = i_object.GetAngle(u) - i_absAngle;
// move angle to range -pi ... +pi
while( angle > M_PI_F)
while (angle > M_PI_F)
angle -= 2.0f * M_PI_F;
while(angle < -M_PI_F)
while (angle < -M_PI_F)
angle += 2.0f * M_PI_F;
// dist include size of u
float dist2d = i_object.GetDistance2d(x,y);
i_selector.AddUsedPos(u->GetObjectBoundingRadius(), angle, dist2d + i_object.GetObjectBoundingRadius());
i_selector.AddUsedArea(u->GetObjectBoundingRadius(), angle, dist2d);
}
private:
WorldObject const& i_object;
WorldObject const* i_searcher;
float i_angle;
float i_absAngle;
ObjectPosSelector& i_selector;
};
} // namespace MaNGOS
@ -1782,16 +1787,16 @@ void WorldObject::GetNearPoint2D(float &x, float &y, float distance2d, float abs
void WorldObject::GetNearPoint(WorldObject const* searcher, float &x, float &y, float &z, float searcher_bounding_radius, float distance2d, float absAngle) const
{
GetNearPoint2D(x, y, distance2d+searcher_bounding_radius, absAngle);
GetNearPoint2D(x, y, distance2d + searcher_bounding_radius, absAngle);
z = GetPositionZ();
// if detection disabled, return first point
if(!sWorld.getConfig(CONFIG_BOOL_DETECT_POS_COLLISION))
{
if (searcher)
searcher->UpdateAllowedPositionZ(x,y,z); // update to LOS height if available
searcher->UpdateAllowedPositionZ(x, y, z); // update to LOS height if available
else
UpdateGroundPositionZ(x,y,z);
UpdateGroundPositionZ(x, y, z);
return;
}
@ -1801,113 +1806,79 @@ void WorldObject::GetNearPoint(WorldObject const* searcher, float &x, float &y,
bool first_los_conflict = false; // first point LOS problems
// prepare selector for work
ObjectPosSelector selector(GetPositionX(), GetPositionY(), GetObjectBoundingRadius(), distance2d+searcher_bounding_radius);
ObjectPosSelector selector(GetPositionX(), GetPositionY(), distance2d + searcher_bounding_radius + GetObjectBoundingRadius(), searcher_bounding_radius);
// adding used positions around object
{
MaNGOS::NearUsedPosDo u_do(*this,searcher,absAngle,selector);
MaNGOS::WorldObjectWorker<MaNGOS::NearUsedPosDo> worker(this,u_do);
MaNGOS::NearUsedPosDo u_do(*this, searcher, absAngle, selector);
MaNGOS::WorldObjectWorker<MaNGOS::NearUsedPosDo> worker(this, u_do);
Cell::VisitAllObjects(this, worker, distance2d);
Cell::VisitAllObjects(this, worker, distance2d + searcher_bounding_radius);
}
// maybe can just place in primary position
if( selector.CheckOriginal() )
if (selector.CheckOriginalAngle())
{
if (searcher)
searcher->UpdateAllowedPositionZ(x,y,z); // update to LOS height if available
searcher->UpdateAllowedPositionZ(x, y, z); // update to LOS height if available
else
UpdateGroundPositionZ(x,y,z);
UpdateGroundPositionZ(x, y, z);
if(IsWithinLOS(x,y,z))
if (IsWithinLOS(x, y, z))
return;
first_los_conflict = true; // first point have LOS problems
}
float angle; // candidate of angle for free pos
// special case when one from list empty and then empty side preferred
if(selector.FirstAngle(angle))
{
GetNearPoint2D(x,y,distance2d,absAngle+angle);
z = GetPositionZ();
if (searcher)
searcher->UpdateAllowedPositionZ(x,y,z); // update to LOS height if available
else
UpdateGroundPositionZ(x,y,z);
if(IsWithinLOS(x,y,z))
return;
}
// set first used pos in lists
selector.InitializeAngle();
float angle; // candidate of angle for free pos
// select in positions after current nodes (selection one by one)
while(selector.NextAngle(angle)) // angle for free pos
while (selector.NextAngle(angle)) // angle for free pos
{
GetNearPoint2D(x,y,distance2d,absAngle+angle);
GetNearPoint2D(x, y, distance2d + searcher_bounding_radius, absAngle + angle);
z = GetPositionZ();
if (searcher)
searcher->UpdateAllowedPositionZ(x,y,z); // update to LOS height if available
searcher->UpdateAllowedPositionZ(x, y, z); // update to LOS height if available
else
UpdateGroundPositionZ(x,y,z);
UpdateGroundPositionZ(x, y, z);
if(IsWithinLOS(x,y,z))
if (IsWithinLOS(x, y, z))
return;
}
// BAD NEWS: not free pos (or used or have LOS problems)
// Attempt find _used_ pos without LOS problem
if(!first_los_conflict)
if (!first_los_conflict)
{
x = first_x;
y = first_y;
if (searcher)
searcher->UpdateAllowedPositionZ(x,y,z); // update to LOS height if available
searcher->UpdateAllowedPositionZ(x, y, z); // update to LOS height if available
else
UpdateGroundPositionZ(x,y,z);
UpdateGroundPositionZ(x, y, z);
return;
}
// special case when one from list empty and then empty side preferred
if( selector.IsNonBalanced() )
{
if(!selector.FirstAngle(angle)) // _used_ pos
{
GetNearPoint2D(x,y,distance2d,absAngle+angle);
z = GetPositionZ();
if (searcher)
searcher->UpdateAllowedPositionZ(x,y,z); // update to LOS height if available
else
UpdateGroundPositionZ(x,y,z);
if(IsWithinLOS(x,y,z))
return;
}
}
// set first used pos in lists
selector.InitializeAngle();
// select in positions after current nodes (selection one by one)
while(selector.NextUsedAngle(angle)) // angle for used pos but maybe without LOS problem
while (selector.NextUsedAngle(angle)) // angle for used pos but maybe without LOS problem
{
GetNearPoint2D(x,y,distance2d,absAngle+angle);
GetNearPoint2D(x, y, distance2d + searcher_bounding_radius, absAngle + angle);
z = GetPositionZ();
if (searcher)
searcher->UpdateAllowedPositionZ(x,y,z); // update to LOS height if available
searcher->UpdateAllowedPositionZ(x, y, z); // update to LOS height if available
else
UpdateGroundPositionZ(x,y,z);
UpdateGroundPositionZ(x, y, z);
if(IsWithinLOS(x,y,z))
if (IsWithinLOS(x, y, z))
return;
}
@ -1916,9 +1887,9 @@ void WorldObject::GetNearPoint(WorldObject const* searcher, float &x, float &y,
y = first_y;
if (searcher)
searcher->UpdateAllowedPositionZ(x,y,z); // update to LOS height if available
searcher->UpdateAllowedPositionZ(x, y, z); // update to LOS height if available
else
UpdateGroundPositionZ(x,y,z);
UpdateGroundPositionZ(x, y, z);
}
void WorldObject::SetPhaseMask(uint32 newPhaseMask, bool update)

View file

@ -19,144 +19,253 @@
#include "ObjectPosSelector.h"
#include "Object.h"
ObjectPosSelector::ObjectPosSelector(float x,float y,float size,float dist)
: m_center_x(x),m_center_y(y),m_size(size),m_dist(dist)
ObjectPosSelector::ObjectPosSelector(float x, float y, float dist, float searcher_size) :
m_centerX(x), m_centerY(y), m_searcherDist(dist), m_searcherSize(searcher_size)
{
// if size == 0, m_anglestep will become 0 -> freeze
if(m_size == 0.0f)
m_size = DEFAULT_WORLD_OBJECT_SIZE;
if (m_searcherSize == 0.0f)
m_searcherSize = DEFAULT_WORLD_OBJECT_SIZE;
m_anglestep = acos(m_dist/(m_dist+2*m_size));
m_searcherHalfSize = asin(m_searcherSize/m_searcherDist);
m_nextUsedPos[USED_POS_PLUS] = m_UsedPosLists[USED_POS_PLUS].end();
m_nextUsedPos[USED_POS_MINUS] = m_UsedPosLists[USED_POS_MINUS].end();
m_smallStepAngle[USED_POS_PLUS] = 0;
m_smallStepAngle[USED_POS_MINUS] = 0;
m_smallStepOk[USED_POS_PLUS] = false;
m_smallStepOk[USED_POS_MINUS] = false;
m_smallStepNextUsedPos[USED_POS_PLUS] = NULL;
m_smallStepNextUsedPos[USED_POS_MINUS] = NULL;
// Really init in InitilizeAngle
m_nextUsedAreaItr[USED_POS_PLUS] = m_UsedAreaLists[USED_POS_PLUS].begin();
m_nextUsedAreaItr[USED_POS_MINUS] = m_UsedAreaLists[USED_POS_MINUS].begin();
m_nextUsedAreaStart[USED_POS_PLUS] = 0.0f;
m_nextUsedAreaStart[USED_POS_MINUS] = 0.0f;
m_stepAngle[USED_POS_PLUS] = 0.0f;
m_stepAngle[USED_POS_MINUS] = 0.0f;
}
ObjectPosSelector::UsedPosList::value_type const* ObjectPosSelector::nextUsedPos(UsedPosType uptype)
/**
* Add used area (circle) near target object excluded from possible searcher position
*
*
* @param size Size of used circle
* @param angle Angle of used circle center point from target-searcher line
* @param dist Distance from target object center point to used circle center point
*
* Used circles data stored as projections to searcher dist size circle as angle coordinate and half angle size
*/
void ObjectPosSelector::AddUsedArea(float size, float angle, float dist)
{
UsedPosList::const_iterator itr = m_nextUsedPos[uptype];
if(itr!=m_UsedPosLists[uptype].end())
++itr;
float sr_dist = size + m_searcherSize;
if(itr==m_UsedPosLists[uptype].end())
{
if(!m_UsedPosLists[~uptype].empty())
return &*m_UsedPosLists[~uptype].rbegin();
else
return NULL;
}
// by Law of cosines, angle of searcher/used centers
float sr_angle = acos((m_searcherDist * m_searcherDist + dist * dist - sr_dist * sr_dist) / (2 * m_searcherDist * dist));
if (angle >= 0)
m_UsedAreaLists[USED_POS_PLUS].insert(UsedArea(angle, sr_angle));
else
return &*itr;
m_UsedAreaLists[USED_POS_MINUS].insert(UsedArea(-angle, sr_angle));
}
void ObjectPosSelector::AddUsedPos(float size,float angle,float dist)
/**
* Check searcher circle not intercepting with used circle
*
* @param usedArea Used circle as projection to searcher distance circle in angles form
* @param side Side of used circle
* @param angle Checked angle
*
* @return true, if used circle not intercepted with searcher circle in terms projection angles
*/
bool ObjectPosSelector::CheckAngle(UsedArea const& usedArea, UsedAreaSide side, float angle) const
{
if(angle>=0)
m_UsedPosLists[USED_POS_PLUS].insert(UsedPosList::value_type(angle,UsedPos(1.0,size,dist)));
else
m_UsedPosLists[USED_POS_MINUS].insert(UsedPosList::value_type(-angle,UsedPos(-1.0,size,dist)));
float used_angle = usedArea.first * SignOf(side);
float used_offset = usedArea.second;
return fabs(used_angle - angle) > used_offset;
}
/**
* Check searcher circle not intercepting with used circle at side (only start angle provided)
*
* @param side Side of used circle
* @param angle Checked angle at side, positive always
*
* @return true, if used circle not intercepted with searcher circle in terms projection angles
*/
bool ObjectPosSelector::CheckSideAngle(UsedAreaSide side, float angle) const
{
return angle + m_searcherHalfSize < m_nextUsedAreaStart[side];
}
/**
* Check original (0.0f) angle fit to existed used area excludes
*
* @return true, if 0.0f angle with m_searcher_halfangle*2 angle size not intercept with used circles
*/
bool ObjectPosSelector::CheckOriginalAngle() const
{
// check first left/right used angles if exists
return (m_UsedAreaLists[USED_POS_PLUS].empty() || CheckAngle(*m_UsedAreaLists[USED_POS_PLUS].begin(), USED_POS_PLUS, 0.0f)) &&
(m_UsedAreaLists[USED_POS_MINUS].empty() || CheckAngle(*m_UsedAreaLists[USED_POS_MINUS].begin(), USED_POS_MINUS, 0.0f));
}
/**
* Initialize data for search angles starting from first possible angle at both sides
*/
void ObjectPosSelector::InitializeAngle()
{
m_nextUsedPos[USED_POS_PLUS] = m_UsedPosLists[USED_POS_PLUS].begin();
m_nextUsedPos[USED_POS_MINUS] = m_UsedPosLists[USED_POS_MINUS].begin();
m_smallStepAngle[USED_POS_PLUS] = 0;
m_smallStepAngle[USED_POS_MINUS] = 0;
m_smallStepOk[USED_POS_PLUS] = true;
m_smallStepOk[USED_POS_MINUS] = true;
InitializeAngle(USED_POS_PLUS);
InitializeAngle(USED_POS_MINUS);
}
bool ObjectPosSelector::FirstAngle(float& angle)
/**
* Initialize data for search angles starting from first possible angle at side
*/
void ObjectPosSelector::InitializeAngle(UsedAreaSide side)
{
if(m_UsedPosLists[USED_POS_PLUS].empty() && !m_UsedPosLists[USED_POS_MINUS].empty() )
return NextAngleFor(*m_UsedPosLists[USED_POS_MINUS].begin(),1.0,USED_POS_PLUS,angle);
else if(m_UsedPosLists[USED_POS_MINUS].empty() && !m_UsedPosLists[USED_POS_PLUS].empty() )
return NextAngleFor(*m_UsedPosLists[USED_POS_PLUS].begin(),-1.0,USED_POS_MINUS,angle);
m_nextUsedAreaItr[side] = m_UsedAreaLists[side].begin();
UpdateNextAreaStart(side);
return false;
// if another side not alow use 0.0f angle calculate possible value in 0..m_searcherHalfSize range
if (!m_UsedAreaLists[~side].empty())
{
UsedArea const& otherArea = *m_UsedAreaLists[~side].begin();
// if other are near start
if (otherArea.first < otherArea.second)
m_stepAngle[side] = otherArea.second - otherArea.first;
else
m_stepAngle[side] = 0.0f;
}
else
m_stepAngle[side] = 0.0f;
}
/**
* Update next used area start angle for current m_nextUsedAreaItr value at side
*/
void ObjectPosSelector::UpdateNextAreaStart(UsedAreaSide side)
{
// not last next area at side
if (m_nextUsedAreaItr[side] != m_UsedAreaLists[side].end())
{
m_nextUsedAreaStart[side] = m_nextUsedAreaItr[side]->first - m_nextUsedAreaItr[side]->second + m_searcherHalfSize;
return;
}
// last area at side and not another side areas
if (m_UsedAreaLists[~side].empty())
{
m_nextUsedAreaStart[side] = M_PI_F + m_searcherHalfSize + 0.01f;
return;
}
UsedArea const& lastArea = *m_UsedAreaLists[~side].rbegin();
// another side have used area near to end (near to PI)
if (lastArea.first + lastArea.second > M_PI_F - m_searcherHalfSize)
{
m_nextUsedAreaStart[side] = M_PI_F + (M_PI_F - lastArea.first - lastArea.second) + m_searcherHalfSize;
return;
}
// last area and fail find any used area at another side, prepare fake data as stopper
m_nextUsedAreaStart[side] = M_PI_F + m_searcherHalfSize + 0.01f;
}
/**
* Find next angle in free area
*
* @param angle Return at success found angle
*
* @return true, if angle found
*/
bool ObjectPosSelector::NextAngle(float& angle)
{
while(m_nextUsedPos[USED_POS_PLUS]!=m_UsedPosLists[USED_POS_PLUS].end() ||
m_nextUsedPos[USED_POS_MINUS]!=m_UsedPosLists[USED_POS_MINUS].end() ||
m_smallStepOk[USED_POS_PLUS] || m_smallStepOk[USED_POS_MINUS] )
// loop until both side fail and leave 0..PI
for(;;)
{
// calculate next possible angle
if(NextPosibleAngle(angle))
return true;
}
return false;
}
bool ObjectPosSelector::NextUsedAngle(float& angle)
{
while(m_nextUsedPos[USED_POS_PLUS]!=m_UsedPosLists[USED_POS_PLUS].end() ||
m_nextUsedPos[USED_POS_MINUS]!=m_UsedPosLists[USED_POS_MINUS].end() )
{
// calculate next possible angle
if(!NextPosibleAngle(angle))
return true;
}
return false;
}
bool ObjectPosSelector::NextPosibleAngle( float& angle )
{
// ++ direction less updated
if( m_nextUsedPos[USED_POS_PLUS]!=m_UsedPosLists[USED_POS_PLUS].end() &&
(m_nextUsedPos[USED_POS_MINUS]==m_UsedPosLists[USED_POS_MINUS].end() || m_nextUsedPos[USED_POS_PLUS]->first <= m_nextUsedPos[USED_POS_MINUS]->first) )
{
bool ok;
if(m_smallStepOk[USED_POS_PLUS])
ok = NextSmallStepAngle(1.0,USED_POS_PLUS,angle);
else
ok = NextAngleFor(*m_nextUsedPos[USED_POS_PLUS],1.0,USED_POS_PLUS,angle);
if(!ok)
++m_nextUsedPos[USED_POS_PLUS]; // increase. only at fail (original or checked)
return ok;
}
// -- direction less updated
else if( m_nextUsedPos[USED_POS_MINUS]!=m_UsedPosLists[USED_POS_MINUS].end())
{
bool ok;
if(m_smallStepOk[USED_POS_MINUS])
ok = NextSmallStepAngle(-1.0,USED_POS_MINUS,angle);
else
ok = NextAngleFor(*m_nextUsedPos[USED_POS_MINUS],-1.0,USED_POS_MINUS,angle);
if(!ok)
++m_nextUsedPos[USED_POS_MINUS];
return ok;
}
else // both list empty
{
if( m_smallStepOk[USED_POS_PLUS] && (!m_smallStepOk[USED_POS_MINUS] || m_smallStepAngle[USED_POS_PLUS] <= m_smallStepAngle[USED_POS_MINUS]) )
// ++ direction less updated
if (m_stepAngle[USED_POS_PLUS] < M_PI_F && m_stepAngle[USED_POS_PLUS] <= m_stepAngle[USED_POS_MINUS])
{
return NextSmallStepAngle(1.0,USED_POS_PLUS,angle);
if (NextSideAngle(USED_POS_PLUS, angle))
return true;
}
// -- direction less updated
else if( m_smallStepOk[USED_POS_MINUS] )
else if (m_stepAngle[USED_POS_MINUS] < M_PI_F)
{
return NextSmallStepAngle(-1.0,USED_POS_MINUS,angle);
if (NextSideAngle(USED_POS_MINUS, angle))
return true;
}
// both sides finishes
else
break;
}
// no angles
return false;
}
/**
* Find next angle at side
*
* @param side Side of angle
* @param angle Return at success found angle
*
* @return true, if angle found
*
*/
bool ObjectPosSelector::NextSideAngle(UsedAreaSide side, float &angle )
{
// next possible angle
m_stepAngle[side] += (m_searcherHalfSize + 0.01);
// prevent jump to another side
if (m_stepAngle[side] > M_PI_F)
return false;
// update angle at attempt jump after next used area
while (m_stepAngle[side] <= M_PI_F && m_stepAngle[side] + m_searcherHalfSize >= m_nextUsedAreaStart[side])
{
// no used area for pass
if (m_nextUsedAreaItr[side] == m_UsedAreaLists[side].end())
{
m_stepAngle[side] = M_PI_F + m_searcherHalfSize;// prevent continue search at side
return false;
}
// angle set at first possible pos after passed m_nextUsedAreaItr
m_stepAngle[side] = m_nextUsedAreaItr[side]->first + m_nextUsedAreaItr[side]->second;
++m_nextUsedAreaItr[side];
UpdateNextAreaStart(side);
}
angle = m_stepAngle[side] * SignOf(side);
// if next node not allow use selected angle, mark and fail
return CheckSideAngle(side, m_stepAngle[side]);
}
/**
* Find next angle in used area, that used if no angle found in free area with LoS
*
* @param angle Return at success found angle
*
* @return true, if angle found
*/
bool ObjectPosSelector::NextUsedAngle(float& angle)
{
if (m_nextUsedAreaItr[USED_POS_PLUS] == m_UsedAreaLists[USED_POS_PLUS].end() &&
m_nextUsedAreaItr[USED_POS_MINUS] == m_UsedAreaLists[USED_POS_MINUS].end())
return false;
// ++ direction less updated
if (m_nextUsedAreaItr[USED_POS_PLUS] != m_UsedAreaLists[USED_POS_PLUS].end() &&
(m_nextUsedAreaItr[USED_POS_MINUS] == m_UsedAreaLists[USED_POS_MINUS].end() ||
m_nextUsedAreaItr[USED_POS_PLUS]->first <= m_nextUsedAreaItr[USED_POS_MINUS]->first))
{
angle = m_nextUsedAreaItr[USED_POS_PLUS]->first * SignOf(USED_POS_PLUS);
++m_nextUsedAreaItr[USED_POS_PLUS];
}
else
{
angle = m_nextUsedAreaItr[USED_POS_MINUS]->first * SignOf(USED_POS_MINUS);
++m_nextUsedAreaItr[USED_POS_MINUS];
}
return true;
}

View file

@ -23,133 +23,51 @@
#include<map>
enum UsedPosType { USED_POS_PLUS, USED_POS_MINUS };
enum UsedAreaSide { USED_POS_PLUS, USED_POS_MINUS };
inline UsedPosType operator ~(UsedPosType uptype)
inline UsedAreaSide operator ~(UsedAreaSide side)
{
return uptype==USED_POS_PLUS ? USED_POS_MINUS : USED_POS_PLUS;
return side == USED_POS_PLUS ? USED_POS_MINUS : USED_POS_PLUS;
}
inline float SignOf(UsedAreaSide side)
{
return side == USED_POS_PLUS ? 1.0f : -1.0f;
}
struct ObjectPosSelector
{
struct UsedPos
{
UsedPos(float sign_, float size_,float dist_) : sign(sign_), size(size_),dist(dist_) {}
typedef std::multimap<float,float> UsedAreaList; // angle pos -> angle offset
typedef UsedAreaList::value_type UsedArea;
float sign;
ObjectPosSelector(float x, float y, float dist, float searcher_size);
float size; // size of point
float dist; // dist to central point (including central point size)
};
void AddUsedArea(float size, float angle, float dist);
typedef std::multimap<float,UsedPos> UsedPosList; // abs(angle)->Node
bool CheckOriginalAngle() const;
ObjectPosSelector(float x,float y,float size,float dist);
void AddUsedPos(float size,float angle,float dist);
void InitializeAngle();
bool FirstAngle(float& angle);
bool NextAngle(float& angle);
bool NextUsedAngle(float& angle);
bool NextPosibleAngle( float& angle );
bool CheckAngle(UsedArea const& usedArea, UsedAreaSide side, float angle) const;
bool CheckSideAngle(UsedAreaSide side, float angle) const;
void InitializeAngle(UsedAreaSide side);
void UpdateNextAreaStart(UsedAreaSide side);
bool NextSideAngle(UsedAreaSide side, float& angle);
bool CheckAngle(UsedPosList::value_type const& nextUsedPos, float sign, float angle ) const
{
float angle_step2 = GetAngle(nextUsedPos.second);
float m_centerX;
float m_centerY;
float m_searcherDist; // distance for searching pos (including searcher size and target object size)
float m_searcherSize; // searcher object radius
float m_searcherHalfSize; // angle size/2 of searcher object (at dist distance)
float next_angle = nextUsedPos.first;
if(nextUsedPos.second.sign * sign < 0) // last node from diff. list (-pi+alpha)
next_angle = 2.0f*M_PI_F-next_angle; // move to positive
UsedAreaList m_UsedAreaLists[2]; // list left/right side used angles (with angle size)
return fabs(angle)+angle_step2 <= next_angle;
}
UsedAreaList::const_iterator m_nextUsedAreaItr[2]; // next used used areas for check at left/right side, possible angles selected in range m_smallStepAngle..m_nextUsedAreaItr
float m_nextUsedAreaStart[2]; // cached angle for next used area from m_nextUsedAreaItr or another side
bool CheckOriginal() const
{
return (m_UsedPosLists[USED_POS_PLUS].empty() || CheckAngle( *m_UsedPosLists[USED_POS_PLUS].begin(),1.0,0)) &&
(m_UsedPosLists[USED_POS_MINUS].empty() || CheckAngle( *m_UsedPosLists[USED_POS_MINUS].begin(),-1.0,0));
}
bool IsNonBalanced() const { return m_UsedPosLists[USED_POS_PLUS].empty() != m_UsedPosLists[USED_POS_MINUS].empty(); }
bool NextAngleFor( UsedPosList::value_type const& usedPos, float sign, UsedPosType uptype, float &angle )
{
float angle_step = GetAngle(usedPos.second);
// next possible angle
angle = usedPos.first * usedPos.second.sign + angle_step * sign;
UsedPosList::value_type const* nextNode = nextUsedPos(uptype);
if(nextNode)
{
// if next node permit use selected angle, then do it
if(!CheckAngle(*nextNode, sign, angle))
{
m_smallStepOk[uptype] = false;
return false;
}
}
// possible more points
m_smallStepOk[uptype] = true;
m_smallStepAngle[uptype] = angle;
m_smallStepNextUsedPos[uptype] = nextNode;
return true;
}
bool NextSmallStepAngle( float sign, UsedPosType uptype, float &angle )
{
// next possible angle
angle = m_smallStepAngle[uptype] + m_anglestep * sign;
if(fabs(angle) > M_PI)
{
m_smallStepOk[uptype] = false;
return false;
}
if(m_smallStepNextUsedPos[uptype])
{
if(fabs(angle) >= m_smallStepNextUsedPos[uptype]->first)
{
m_smallStepOk[uptype] = false;
return false;
}
// if next node permit use selected angle, then do it
if(!CheckAngle(*m_smallStepNextUsedPos[uptype], sign, angle))
{
m_smallStepOk[uptype] = false;
return false;
}
}
// possible more points
m_smallStepAngle[uptype] = angle;
return true;
}
// next used post for m_nextUsedPos[uptype]
UsedPosList::value_type const* nextUsedPos(UsedPosType uptype);
// angle from used pos to next possible free pos
float GetAngle(UsedPos const& usedPos) const { return acos(m_dist/(usedPos.dist+usedPos.size+m_size)); }
float m_center_x;
float m_center_y;
float m_size; // size of object in center
float m_dist; // distance for searching pos (including central object size)
float m_anglestep;
UsedPosList m_UsedPosLists[2];
UsedPosList::const_iterator m_nextUsedPos[2];
// field for small step from first after next used pos until next pos
float m_smallStepAngle[2];
bool m_smallStepOk[2];
UsedPosList::value_type const* m_smallStepNextUsedPos[2];
float m_stepAngle[2]; // current checked angle position at sides (less m_nextUsedArea), positive value
};
#endif

View file

@ -1,4 +1,4 @@
#ifndef __REVISION_NR_H__
#define __REVISION_NR_H__
#define REVISION_NR "11658"
#define REVISION_NR "11659"
#endif // __REVISION_NR_H__