mirror of
https://github.com/mangosfour/server.git
synced 2025-12-18 10:37:01 +00:00
[11912] Use mmaps for MovementGenerators
This commit is contained in:
parent
e738c27714
commit
2f0ed05566
15 changed files with 130 additions and 744 deletions
|
|
@ -181,7 +181,7 @@ void WaypointMovementGenerator<Creature>::StartMove(Creature &creature)
|
|||
|
||||
const WaypointNode &node = i_path->at(i_currentNode);
|
||||
Movement::MoveSplineInit init(creature);
|
||||
init.MoveTo(node.x, node.y, node.z);
|
||||
init.MoveTo(node.x, node.y, node.z, true);
|
||||
|
||||
if (node.orientation != 100 && node.delay != 0)
|
||||
init.SetFacing(node.orientation);
|
||||
|
|
@ -363,329 +363,3 @@ bool FlightPathMovementGenerator::GetResetPosition(Player&, float& x, float& y,
|
|||
x = node.x; y = node.y; z = node.z;
|
||||
return true;
|
||||
}
|
||||
|
||||
//
|
||||
// Unique1's ASTAR Pathfinding Code... For future use & reference...
|
||||
//
|
||||
|
||||
#ifdef __PATHFINDING__
|
||||
|
||||
int GetFCost(int to, int num, int parentNum, float *gcost); // Below...
|
||||
|
||||
int ShortenASTARRoute(short int *pathlist, int number)
|
||||
{ // Wrote this to make the routes a little smarter (shorter)... No point looping back to the same places... Unique1
|
||||
short int temppathlist[MAX_PATHLIST_NODES];
|
||||
int count = 0;
|
||||
// int count2 = 0;
|
||||
int temp, temp2;
|
||||
int link;
|
||||
int upto = 0;
|
||||
|
||||
for (temp = number; temp >= 0; temp--)
|
||||
{
|
||||
qboolean shortened = qfalse;
|
||||
|
||||
for (temp2 = 0; temp2 < temp; temp2++)
|
||||
{
|
||||
for (link = 0; link < nodes[pathlist[temp]].enodenum; link++)
|
||||
{
|
||||
if (nodes[pathlist[temp]].links[link].flags & PATH_BLOCKED)
|
||||
continue;
|
||||
|
||||
//if ((bot->client->ps.eFlags & EF_TANK) && nodes[bot->current_node].links[link].flags & PATH_NOTANKS) //if this path is blocked, skip it
|
||||
// continue;
|
||||
|
||||
//if (nodes[nodes[pathlist[temp]].links[link].targetNode].origin[2] > nodes[pathlist[temp]].origin[2] + 32)
|
||||
// continue;
|
||||
|
||||
if (nodes[pathlist[temp]].links[link].targetNode == pathlist[temp2])
|
||||
{ // Found a shorter route...
|
||||
//if (OrgVisible(nodes[pathlist[temp2]].origin, nodes[pathlist[temp]].origin, -1))
|
||||
{
|
||||
temppathlist[count] = pathlist[temp2];
|
||||
temp = temp2;
|
||||
++count;
|
||||
shortened = qtrue;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!shortened)
|
||||
{
|
||||
temppathlist[count] = pathlist[temp];
|
||||
++count;
|
||||
}
|
||||
}
|
||||
|
||||
upto = count;
|
||||
|
||||
for (temp = 0; temp < count; temp++)
|
||||
{
|
||||
pathlist[temp] = temppathlist[upto];
|
||||
--upto;
|
||||
}
|
||||
|
||||
G_Printf("ShortenASTARRoute: Path size reduced from %i to %i nodes...n", number, count);
|
||||
return count;
|
||||
}
|
||||
|
||||
/*
|
||||
===========================================================================
|
||||
CreatePathAStar
|
||||
This function uses the A* pathfinding algorithm to determine the
|
||||
shortest path between any two nodes.
|
||||
It's fairly complex, so I'm not really going to explain it much.
|
||||
Look up A* and binary heaps for more info.
|
||||
pathlist stores the ideal path between the nodes, in reverse order,
|
||||
and the return value is the number of nodes in that path
|
||||
===========================================================================
|
||||
*/
|
||||
int CreatePathAStar(gentity_t *bot, int from, int to, short int *pathlist)
|
||||
{
|
||||
//all the data we have to hold...since we can't do dynamic allocation, has to be MAX_NODES
|
||||
//we can probably lower this later - eg, the open list should never have more than at most a few dozen items on it
|
||||
short int openlist[MAX_NODES+1]; //add 1 because it's a binary heap, and they don't use 0 - 1 is the first used index
|
||||
float gcost[MAX_NODES];
|
||||
int fcost[MAX_NODES];
|
||||
char list[MAX_NODES]; //0 is neither, 1 is open, 2 is closed - char because it's the smallest data type
|
||||
short int parent[MAX_NODES];
|
||||
|
||||
short int numOpen = 0;
|
||||
short int atNode, temp, newnode=-1;
|
||||
qboolean found = qfalse;
|
||||
int count = -1;
|
||||
float gc;
|
||||
int i, u, v, m;
|
||||
vec3_t vec;
|
||||
|
||||
//clear out all the arrays
|
||||
memset(openlist, 0, sizeof(short int)*(MAX_NODES+1));
|
||||
memset(fcost, 0, sizeof(int)*MAX_NODES);
|
||||
memset(list, 0, sizeof(char)*MAX_NODES);
|
||||
memset(parent, 0, sizeof(short int)*MAX_NODES);
|
||||
memset(gcost, -1, sizeof(float)*MAX_NODES);
|
||||
|
||||
//make sure we have valid data before calculating everything
|
||||
if ((from == NODE_INVALID) || (to == NODE_INVALID) || (from >= MAX_NODES) || (to >= MAX_NODES) || (from == to))
|
||||
return -1;
|
||||
|
||||
openlist[1] = from; //add the starting node to the open list
|
||||
++numOpen;
|
||||
gcost[from] = 0; //its f and g costs are obviously 0
|
||||
fcost[from] = 0;
|
||||
|
||||
while (1)
|
||||
{
|
||||
if (numOpen != 0) //if there are still items in the open list
|
||||
{
|
||||
//pop the top item off of the list
|
||||
atNode = openlist[1];
|
||||
list[atNode] = 2; //put the node on the closed list so we don't check it again
|
||||
--numOpen;
|
||||
|
||||
openlist[1] = openlist[numOpen+1]; //move the last item in the list to the top position
|
||||
v = 1;
|
||||
|
||||
//this while loop reorders the list so that the new lowest fcost is at the top again
|
||||
while (1)
|
||||
{
|
||||
u = v;
|
||||
if ((2*u+1) < numOpen) //if both children exist
|
||||
{
|
||||
if (fcost[openlist[u]] >= fcost[openlist[2*u]])
|
||||
v = 2*u;
|
||||
if (fcost[openlist[v]] >= fcost[openlist[2*u+1]])
|
||||
v = 2*u+1;
|
||||
}
|
||||
else
|
||||
{
|
||||
if ((2*u) < numOpen) //if only one child exists
|
||||
{
|
||||
if (fcost[openlist[u]] >= fcost[openlist[2*u]])
|
||||
v = 2*u;
|
||||
}
|
||||
}
|
||||
|
||||
if (u != v) //if they're out of order, swap this item with its parent
|
||||
{
|
||||
temp = openlist[u];
|
||||
openlist[u] = openlist[v];
|
||||
openlist[v] = temp;
|
||||
}
|
||||
else
|
||||
break;
|
||||
}
|
||||
|
||||
for (i = 0; i < nodes[atNode].enodenum; ++i) //loop through all the links for this node
|
||||
{
|
||||
newnode = nodes[atNode].links[i].targetNode;
|
||||
|
||||
//if this path is blocked, skip it
|
||||
if (nodes[atNode].links[i].flags & PATH_BLOCKED)
|
||||
continue;
|
||||
//if this path is blocked, skip it
|
||||
if (bot->client && (bot->client->ps.eFlags & EF_TANK) && nodes[atNode].links[i].flags & PATH_NOTANKS)
|
||||
continue;
|
||||
//skip any unreachable nodes
|
||||
if (bot->client && (nodes[newnode].type & NODE_ALLY_UNREACHABLE) && (bot->client->sess.sessionTeam == TEAM_ALLIES))
|
||||
continue;
|
||||
if (bot->client && (nodes[newnode].type & NODE_AXIS_UNREACHABLE) && (bot->client->sess.sessionTeam == TEAM_AXIS))
|
||||
continue;
|
||||
|
||||
if (list[newnode] == 2) //if this node is on the closed list, skip it
|
||||
continue;
|
||||
|
||||
if (list[newnode] != 1) //if this node is not already on the open list
|
||||
{
|
||||
openlist[++numOpen] = newnode; //add the new node to the open list
|
||||
list[newnode] = 1;
|
||||
parent[newnode] = atNode; //record the node's parent
|
||||
|
||||
if (newnode == to) //if we've found the goal, don't keep computing paths!
|
||||
break; //this will break the 'for' and go all the way to 'if (list[to] == 1)'
|
||||
|
||||
//store it's f cost value
|
||||
fcost[newnode] = GetFCost(to, newnode, parent[newnode], gcost);
|
||||
|
||||
//this loop re-orders the heap so that the lowest fcost is at the top
|
||||
m = numOpen;
|
||||
while (m != 1) //while this item isn't at the top of the heap already
|
||||
{
|
||||
//if it has a lower fcost than its parent
|
||||
if (fcost[openlist[m]] <= fcost[openlist[m/2]])
|
||||
{
|
||||
temp = openlist[m/2];
|
||||
openlist[m/2] = openlist[m];
|
||||
openlist[m] = temp; //swap them
|
||||
m /= 2;
|
||||
}
|
||||
else
|
||||
break;
|
||||
}
|
||||
}
|
||||
else //if this node is already on the open list
|
||||
{
|
||||
gc = gcost[atNode];
|
||||
VectorSubtract(nodes[newnode].origin, nodes[atNode].origin, vec);
|
||||
gc += VectorLength(vec); //calculate what the gcost would be if we reached this node along the current path
|
||||
|
||||
if (gc < gcost[newnode]) //if the new gcost is less (ie, this path is shorter than what we had before)
|
||||
{
|
||||
parent[newnode] = atNode; //set the new parent for this node
|
||||
gcost[newnode] = gc; //and the new g cost
|
||||
|
||||
for (i = 1; i < numOpen; ++i) //loop through all the items on the open list
|
||||
{
|
||||
if (openlist[i] == newnode) //find this node in the list
|
||||
{
|
||||
//calculate the new fcost and store it
|
||||
fcost[newnode] = GetFCost(to, newnode, parent[newnode], gcost);
|
||||
|
||||
//reorder the list again, with the lowest fcost item on top
|
||||
m = i;
|
||||
while (m != 1)
|
||||
{
|
||||
//if the item has a lower fcost than it's parent
|
||||
if (fcost[openlist[m]] < fcost[openlist[m/2]])
|
||||
{
|
||||
temp = openlist[m/2];
|
||||
openlist[m/2] = openlist[m];
|
||||
openlist[m] = temp; //swap them
|
||||
m /= 2;
|
||||
}
|
||||
else
|
||||
break;
|
||||
}
|
||||
break; //exit the 'for' loop because we already changed this node
|
||||
} //if
|
||||
} //for
|
||||
} //if (gc < gcost[newnode])
|
||||
} //if (list[newnode] != 1) --> else
|
||||
} //for (loop through links)
|
||||
} //if (numOpen != 0)
|
||||
else
|
||||
{
|
||||
found = qfalse; //there is no path between these nodes
|
||||
break;
|
||||
}
|
||||
|
||||
if (list[to] == 1) //if the destination node is on the open list, we're done
|
||||
{
|
||||
found = qtrue;
|
||||
break;
|
||||
}
|
||||
} //while (1)
|
||||
|
||||
if (found == qtrue) //if we found a path
|
||||
{
|
||||
//G_Printf("%s - path found!n", bot->client->pers.netname);
|
||||
count = 0;
|
||||
|
||||
temp = to; //start at the end point
|
||||
while (temp != from) //travel along the path (backwards) until we reach the starting point
|
||||
{
|
||||
pathlist[count++] = temp; //add the node to the pathlist and increment the count
|
||||
temp = parent[temp]; //move to the parent of this node to continue the path
|
||||
}
|
||||
|
||||
pathlist[count++] = from; //add the beginning node to the end of the pathlist
|
||||
|
||||
#ifdef __BOT_SHORTEN_ROUTING__
|
||||
count = ShortenASTARRoute(pathlist, count); // This isn't working... Dunno why.. Unique1
|
||||
#endif //__BOT_SHORTEN_ROUTING__
|
||||
}
|
||||
else
|
||||
{
|
||||
//G_Printf("^1*** ^4BOT DEBUG^5: (CreatePathAStar) There is no route between node ^7%i^5 and node ^7%i^5.n", from, to);
|
||||
count = CreateDumbRoute(from, to, pathlist);
|
||||
|
||||
if (count > 0)
|
||||
{
|
||||
#ifdef __BOT_SHORTEN_ROUTING__
|
||||
count = ShortenASTARRoute(pathlist, count); // This isn't working... Dunno why.. Unique1
|
||||
#endif //__BOT_SHORTEN_ROUTING__
|
||||
return count;
|
||||
}
|
||||
}
|
||||
|
||||
return count; //return the number of nodes in the path, -1 if not found
|
||||
}
|
||||
|
||||
/*
|
||||
===========================================================================
|
||||
GetFCost
|
||||
Utility function used by A* pathfinding to calculate the
|
||||
cost to move between nodes towards a goal. Using the A*
|
||||
algorithm F = G + H, G here is the distance along the node
|
||||
paths the bot must travel, and H is the straight-line distance
|
||||
to the goal node.
|
||||
Returned as an int because more precision is unnecessary and it
|
||||
will slightly speed up heap access
|
||||
===========================================================================
|
||||
*/
|
||||
int GetFCost(int to, int num, int parentNum, float *gcost)
|
||||
{
|
||||
float gc = 0;
|
||||
float hc = 0;
|
||||
vec3_t v;
|
||||
|
||||
if (gcost[num] == -1)
|
||||
{
|
||||
if (parentNum != -1)
|
||||
{
|
||||
gc = gcost[parentNum];
|
||||
VectorSubtract(nodes[num].origin, nodes[parentNum].origin, v);
|
||||
gc += VectorLength(v);
|
||||
}
|
||||
gcost[num] = gc;
|
||||
}
|
||||
else
|
||||
gc = gcost[num];
|
||||
|
||||
VectorSubtract(nodes[to].origin, nodes[num].origin, v);
|
||||
hc = VectorLength(v);
|
||||
|
||||
return (int)(gc + hc);
|
||||
}
|
||||
#endif //__PATHFINDING__
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue