mirror of
https://github.com/mangosfour/server.git
synced 2025-12-15 01:37:00 +00:00
[Build] More Project build cleanup
This commit is contained in:
parent
d258cc922a
commit
4613154144
565 changed files with 26862 additions and 109982 deletions
|
|
@ -20,6 +20,7 @@
|
|||
#include <math.h>
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include "Recast.h"
|
||||
#include "RecastAlloc.h"
|
||||
#include "RecastAssert.h"
|
||||
|
|
@ -36,7 +37,7 @@ static int getCornerHeight(int x, int y, int i, int dir,
|
|||
unsigned int regs[4] = {0,0,0,0};
|
||||
|
||||
// Combine region and area codes in order to prevent
|
||||
// border vertices which are in between two areas to be removed.
|
||||
// border vertices which are in between two areas to be removed.
|
||||
regs[0] = chf.spans[i].reg | (chf.areas[i] << 16);
|
||||
|
||||
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
|
||||
|
|
@ -187,27 +188,6 @@ static float distancePtSeg(const int x, const int z,
|
|||
const int px, const int pz,
|
||||
const int qx, const int qz)
|
||||
{
|
||||
/* float pqx = (float)(qx - px);
|
||||
float pqy = (float)(qy - py);
|
||||
float pqz = (float)(qz - pz);
|
||||
float dx = (float)(x - px);
|
||||
float dy = (float)(y - py);
|
||||
float dz = (float)(z - pz);
|
||||
float d = pqx*pqx + pqy*pqy + pqz*pqz;
|
||||
float t = pqx*dx + pqy*dy + pqz*dz;
|
||||
if (d > 0)
|
||||
t /= d;
|
||||
if (t < 0)
|
||||
t = 0;
|
||||
else if (t > 1)
|
||||
t = 1;
|
||||
|
||||
dx = px + t*pqx - x;
|
||||
dy = py + t*pqy - y;
|
||||
dz = pz + t*pqz - z;
|
||||
|
||||
return dx*dx + dy*dy + dz*dz;*/
|
||||
|
||||
float pqx = (float)(qx - px);
|
||||
float pqz = (float)(qz - pz);
|
||||
float dx = (float)(x - px);
|
||||
|
|
@ -257,13 +237,13 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
|
|||
simplified.push(points[i*4+2]);
|
||||
simplified.push(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (simplified.size() == 0)
|
||||
{
|
||||
// If there is no connections at all,
|
||||
// create some initial points for the simplification process.
|
||||
// create some initial points for the simplification process.
|
||||
// Find lower-left and upper-right vertices of the contour.
|
||||
int llx = points[0];
|
||||
int lly = points[1];
|
||||
|
|
@ -311,19 +291,19 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
|
|||
{
|
||||
int ii = (i+1) % (simplified.size()/4);
|
||||
|
||||
const int ax = simplified[i*4+0];
|
||||
const int az = simplified[i*4+2];
|
||||
const int ai = simplified[i*4+3];
|
||||
|
||||
const int bx = simplified[ii*4+0];
|
||||
const int bz = simplified[ii*4+2];
|
||||
const int bi = simplified[ii*4+3];
|
||||
int ax = simplified[i*4+0];
|
||||
int az = simplified[i*4+2];
|
||||
int ai = simplified[i*4+3];
|
||||
|
||||
int bx = simplified[ii*4+0];
|
||||
int bz = simplified[ii*4+2];
|
||||
int bi = simplified[ii*4+3];
|
||||
|
||||
// Find maximum deviation from the segment.
|
||||
float maxd = 0;
|
||||
int maxi = -1;
|
||||
int ci, cinc, endi;
|
||||
|
||||
|
||||
// Traverse the segment in lexilogical order so that the
|
||||
// max deviation is calculated similarly when traversing
|
||||
// opposite segments.
|
||||
|
|
@ -338,9 +318,11 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
|
|||
cinc = pn-1;
|
||||
ci = (bi+cinc) % pn;
|
||||
endi = ai;
|
||||
rcSwap(ax, bx);
|
||||
rcSwap(az, bz);
|
||||
}
|
||||
|
||||
// Tessellate only outer edges oredges between areas.
|
||||
// Tessellate only outer edges or edges between areas.
|
||||
if ((points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0 ||
|
||||
(points[ci*4+3] & RC_AREA_BORDER))
|
||||
{
|
||||
|
|
@ -397,11 +379,11 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
|
|||
const int bx = simplified[ii*4+0];
|
||||
const int bz = simplified[ii*4+2];
|
||||
const int bi = simplified[ii*4+3];
|
||||
|
||||
|
||||
// Find maximum deviation from the segment.
|
||||
int maxi = -1;
|
||||
int ci = (ai+1) % pn;
|
||||
|
||||
|
||||
// Tessellate only outer edges or edges between areas.
|
||||
bool tess = false;
|
||||
// Wall edges.
|
||||
|
|
@ -420,15 +402,13 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
|
|||
// Round based on the segments in lexilogical order so that the
|
||||
// max tesselation is consistent regardles in which direction
|
||||
// segments are traversed.
|
||||
if (bx > ax || (bx == ax && bz > az))
|
||||
const int n = bi < ai ? (bi+pn - ai) : (bi - ai);
|
||||
if (n > 1)
|
||||
{
|
||||
const int n = bi < ai ? (bi+pn - ai) : (bi - ai);
|
||||
maxi = (ai + n/2) % pn;
|
||||
}
|
||||
else
|
||||
{
|
||||
const int n = bi < ai ? (bi+pn - ai) : (bi - ai);
|
||||
maxi = (ai + (n+1)/2) % pn;
|
||||
if (bx > ax || (bx == ax && bz > az))
|
||||
maxi = (ai + n/2) % pn;
|
||||
else
|
||||
maxi = (ai + (n+1)/2) % pn;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -466,37 +446,11 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
|
|||
// and the neighbour region is take from the next raw point.
|
||||
const int ai = (simplified[i*4+3]+1) % pn;
|
||||
const int bi = simplified[i*4+3];
|
||||
simplified[i*4+3] = (points[ai*4+3] & RC_CONTOUR_REG_MASK) | (points[bi*4+3] & RC_BORDER_VERTEX);
|
||||
simplified[i*4+3] = (points[ai*4+3] & (RC_CONTOUR_REG_MASK|RC_AREA_BORDER)) | (points[bi*4+3] & RC_BORDER_VERTEX);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
static void removeDegenerateSegments(rcIntArray& simplified)
|
||||
{
|
||||
// Remove adjacent vertices which are equal on xz-plane,
|
||||
// or else the triangulator will get confused.
|
||||
for (int i = 0; i < simplified.size()/4; ++i)
|
||||
{
|
||||
int ni = i+1;
|
||||
if (ni >= (simplified.size()/4))
|
||||
ni = 0;
|
||||
|
||||
if (simplified[i*4+0] == simplified[ni*4+0] &&
|
||||
simplified[i*4+2] == simplified[ni*4+2])
|
||||
{
|
||||
// Degenerate segment, remove.
|
||||
for (int j = i; j < simplified.size()/4-1; ++j)
|
||||
{
|
||||
simplified[j*4+0] = simplified[(j+1)*4+0];
|
||||
simplified[j*4+1] = simplified[(j+1)*4+1];
|
||||
simplified[j*4+2] = simplified[(j+1)*4+2];
|
||||
simplified[j*4+3] = simplified[(j+1)*4+3];
|
||||
}
|
||||
simplified.resize(simplified.size()-4);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static int calcAreaOfPolygon2D(const int* verts, const int nverts)
|
||||
{
|
||||
int area = 0;
|
||||
|
|
@ -509,54 +463,155 @@ static int calcAreaOfPolygon2D(const int* verts, const int nverts)
|
|||
return (area+1) / 2;
|
||||
}
|
||||
|
||||
inline bool ileft(const int* a, const int* b, const int* c)
|
||||
// TODO: these are the same as in RecastMesh.cpp, consider using the same.
|
||||
|
||||
inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
|
||||
inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
|
||||
|
||||
inline int area2(const int* a, const int* b, const int* c)
|
||||
{
|
||||
return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]) <= 0;
|
||||
return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]);
|
||||
}
|
||||
|
||||
static void getClosestIndices(const int* vertsa, const int nvertsa,
|
||||
const int* vertsb, const int nvertsb,
|
||||
int& ia, int& ib)
|
||||
// Exclusive or: true iff exactly one argument is true.
|
||||
// The arguments are negated to ensure that they are 0/1
|
||||
// values. Then the bitwise Xor operator may apply.
|
||||
// (This idea is due to Michael Baldwin.)
|
||||
inline bool xorb(bool x, bool y)
|
||||
{
|
||||
int closestDist = 0xfffffff;
|
||||
ia = -1, ib = -1;
|
||||
for (int i = 0; i < nvertsa; ++i)
|
||||
return !x ^ !y;
|
||||
}
|
||||
|
||||
// Returns true iff c is strictly to the left of the directed
|
||||
// line through a to b.
|
||||
inline bool left(const int* a, const int* b, const int* c)
|
||||
{
|
||||
return area2(a, b, c) < 0;
|
||||
}
|
||||
|
||||
inline bool leftOn(const int* a, const int* b, const int* c)
|
||||
{
|
||||
return area2(a, b, c) <= 0;
|
||||
}
|
||||
|
||||
inline bool collinear(const int* a, const int* b, const int* c)
|
||||
{
|
||||
return area2(a, b, c) == 0;
|
||||
}
|
||||
|
||||
// Returns true iff ab properly intersects cd: they share
|
||||
// a point interior to both segments. The properness of the
|
||||
// intersection is ensured by using strict leftness.
|
||||
static bool intersectProp(const int* a, const int* b, const int* c, const int* d)
|
||||
{
|
||||
// Eliminate improper cases.
|
||||
if (collinear(a,b,c) || collinear(a,b,d) ||
|
||||
collinear(c,d,a) || collinear(c,d,b))
|
||||
return false;
|
||||
|
||||
return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b));
|
||||
}
|
||||
|
||||
// Returns T iff (a,b,c) are collinear and point c lies
|
||||
// on the closed segement ab.
|
||||
static bool between(const int* a, const int* b, const int* c)
|
||||
{
|
||||
if (!collinear(a, b, c))
|
||||
return false;
|
||||
// If ab not vertical, check betweenness on x; else on y.
|
||||
if (a[0] != b[0])
|
||||
return ((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0]));
|
||||
else
|
||||
return ((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2]));
|
||||
}
|
||||
|
||||
// Returns true iff segments ab and cd intersect, properly or improperly.
|
||||
static bool intersect(const int* a, const int* b, const int* c, const int* d)
|
||||
{
|
||||
if (intersectProp(a, b, c, d))
|
||||
return true;
|
||||
else if (between(a, b, c) || between(a, b, d) ||
|
||||
between(c, d, a) || between(c, d, b))
|
||||
return true;
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool vequal(const int* a, const int* b)
|
||||
{
|
||||
return a[0] == b[0] && a[2] == b[2];
|
||||
}
|
||||
|
||||
static bool intersectSegCountour(const int* d0, const int* d1, int i, int n, const int* verts)
|
||||
{
|
||||
// For each edge (k,k+1) of P
|
||||
for (int k = 0; k < n; k++)
|
||||
{
|
||||
const int in = (i+1) % nvertsa;
|
||||
const int ip = (i+nvertsa-1) % nvertsa;
|
||||
const int* va = &vertsa[i*4];
|
||||
const int* van = &vertsa[in*4];
|
||||
const int* vap = &vertsa[ip*4];
|
||||
int k1 = next(k, n);
|
||||
// Skip edges incident to i.
|
||||
if (i == k || i == k1)
|
||||
continue;
|
||||
const int* p0 = &verts[k * 4];
|
||||
const int* p1 = &verts[k1 * 4];
|
||||
if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1))
|
||||
continue;
|
||||
|
||||
for (int j = 0; j < nvertsb; ++j)
|
||||
if (intersect(d0, d1, p0, p1))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool inCone(int i, int n, const int* verts, const int* pj)
|
||||
{
|
||||
const int* pi = &verts[i * 4];
|
||||
const int* pi1 = &verts[next(i, n) * 4];
|
||||
const int* pin1 = &verts[prev(i, n) * 4];
|
||||
|
||||
// If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
|
||||
if (leftOn(pin1, pi, pi1))
|
||||
return left(pi, pj, pin1) && left(pj, pi, pi1);
|
||||
// Assume (i-1,i,i+1) not collinear.
|
||||
// else P[i] is reflex.
|
||||
return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1));
|
||||
}
|
||||
|
||||
|
||||
static void removeDegenerateSegments(rcIntArray& simplified)
|
||||
{
|
||||
// Remove adjacent vertices which are equal on xz-plane,
|
||||
// or else the triangulator will get confused.
|
||||
int npts = simplified.size()/4;
|
||||
for (int i = 0; i < npts; ++i)
|
||||
{
|
||||
int ni = next(i, npts);
|
||||
|
||||
if (vequal(&simplified[i*4], &simplified[ni*4]))
|
||||
{
|
||||
const int* vb = &vertsb[j*4];
|
||||
// vb must be "infront" of va.
|
||||
if (ileft(vap,va,vb) && ileft(va,van,vb))
|
||||
// Degenerate segment, remove.
|
||||
for (int j = i; j < simplified.size()/4-1; ++j)
|
||||
{
|
||||
const int dx = vb[0] - va[0];
|
||||
const int dz = vb[2] - va[2];
|
||||
const int d = dx*dx + dz*dz;
|
||||
if (d < closestDist)
|
||||
{
|
||||
ia = i;
|
||||
ib = j;
|
||||
closestDist = d;
|
||||
}
|
||||
simplified[j*4+0] = simplified[(j+1)*4+0];
|
||||
simplified[j*4+1] = simplified[(j+1)*4+1];
|
||||
simplified[j*4+2] = simplified[(j+1)*4+2];
|
||||
simplified[j*4+3] = simplified[(j+1)*4+3];
|
||||
}
|
||||
simplified.resize(simplified.size()-4);
|
||||
npts--;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib)
|
||||
{
|
||||
const int maxVerts = ca.nverts + cb.nverts + 2;
|
||||
int* verts = (int*)rcAlloc(sizeof(int)*maxVerts*4, RC_ALLOC_PERM);
|
||||
if (!verts)
|
||||
return false;
|
||||
|
||||
|
||||
int nv = 0;
|
||||
|
||||
|
||||
// Copy contour A.
|
||||
for (int i = 0; i <= ca.nverts; ++i)
|
||||
{
|
||||
|
|
@ -584,7 +639,7 @@ static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib)
|
|||
rcFree(ca.verts);
|
||||
ca.verts = verts;
|
||||
ca.nverts = nv;
|
||||
|
||||
|
||||
rcFree(cb.verts);
|
||||
cb.verts = 0;
|
||||
cb.nverts = 0;
|
||||
|
|
@ -592,6 +647,180 @@ static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib)
|
|||
return true;
|
||||
}
|
||||
|
||||
struct rcContourHole
|
||||
{
|
||||
rcContour* contour;
|
||||
int minx, minz, leftmost;
|
||||
};
|
||||
|
||||
struct rcContourRegion
|
||||
{
|
||||
rcContour* outline;
|
||||
rcContourHole* holes;
|
||||
int nholes;
|
||||
};
|
||||
|
||||
struct rcPotentialDiagonal
|
||||
{
|
||||
int vert;
|
||||
int dist;
|
||||
};
|
||||
|
||||
// Finds the lowest leftmost vertex of a contour.
|
||||
static void findLeftMostVertex(rcContour* contour, int* minx, int* minz, int* leftmost)
|
||||
{
|
||||
*minx = contour->verts[0];
|
||||
*minz = contour->verts[2];
|
||||
*leftmost = 0;
|
||||
for (int i = 1; i < contour->nverts; i++)
|
||||
{
|
||||
const int x = contour->verts[i*4+0];
|
||||
const int z = contour->verts[i*4+2];
|
||||
if (x < *minx || (x == *minx && z < *minz))
|
||||
{
|
||||
*minx = x;
|
||||
*minz = z;
|
||||
*leftmost = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static int compareHoles(const void* va, const void* vb)
|
||||
{
|
||||
const rcContourHole* a = (const rcContourHole*)va;
|
||||
const rcContourHole* b = (const rcContourHole*)vb;
|
||||
if (a->minx == b->minx)
|
||||
{
|
||||
if (a->minz < b->minz)
|
||||
return -1;
|
||||
if (a->minz > b->minz)
|
||||
return 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (a->minx < b->minx)
|
||||
return -1;
|
||||
if (a->minx > b->minx)
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
static int compareDiagDist(const void* va, const void* vb)
|
||||
{
|
||||
const rcPotentialDiagonal* a = (const rcPotentialDiagonal*)va;
|
||||
const rcPotentialDiagonal* b = (const rcPotentialDiagonal*)vb;
|
||||
if (a->dist < b->dist)
|
||||
return -1;
|
||||
if (a->dist > b->dist)
|
||||
return 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
static void mergeRegionHoles(rcContext* ctx, rcContourRegion& region)
|
||||
{
|
||||
// Sort holes from left to right.
|
||||
for (int i = 0; i < region.nholes; i++)
|
||||
findLeftMostVertex(region.holes[i].contour, ®ion.holes[i].minx, ®ion.holes[i].minz, ®ion.holes[i].leftmost);
|
||||
|
||||
qsort(region.holes, region.nholes, sizeof(rcContourHole), compareHoles);
|
||||
|
||||
int maxVerts = region.outline->nverts;
|
||||
for (int i = 0; i < region.nholes; i++)
|
||||
maxVerts += region.holes[i].contour->nverts;
|
||||
|
||||
rcScopedDelete<rcPotentialDiagonal> diags = (rcPotentialDiagonal*)rcAlloc(sizeof(rcPotentialDiagonal)*maxVerts, RC_ALLOC_TEMP);
|
||||
if (!diags)
|
||||
{
|
||||
ctx->log(RC_LOG_WARNING, "mergeRegionHoles: Failed to allocated diags %d.", maxVerts);
|
||||
return;
|
||||
}
|
||||
|
||||
rcContour* outline = region.outline;
|
||||
|
||||
// Merge holes into the outline one by one.
|
||||
for (int i = 0; i < region.nholes; i++)
|
||||
{
|
||||
rcContour* hole = region.holes[i].contour;
|
||||
|
||||
int index = -1;
|
||||
int bestVertex = region.holes[i].leftmost;
|
||||
for (int iter = 0; iter < hole->nverts; iter++)
|
||||
{
|
||||
// Find potential diagonals.
|
||||
// The 'best' vertex must be in the cone described by 3 cosequtive vertices of the outline.
|
||||
// ..o j-1
|
||||
// |
|
||||
// | * best
|
||||
// |
|
||||
// j o-----o j+1
|
||||
// :
|
||||
int ndiags = 0;
|
||||
const int* corner = &hole->verts[bestVertex*4];
|
||||
for (int j = 0; j < outline->nverts; j++)
|
||||
{
|
||||
if (inCone(j, outline->nverts, outline->verts, corner))
|
||||
{
|
||||
int dx = outline->verts[j*4+0] - corner[0];
|
||||
int dz = outline->verts[j*4+2] - corner[2];
|
||||
diags[ndiags].vert = j;
|
||||
diags[ndiags].dist = dx*dx + dz*dz;
|
||||
ndiags++;
|
||||
}
|
||||
}
|
||||
// Sort potential diagonals by distance, we want to make the connection as short as possible.
|
||||
qsort(diags, ndiags, sizeof(rcPotentialDiagonal), compareDiagDist);
|
||||
|
||||
// Find a diagonal that is not intersecting the outline not the remaining holes.
|
||||
index = -1;
|
||||
for (int j = 0; j < ndiags; j++)
|
||||
{
|
||||
const int* pt = &outline->verts[diags[j].vert*4];
|
||||
bool intersect = intersectSegCountour(pt, corner, diags[i].vert, outline->nverts, outline->verts);
|
||||
for (int k = i; k < region.nholes && !intersect; k++)
|
||||
intersect |= intersectSegCountour(pt, corner, -1, region.holes[k].contour->nverts, region.holes[k].contour->verts);
|
||||
if (!intersect)
|
||||
{
|
||||
index = diags[j].vert;
|
||||
break;
|
||||
}
|
||||
}
|
||||
// If found non-intersecting diagonal, stop looking.
|
||||
if (index != -1)
|
||||
break;
|
||||
// All the potential diagonals for the current vertex were intersecting, try next vertex.
|
||||
bestVertex = (bestVertex + 1) % hole->nverts;
|
||||
}
|
||||
|
||||
if (index == -1)
|
||||
{
|
||||
ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to find merge points for %p and %p.", region.outline, hole);
|
||||
continue;
|
||||
}
|
||||
if (!mergeContours(*region.outline, *hole, index, bestVertex))
|
||||
{
|
||||
ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to merge contours %p and %p.", region.outline, hole);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// The raw contours will match the region outlines exactly. The @p maxError and @p maxEdgeLen
|
||||
/// parameters control how closely the simplified contours will match the raw contours.
|
||||
///
|
||||
/// Simplified contours are generated such that the vertices for portals between areas match up.
|
||||
/// (They are considered mandatory vertices.)
|
||||
///
|
||||
/// Setting @p maxEdgeLength to zero will disabled the edge length feature.
|
||||
///
|
||||
/// See the #rcConfig documentation for more information on the configuration parameters.
|
||||
///
|
||||
/// @see rcAllocContourSet, rcCompactHeightfield, rcContourSet, rcConfig
|
||||
bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
const float maxError, const int maxEdgeLen,
|
||||
rcContourSet& cset, const int buildFlags)
|
||||
|
|
@ -600,13 +829,26 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
|
|||
|
||||
const int w = chf.width;
|
||||
const int h = chf.height;
|
||||
const int borderSize = chf.borderSize;
|
||||
|
||||
ctx->startTimer(RC_TIMER_BUILD_CONTOURS);
|
||||
|
||||
rcVcopy(cset.bmin, chf.bmin);
|
||||
rcVcopy(cset.bmax, chf.bmax);
|
||||
if (borderSize > 0)
|
||||
{
|
||||
// If the heightfield was build with bordersize, remove the offset.
|
||||
const float pad = borderSize*chf.cs;
|
||||
cset.bmin[0] += pad;
|
||||
cset.bmin[2] += pad;
|
||||
cset.bmax[0] -= pad;
|
||||
cset.bmax[2] -= pad;
|
||||
}
|
||||
cset.cs = chf.cs;
|
||||
cset.ch = chf.ch;
|
||||
cset.width = chf.width - chf.borderSize*2;
|
||||
cset.height = chf.height - chf.borderSize*2;
|
||||
cset.borderSize = chf.borderSize;
|
||||
|
||||
int maxContours = rcMax((int)chf.maxRegions, 8);
|
||||
cset.conts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
|
||||
|
|
@ -658,8 +900,6 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
|
|||
|
||||
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
|
||||
|
||||
ctx->startTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
|
||||
|
||||
rcIntArray verts(256);
|
||||
rcIntArray simplified(64);
|
||||
|
||||
|
|
@ -682,9 +922,16 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
|
|||
|
||||
verts.resize(0);
|
||||
simplified.resize(0);
|
||||
|
||||
ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
|
||||
walkContour(x, y, i, chf, flags, verts);
|
||||
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
|
||||
|
||||
ctx->startTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
|
||||
simplifyContour(verts, simplified, maxError, maxEdgeLen, buildFlags);
|
||||
removeDegenerateSegments(simplified);
|
||||
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
|
||||
|
||||
|
||||
// Store region->contour remap info.
|
||||
// Create contour.
|
||||
|
|
@ -693,7 +940,7 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
|
|||
if (cset.nconts >= maxContours)
|
||||
{
|
||||
// Allocate more contours.
|
||||
// This can happen when there are tiny holes in the heightfield.
|
||||
// This happens when a region has holes.
|
||||
const int oldMax = maxContours;
|
||||
maxContours *= 2;
|
||||
rcContour* newConts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
|
||||
|
|
@ -706,10 +953,10 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
|
|||
}
|
||||
rcFree(cset.conts);
|
||||
cset.conts = newConts;
|
||||
|
||||
|
||||
ctx->log(RC_LOG_WARNING, "rcBuildContours: Expanding max contours from %d to %d.", oldMax, maxContours);
|
||||
}
|
||||
|
||||
|
||||
rcContour* cont = &cset.conts[cset.nconts++];
|
||||
|
||||
cont->nverts = simplified.size()/4;
|
||||
|
|
@ -720,6 +967,16 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
|
|||
return false;
|
||||
}
|
||||
memcpy(cont->verts, &simplified[0], sizeof(int)*cont->nverts*4);
|
||||
if (borderSize > 0)
|
||||
{
|
||||
// If the heightfield was build with bordersize, remove the offset.
|
||||
for (int j = 0; j < cont->nverts; ++j)
|
||||
{
|
||||
int* v = &cont->verts[j*4];
|
||||
v[0] -= borderSize;
|
||||
v[2] -= borderSize;
|
||||
}
|
||||
}
|
||||
|
||||
cont->nrverts = verts.size()/4;
|
||||
cont->rverts = (int*)rcAlloc(sizeof(int)*cont->nrverts*4, RC_ALLOC_PERM);
|
||||
|
|
@ -729,17 +986,16 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
|
|||
return false;
|
||||
}
|
||||
memcpy(cont->rverts, &verts[0], sizeof(int)*cont->nrverts*4);
|
||||
|
||||
/* cont->cx = cont->cy = cont->cz = 0;
|
||||
for (int i = 0; i < cont->nverts; ++i)
|
||||
if (borderSize > 0)
|
||||
{
|
||||
cont->cx += cont->verts[i*4+0];
|
||||
cont->cy += cont->verts[i*4+1];
|
||||
cont->cz += cont->verts[i*4+2];
|
||||
// If the heightfield was build with bordersize, remove the offset.
|
||||
for (int j = 0; j < cont->nrverts; ++j)
|
||||
{
|
||||
int* v = &cont->rverts[j*4];
|
||||
v[0] -= borderSize;
|
||||
v[2] -= borderSize;
|
||||
}
|
||||
}
|
||||
cont->cx /= cont->nverts;
|
||||
cont->cy /= cont->nverts;
|
||||
cont->cz /= cont->nverts;*/
|
||||
|
||||
cont->reg = reg;
|
||||
cont->area = area;
|
||||
|
|
@ -748,56 +1004,102 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
|
|||
}
|
||||
}
|
||||
|
||||
// Check and merge droppings.
|
||||
// Sometimes the previous algorithms can fail and create several contours
|
||||
// per area. This pass will try to merge the holes into the main region.
|
||||
for (int i = 0; i < cset.nconts; ++i)
|
||||
// Merge holes if needed.
|
||||
if (cset.nconts > 0)
|
||||
{
|
||||
rcContour& cont = cset.conts[i];
|
||||
// Check if the contour is would backwards.
|
||||
if (calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0)
|
||||
// Calculate winding of all polygons.
|
||||
rcScopedDelete<char> winding = (char*)rcAlloc(sizeof(char)*cset.nconts, RC_ALLOC_TEMP);
|
||||
if (!winding)
|
||||
{
|
||||
// Find another contour which has the same region ID.
|
||||
int mergeIdx = -1;
|
||||
for (int j = 0; j < cset.nconts; ++j)
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'hole' (%d).", cset.nconts);
|
||||
return false;
|
||||
}
|
||||
int nholes = 0;
|
||||
for (int i = 0; i < cset.nconts; ++i)
|
||||
{
|
||||
rcContour& cont = cset.conts[i];
|
||||
// If the contour is wound backwards, it is a hole.
|
||||
winding[i] = calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0 ? -1 : 1;
|
||||
if (winding[i] < 0)
|
||||
nholes++;
|
||||
}
|
||||
|
||||
if (nholes > 0)
|
||||
{
|
||||
// Collect outline contour and holes contours per region.
|
||||
// We assume that there is one outline and multiple holes.
|
||||
const int nregions = chf.maxRegions+1;
|
||||
rcScopedDelete<rcContourRegion> regions = (rcContourRegion*)rcAlloc(sizeof(rcContourRegion)*nregions, RC_ALLOC_TEMP);
|
||||
if (!regions)
|
||||
{
|
||||
if (i == j) continue;
|
||||
if (cset.conts[j].nverts && cset.conts[j].reg == cont.reg)
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'regions' (%d).", nregions);
|
||||
return false;
|
||||
}
|
||||
memset(regions, 0, sizeof(rcContourRegion)*nregions);
|
||||
|
||||
rcScopedDelete<rcContourHole> holes = (rcContourHole*)rcAlloc(sizeof(rcContourHole)*cset.nconts, RC_ALLOC_TEMP);
|
||||
if (!holes)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'holes' (%d).", cset.nconts);
|
||||
return false;
|
||||
}
|
||||
memset(holes, 0, sizeof(rcContourHole)*cset.nconts);
|
||||
|
||||
for (int i = 0; i < cset.nconts; ++i)
|
||||
{
|
||||
rcContour& cont = cset.conts[i];
|
||||
// Positively would contours are outlines, negative holes.
|
||||
if (winding[i] > 0)
|
||||
{
|
||||
// Make sure the polygon is correctly oriented.
|
||||
if (calcAreaOfPolygon2D(cset.conts[j].verts, cset.conts[j].nverts))
|
||||
{
|
||||
mergeIdx = j;
|
||||
break;
|
||||
}
|
||||
if (regions[cont.reg].outline)
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildContours: Multiple outlines for region %d.", cont.reg);
|
||||
regions[cont.reg].outline = &cont;
|
||||
}
|
||||
else
|
||||
{
|
||||
regions[cont.reg].nholes++;
|
||||
}
|
||||
}
|
||||
if (mergeIdx == -1)
|
||||
int index = 0;
|
||||
for (int i = 0; i < nregions; i++)
|
||||
{
|
||||
ctx->log(RC_LOG_WARNING, "rcBuildContours: Could not find merge target for bad contour %d.", i);
|
||||
}
|
||||
else
|
||||
{
|
||||
rcContour& mcont = cset.conts[mergeIdx];
|
||||
// Merge by closest points.
|
||||
int ia = 0, ib = 0;
|
||||
getClosestIndices(mcont.verts, mcont.nverts, cont.verts, cont.nverts, ia, ib);
|
||||
if (ia == -1 || ib == -1)
|
||||
if (regions[i].nholes > 0)
|
||||
{
|
||||
ctx->log(RC_LOG_WARNING, "rcBuildContours: Failed to find merge points for %d and %d.", i, mergeIdx);
|
||||
continue;
|
||||
regions[i].holes = &holes[index];
|
||||
index += regions[i].nholes;
|
||||
regions[i].nholes = 0;
|
||||
}
|
||||
if (!mergeContours(mcont, cont, ia, ib))
|
||||
}
|
||||
for (int i = 0; i < cset.nconts; ++i)
|
||||
{
|
||||
rcContour& cont = cset.conts[i];
|
||||
rcContourRegion& reg = regions[cont.reg];
|
||||
if (winding[i] < 0)
|
||||
reg.holes[reg.nholes++].contour = &cont;
|
||||
}
|
||||
|
||||
// Finally merge each regions holes into the outline.
|
||||
for (int i = 0; i < nregions; i++)
|
||||
{
|
||||
rcContourRegion& reg = regions[i];
|
||||
if (!reg.nholes) continue;
|
||||
|
||||
if (reg.outline)
|
||||
{
|
||||
ctx->log(RC_LOG_WARNING, "rcBuildContours: Failed to merge contours %d and %d.", i, mergeIdx);
|
||||
continue;
|
||||
mergeRegionHoles(ctx, reg);
|
||||
}
|
||||
else
|
||||
{
|
||||
// The region does not have an outline.
|
||||
// This can happen if the contour becaomes selfoverlapping because of
|
||||
// too aggressive simplification settings.
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildContours: Bad outline for region %d, contour simplification is likely too aggressive.", i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
|
||||
|
||||
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS);
|
||||
|
||||
return true;
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue