Initial Mangos Three Commit

This commit is contained in:
Antz 2020-02-16 01:55:18 +00:00
parent bb91aa5933
commit 7665a09232
No known key found for this signature in database
GPG key ID: 0DF907270598C85F
2444 changed files with 625144 additions and 0 deletions

View file

@ -0,0 +1,87 @@
#include "tommath_private.h"
#ifdef BN_DEPRECATED_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include <tommath_private.h>
#ifdef BN_FAST_MP_INVMOD_C
int fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c)
{
return s_mp_invmod_fast(a, b, c);
}
#endif
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
int fast_mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
{
return s_mp_montgomery_reduce_fast(x, n, rho);
}
#endif
#ifdef BN_FAST_S_MP_MUL_DIGS_C
int fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
return s_mp_mul_digs_fast(a, b, c, digs);
}
#endif
#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
int fast_s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
return s_mp_mul_high_digs_fast(a, b, c, digs);
}
#endif
#ifdef BN_FAST_S_MP_SQR_C
int fast_s_mp_sqr(const mp_int *a, mp_int *b)
{
return s_mp_sqr_fast(a, b);
}
#endif
#ifdef BN_MP_BALANCE_MUL_C
int mp_balance_mul(const mp_int *a, const mp_int *b, mp_int *c)
{
return s_mp_balance_mul(a, b, c);
}
#endif
#ifdef BN_MP_EXPTMOD_FAST_C
int mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
{
return s_mp_exptmod_fast(G, X, P, Y, redmode);
}
#endif
#ifdef BN_MP_INVMOD_SLOW_C
int mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c)
{
return s_mp_invmod_slow(a, b, c);
}
#endif
#ifdef BN_MP_KARATSUBA_MUL_C
int mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c)
{
return s_mp_karatsuba_mul(a, b, c);
}
#endif
#ifdef BN_MP_KARATSUBA_SQR_C
int mp_karatsuba_sqr(const mp_int *a, mp_int *b)
{
return s_mp_karatsuba_sqr(a, b);
}
#endif
#ifdef BN_MP_TOOM_MUL_C
int mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c)
{
return s_mp_toom_mul(a, b, c);
}
#endif
#ifdef BN_MP_TOOM_SQR_C
int mp_toom_sqr(const mp_int *a, mp_int *b)
{
return s_mp_toom_sqr(a, b);
}
#endif
#ifdef BN_REVERSE_C
void bn_reverse(unsigned char *s, int len)
{
s_mp_reverse(s, len);
}
#endif
#endif

View file

@ -0,0 +1,31 @@
#include "tommath_private.h"
#ifdef BN_MP_2EXPT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* computes a = 2**b
*
* Simple algorithm which zeroes the int, grows it then just sets one bit
* as required.
*/
int mp_2expt(mp_int *a, int b)
{
int res;
/* zero a as per default */
mp_zero(a);
/* grow a to accomodate the single bit */
if ((res = mp_grow(a, (b / MP_DIGIT_BIT) + 1)) != MP_OKAY) {
return res;
}
/* set the used count of where the bit will go */
a->used = (b / MP_DIGIT_BIT) + 1;
/* put the single bit in its place */
a->dp[b / MP_DIGIT_BIT] = (mp_digit)1 << (mp_digit)(b % MP_DIGIT_BIT);
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,26 @@
#include "tommath_private.h"
#ifdef BN_MP_ABS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* b = |a|
*
* Simple function copies the input and fixes the sign to positive
*/
int mp_abs(const mp_int *a, mp_int *b)
{
int res;
/* copy a to b */
if (a != b) {
if ((res = mp_copy(a, b)) != MP_OKAY) {
return res;
}
}
/* force the sign of b to positive */
b->sign = MP_ZPOS;
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,37 @@
#include "tommath_private.h"
#ifdef BN_MP_ADD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* high level addition (handles signs) */
int mp_add(const mp_int *a, const mp_int *b, mp_int *c)
{
int sa, sb, res;
/* get sign of both inputs */
sa = a->sign;
sb = b->sign;
/* handle two cases, not four */
if (sa == sb) {
/* both positive or both negative */
/* add their magnitudes, copy the sign */
c->sign = sa;
res = s_mp_add(a, b, c);
} else {
/* one positive, the other negative */
/* subtract the one with the greater magnitude from */
/* the one of the lesser magnitude. The result gets */
/* the sign of the one with the greater magnitude. */
if (mp_cmp_mag(a, b) == MP_LT) {
c->sign = sb;
res = s_mp_sub(b, a, c);
} else {
c->sign = sa;
res = s_mp_sub(a, b, c);
}
}
return res;
}
#endif

View file

@ -0,0 +1,96 @@
#include "tommath_private.h"
#ifdef BN_MP_ADD_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* single digit addition */
int mp_add_d(const mp_int *a, mp_digit b, mp_int *c)
{
int res, ix, oldused;
mp_digit *tmpa, *tmpc, mu;
/* grow c as required */
if (c->alloc < (a->used + 1)) {
if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
return res;
}
}
/* if a is negative and |a| >= b, call c = |a| - b */
if ((a->sign == MP_NEG) && ((a->used > 1) || (a->dp[0] >= b))) {
mp_int a_ = *a;
/* temporarily fix sign of a */
a_.sign = MP_ZPOS;
/* c = |a| - b */
res = mp_sub_d(&a_, b, c);
/* fix sign */
c->sign = MP_NEG;
/* clamp */
mp_clamp(c);
return res;
}
/* old number of used digits in c */
oldused = c->used;
/* source alias */
tmpa = a->dp;
/* destination alias */
tmpc = c->dp;
/* if a is positive */
if (a->sign == MP_ZPOS) {
/* add digit, after this we're propagating
* the carry.
*/
*tmpc = *tmpa++ + b;
mu = *tmpc >> MP_DIGIT_BIT;
*tmpc++ &= MP_MASK;
/* now handle rest of the digits */
for (ix = 1; ix < a->used; ix++) {
*tmpc = *tmpa++ + mu;
mu = *tmpc >> MP_DIGIT_BIT;
*tmpc++ &= MP_MASK;
}
/* set final carry */
ix++;
*tmpc++ = mu;
/* setup size */
c->used = a->used + 1;
} else {
/* a was negative and |a| < b */
c->used = 1;
/* the result is a single digit */
if (a->used == 1) {
*tmpc++ = b - a->dp[0];
} else {
*tmpc++ = b;
}
/* setup count so the clearing of oldused
* can fall through correctly
*/
ix = 1;
}
/* sign always positive */
c->sign = MP_ZPOS;
/* now zero to oldused */
while (ix++ < oldused) {
*tmpc++ = 0;
}
mp_clamp(c);
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,24 @@
#include "tommath_private.h"
#ifdef BN_MP_ADDMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* d = a + b (mod c) */
int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)
{
int res;
mp_int t;
if ((res = mp_init(&t)) != MP_OKAY) {
return res;
}
if ((res = mp_add(a, b, &t)) != MP_OKAY) {
mp_clear(&t);
return res;
}
res = mp_mod(&t, c, d);
mp_clear(&t);
return res;
}
#endif

View file

@ -0,0 +1,41 @@
#include "tommath_private.h"
#ifdef BN_MP_AND_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* AND two ints together */
int mp_and(const mp_int *a, const mp_int *b, mp_int *c)
{
int res, ix, px;
mp_int t;
const mp_int *x;
if (a->used > b->used) {
if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
return res;
}
px = b->used;
x = b;
} else {
if ((res = mp_init_copy(&t, b)) != MP_OKAY) {
return res;
}
px = a->used;
x = a;
}
for (ix = 0; ix < px; ix++) {
t.dp[ix] &= x->dp[ix];
}
/* zero digits above the last from the smallest mp_int */
for (; ix < t.used; ix++) {
t.dp[ix] = 0;
}
mp_clamp(&t);
mp_exch(c, &t);
mp_clear(&t);
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,27 @@
#include "tommath_private.h"
#ifdef BN_MP_CLAMP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* trim unused digits
*
* This is used to ensure that leading zero digits are
* trimed and the leading "used" digit will be non-zero
* Typically very fast. Also fixes the sign if there
* are no more leading digits
*/
void mp_clamp(mp_int *a)
{
/* decrease used while the most significant digit is
* zero.
*/
while ((a->used > 0) && (a->dp[a->used - 1] == 0u)) {
--(a->used);
}
/* reset the sign flag if used == 0 */
if (a->used == 0) {
a->sign = MP_ZPOS;
}
}
#endif

View file

@ -0,0 +1,27 @@
#include "tommath_private.h"
#ifdef BN_MP_CLEAR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* clear one (frees) */
void mp_clear(mp_int *a)
{
int i;
/* only do anything if a hasn't been freed previously */
if (a->dp != NULL) {
/* first zero the digits */
for (i = 0; i < a->used; i++) {
a->dp[i] = 0;
}
/* free ram */
MP_FREE(a->dp, sizeof(mp_digit) * (size_t)a->alloc);
/* reset members to make debugging easier */
a->dp = NULL;
a->alloc = a->used = 0;
a->sign = MP_ZPOS;
}
}
#endif

View file

@ -0,0 +1,19 @@
#include "tommath_private.h"
#ifdef BN_MP_CLEAR_MULTI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include <stdarg.h>
void mp_clear_multi(mp_int *mp, ...)
{
mp_int *next_mp = mp;
va_list args;
va_start(args, mp);
while (next_mp != NULL) {
mp_clear(next_mp);
next_mp = va_arg(args, mp_int *);
}
va_end(args);
}
#endif

View file

@ -0,0 +1,26 @@
#include "tommath_private.h"
#ifdef BN_MP_CMP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* compare two ints (signed)*/
int mp_cmp(const mp_int *a, const mp_int *b)
{
/* compare based on sign */
if (a->sign != b->sign) {
if (a->sign == MP_NEG) {
return MP_LT;
} else {
return MP_GT;
}
}
/* compare digits */
if (a->sign == MP_NEG) {
/* if negative compare opposite direction */
return mp_cmp_mag(b, a);
} else {
return mp_cmp_mag(a, b);
}
}
#endif

View file

@ -0,0 +1,28 @@
#include "tommath_private.h"
#ifdef BN_MP_CMP_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* compare a digit */
int mp_cmp_d(const mp_int *a, mp_digit b)
{
/* compare based on sign */
if (a->sign == MP_NEG) {
return MP_LT;
}
/* compare based on magnitude */
if (a->used > 1) {
return MP_GT;
}
/* compare the only digit of a to b */
if (a->dp[0] > b) {
return MP_GT;
} else if (a->dp[0] < b) {
return MP_LT;
} else {
return MP_EQ;
}
}
#endif

View file

@ -0,0 +1,39 @@
#include "tommath_private.h"
#ifdef BN_MP_CMP_MAG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* compare maginitude of two ints (unsigned) */
int mp_cmp_mag(const mp_int *a, const mp_int *b)
{
int n;
mp_digit *tmpa, *tmpb;
/* compare based on # of non-zero digits */
if (a->used > b->used) {
return MP_GT;
}
if (a->used < b->used) {
return MP_LT;
}
/* alias for a */
tmpa = a->dp + (a->used - 1);
/* alias for b */
tmpb = b->dp + (a->used - 1);
/* compare based on digits */
for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
if (*tmpa > *tmpb) {
return MP_GT;
}
if (*tmpa < *tmpb) {
return MP_LT;
}
}
return MP_EQ;
}
#endif

View file

@ -0,0 +1,37 @@
#include "tommath_private.h"
#ifdef BN_MP_CNT_LSB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
static const int lnz[16] = {
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};
/* Counts the number of lsbs which are zero before the first zero bit */
int mp_cnt_lsb(const mp_int *a)
{
int x;
mp_digit q, qq;
/* easy out */
if (MP_IS_ZERO(a)) {
return 0;
}
/* scan lower digits until non-zero */
for (x = 0; (x < a->used) && (a->dp[x] == 0u); x++) {}
q = a->dp[x];
x *= MP_DIGIT_BIT;
/* now scan this digit until a 1 is found */
if ((q & 1u) == 0u) {
do {
qq = q & 15u;
x += lnz[qq];
q >>= 4;
} while (qq == 0u);
}
return x;
}
#endif

View file

@ -0,0 +1,12 @@
#include "tommath_private.h"
#ifdef BN_MP_COMPLEMENT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* b = ~a */
int mp_complement(const mp_int *a, mp_int *b)
{
int res = mp_neg(a, b);
return (res == MP_OKAY) ? mp_sub_d(b, 1uL, b) : res;
}
#endif

View file

@ -0,0 +1,51 @@
#include "tommath_private.h"
#ifdef BN_MP_COPY_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* copy, b = a */
int mp_copy(const mp_int *a, mp_int *b)
{
int res, n;
/* if dst == src do nothing */
if (a == b) {
return MP_OKAY;
}
/* grow dest */
if (b->alloc < a->used) {
if ((res = mp_grow(b, a->used)) != MP_OKAY) {
return res;
}
}
/* zero b and copy the parameters over */
{
mp_digit *tmpa, *tmpb;
/* pointer aliases */
/* source */
tmpa = a->dp;
/* destination */
tmpb = b->dp;
/* copy all the digits */
for (n = 0; n < a->used; n++) {
*tmpb++ = *tmpa++;
}
/* clear high digits */
for (; n < b->used; n++) {
*tmpb++ = 0;
}
}
/* copy used count and sign */
b->used = a->used;
b->sign = a->sign;
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,28 @@
#include "tommath_private.h"
#ifdef BN_MP_COUNT_BITS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* returns the number of bits in an int */
int mp_count_bits(const mp_int *a)
{
int r;
mp_digit q;
/* shortcut */
if (MP_IS_ZERO(a)) {
return 0;
}
/* get number of digits and add that */
r = (a->used - 1) * MP_DIGIT_BIT;
/* take the last digit and count the bits in it */
q = a->dp[a->used - 1];
while (q > (mp_digit)0) {
++r;
q >>= (mp_digit)1;
}
return r;
}
#endif

View file

@ -0,0 +1,34 @@
#include "tommath_private.h"
#ifdef BN_MP_DECR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* Decrement "a" by one like "a--". Changes input! */
int mp_decr(mp_int *a)
{
int e = MP_OKAY;
if (MP_IS_ZERO(a)) {
mp_set(a,1uL);
a->sign = MP_NEG;
return MP_OKAY;
} else if (a->sign == MP_NEG) {
a->sign = MP_ZPOS;
if ((e = mp_incr(a)) != MP_OKAY) {
return e;
}
/* There is no -0 in LTM */
if (!MP_IS_ZERO(a)) {
a->sign = MP_NEG;
}
return MP_OKAY;
} else if (a->dp[0] > 1uL) {
a->dp[0]--;
if (a->dp[0] == 0u) {
mp_zero(a);
}
return MP_OKAY;
} else {
return mp_sub_d(a, 1uL,a);
}
}
#endif

View file

@ -0,0 +1,284 @@
#include "tommath_private.h"
#ifdef BN_MP_DIV_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#ifdef BN_MP_DIV_SMALL
/* slower bit-bang division... also smaller */
int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
{
mp_int ta, tb, tq, q;
int res, n, n2;
/* is divisor zero ? */
if (MP_IS_ZERO(b)) {
return MP_VAL;
}
/* if a < b then q=0, r = a */
if (mp_cmp_mag(a, b) == MP_LT) {
if (d != NULL) {
res = mp_copy(a, d);
} else {
res = MP_OKAY;
}
if (c != NULL) {
mp_zero(c);
}
return res;
}
/* init our temps */
if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) {
return res;
}
mp_set(&tq, 1uL);
n = mp_count_bits(a) - mp_count_bits(b);
if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
((res = mp_abs(b, &tb)) != MP_OKAY) ||
((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
goto LBL_ERR;
}
while (n-- >= 0) {
if (mp_cmp(&tb, &ta) != MP_GT) {
if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
goto LBL_ERR;
}
}
if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
goto LBL_ERR;
}
}
/* now q == quotient and ta == remainder */
n = a->sign;
n2 = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
if (c != NULL) {
mp_exch(c, &q);
c->sign = MP_IS_ZERO(c) ? MP_ZPOS : n2;
}
if (d != NULL) {
mp_exch(d, &ta);
d->sign = MP_IS_ZERO(d) ? MP_ZPOS : n;
}
LBL_ERR:
mp_clear_multi(&ta, &tb, &tq, &q, NULL);
return res;
}
#else
/* integer signed division.
* c*b + d == a [e.g. a/b, c=quotient, d=remainder]
* HAC pp.598 Algorithm 14.20
*
* Note that the description in HAC is horribly
* incomplete. For example, it doesn't consider
* the case where digits are removed from 'x' in
* the inner loop. It also doesn't consider the
* case that y has fewer than three digits, etc..
*
* The overall algorithm is as described as
* 14.20 from HAC but fixed to treat these cases.
*/
int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
{
mp_int q, x, y, t1, t2;
int res, n, t, i, norm, neg;
/* is divisor zero ? */
if (MP_IS_ZERO(b)) {
return MP_VAL;
}
/* if a < b then q=0, r = a */
if (mp_cmp_mag(a, b) == MP_LT) {
if (d != NULL) {
res = mp_copy(a, d);
} else {
res = MP_OKAY;
}
if (c != NULL) {
mp_zero(c);
}
return res;
}
if ((res = mp_init_size(&q, a->used + 2)) != MP_OKAY) {
return res;
}
q.used = a->used + 2;
if ((res = mp_init(&t1)) != MP_OKAY) {
goto LBL_Q;
}
if ((res = mp_init(&t2)) != MP_OKAY) {
goto LBL_T1;
}
if ((res = mp_init_copy(&x, a)) != MP_OKAY) {
goto LBL_T2;
}
if ((res = mp_init_copy(&y, b)) != MP_OKAY) {
goto LBL_X;
}
/* fix the sign */
neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
x.sign = y.sign = MP_ZPOS;
/* normalize both x and y, ensure that y >= b/2, [b == 2**MP_DIGIT_BIT] */
norm = mp_count_bits(&y) % MP_DIGIT_BIT;
if (norm < (MP_DIGIT_BIT - 1)) {
norm = (MP_DIGIT_BIT - 1) - norm;
if ((res = mp_mul_2d(&x, norm, &x)) != MP_OKAY) {
goto LBL_Y;
}
if ((res = mp_mul_2d(&y, norm, &y)) != MP_OKAY) {
goto LBL_Y;
}
} else {
norm = 0;
}
/* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
n = x.used - 1;
t = y.used - 1;
/* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
if ((res = mp_lshd(&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
goto LBL_Y;
}
while (mp_cmp(&x, &y) != MP_LT) {
++(q.dp[n - t]);
if ((res = mp_sub(&x, &y, &x)) != MP_OKAY) {
goto LBL_Y;
}
}
/* reset y by shifting it back down */
mp_rshd(&y, n - t);
/* step 3. for i from n down to (t + 1) */
for (i = n; i >= (t + 1); i--) {
if (i > x.used) {
continue;
}
/* step 3.1 if xi == yt then set q{i-t-1} to b-1,
* otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
if (x.dp[i] == y.dp[t]) {
q.dp[(i - t) - 1] = ((mp_digit)1 << (mp_digit)MP_DIGIT_BIT) - (mp_digit)1;
} else {
mp_word tmp;
tmp = (mp_word)x.dp[i] << (mp_word)MP_DIGIT_BIT;
tmp |= (mp_word)x.dp[i - 1];
tmp /= (mp_word)y.dp[t];
if (tmp > (mp_word)MP_MASK) {
tmp = MP_MASK;
}
q.dp[(i - t) - 1] = (mp_digit)(tmp & (mp_word)MP_MASK);
}
/* while (q{i-t-1} * (yt * b + y{t-1})) >
xi * b**2 + xi-1 * b + xi-2
do q{i-t-1} -= 1;
*/
q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] + 1uL) & (mp_digit)MP_MASK;
do {
q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & (mp_digit)MP_MASK;
/* find left hand */
mp_zero(&t1);
t1.dp[0] = ((t - 1) < 0) ? 0u : y.dp[t - 1];
t1.dp[1] = y.dp[t];
t1.used = 2;
if ((res = mp_mul_d(&t1, q.dp[(i - t) - 1], &t1)) != MP_OKAY) {
goto LBL_Y;
}
/* find right hand */
t2.dp[0] = ((i - 2) < 0) ? 0u : x.dp[i - 2];
t2.dp[1] = ((i - 1) < 0) ? 0u : x.dp[i - 1];
t2.dp[2] = x.dp[i];
t2.used = 3;
} while (mp_cmp_mag(&t1, &t2) == MP_GT);
/* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
if ((res = mp_mul_d(&y, q.dp[(i - t) - 1], &t1)) != MP_OKAY) {
goto LBL_Y;
}
if ((res = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) {
goto LBL_Y;
}
if ((res = mp_sub(&x, &t1, &x)) != MP_OKAY) {
goto LBL_Y;
}
/* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
if (x.sign == MP_NEG) {
if ((res = mp_copy(&y, &t1)) != MP_OKAY) {
goto LBL_Y;
}
if ((res = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) {
goto LBL_Y;
}
if ((res = mp_add(&x, &t1, &x)) != MP_OKAY) {
goto LBL_Y;
}
q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & MP_MASK;
}
}
/* now q is the quotient and x is the remainder
* [which we have to normalize]
*/
/* get sign before writing to c */
x.sign = (x.used == 0) ? MP_ZPOS : a->sign;
if (c != NULL) {
mp_clamp(&q);
mp_exch(&q, c);
c->sign = neg;
}
if (d != NULL) {
if ((res = mp_div_2d(&x, norm, &x, NULL)) != MP_OKAY) {
goto LBL_Y;
}
mp_exch(&x, d);
}
res = MP_OKAY;
LBL_Y:
mp_clear(&y);
LBL_X:
mp_clear(&x);
LBL_T2:
mp_clear(&t2);
LBL_T1:
mp_clear(&t1);
LBL_Q:
mp_clear(&q);
return res;
}
#endif
#endif

View file

@ -0,0 +1,52 @@
#include "tommath_private.h"
#ifdef BN_MP_DIV_2_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* b = a/2 */
int mp_div_2(const mp_int *a, mp_int *b)
{
int x, res, oldused;
/* copy */
if (b->alloc < a->used) {
if ((res = mp_grow(b, a->used)) != MP_OKAY) {
return res;
}
}
oldused = b->used;
b->used = a->used;
{
mp_digit r, rr, *tmpa, *tmpb;
/* source alias */
tmpa = a->dp + b->used - 1;
/* dest alias */
tmpb = b->dp + b->used - 1;
/* carry */
r = 0;
for (x = b->used - 1; x >= 0; x--) {
/* get the carry for the next iteration */
rr = *tmpa & 1u;
/* shift the current digit, add in carry and store */
*tmpb-- = (*tmpa-- >> 1) | (r << (MP_DIGIT_BIT - 1));
/* forward carry to next iteration */
r = rr;
}
/* zero excess digits */
tmpb = b->dp + b->used;
for (x = b->used; x < oldused; x++) {
*tmpb++ = 0;
}
}
b->sign = a->sign;
mp_clamp(b);
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,70 @@
#include "tommath_private.h"
#ifdef BN_MP_DIV_2D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d)
{
mp_digit D, r, rr;
int x, res;
/* if the shift count is <= 0 then we do no work */
if (b <= 0) {
res = mp_copy(a, c);
if (d != NULL) {
mp_zero(d);
}
return res;
}
/* copy */
if ((res = mp_copy(a, c)) != MP_OKAY) {
return res;
}
/* 'a' should not be used after here - it might be the same as d */
/* get the remainder */
if (d != NULL) {
if ((res = mp_mod_2d(a, b, d)) != MP_OKAY) {
return res;
}
}
/* shift by as many digits in the bit count */
if (b >= MP_DIGIT_BIT) {
mp_rshd(c, b / MP_DIGIT_BIT);
}
/* shift any bit count < MP_DIGIT_BIT */
D = (mp_digit)(b % MP_DIGIT_BIT);
if (D != 0u) {
mp_digit *tmpc, mask, shift;
/* mask */
mask = ((mp_digit)1 << D) - 1uL;
/* shift for lsb */
shift = (mp_digit)MP_DIGIT_BIT - D;
/* alias */
tmpc = c->dp + (c->used - 1);
/* carry */
r = 0;
for (x = c->used - 1; x >= 0; x--) {
/* get the lower bits of this word in a temp */
rr = *tmpc & mask;
/* shift the current word and mix in the carry bits from the previous word */
*tmpc = (*tmpc >> D) | (r << shift);
--tmpc;
/* set the carry to the carry bits of the current word found above */
r = rr;
}
}
mp_clamp(c);
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,62 @@
#include "tommath_private.h"
#ifdef BN_MP_DIV_3_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* divide by three (based on routine from MPI and the GMP manual) */
int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d)
{
mp_int q;
mp_word w, t;
mp_digit b;
int res, ix;
/* b = 2**MP_DIGIT_BIT / 3 */
b = ((mp_word)1 << (mp_word)MP_DIGIT_BIT) / (mp_word)3;
if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
return res;
}
q.used = a->used;
q.sign = a->sign;
w = 0;
for (ix = a->used - 1; ix >= 0; ix--) {
w = (w << (mp_word)MP_DIGIT_BIT) | (mp_word)a->dp[ix];
if (w >= 3u) {
/* multiply w by [1/3] */
t = (w * (mp_word)b) >> (mp_word)MP_DIGIT_BIT;
/* now subtract 3 * [w/3] from w, to get the remainder */
w -= t+t+t;
/* fixup the remainder as required since
* the optimization is not exact.
*/
while (w >= 3u) {
t += 1u;
w -= 3u;
}
} else {
t = 0;
}
q.dp[ix] = (mp_digit)t;
}
/* [optional] store the remainder */
if (d != NULL) {
*d = (mp_digit)w;
}
/* [optional] store the quotient */
if (c != NULL) {
mp_clamp(&q);
mp_exch(&q, c);
}
mp_clear(&q);
return res;
}
#endif

View file

@ -0,0 +1,99 @@
#include "tommath_private.h"
#ifdef BN_MP_DIV_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
static int s_is_power_of_two(mp_digit b, int *p)
{
int x;
/* fast return if no power of two */
if ((b == 0u) || ((b & (b-1u)) != 0u)) {
return 0;
}
for (x = 0; x < MP_DIGIT_BIT; x++) {
if (b == ((mp_digit)1<<(mp_digit)x)) {
*p = x;
return 1;
}
}
return 0;
}
/* single digit division (based on routine from MPI) */
int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d)
{
mp_int q;
mp_word w;
mp_digit t;
int res, ix;
/* cannot divide by zero */
if (b == 0u) {
return MP_VAL;
}
/* quick outs */
if ((b == 1u) || MP_IS_ZERO(a)) {
if (d != NULL) {
*d = 0;
}
if (c != NULL) {
return mp_copy(a, c);
}
return MP_OKAY;
}
/* power of two ? */
if (s_is_power_of_two(b, &ix) == 1) {
if (d != NULL) {
*d = a->dp[0] & (((mp_digit)1<<(mp_digit)ix) - 1uL);
}
if (c != NULL) {
return mp_div_2d(a, ix, c, NULL);
}
return MP_OKAY;
}
#ifdef BN_MP_DIV_3_C
/* three? */
if (b == 3u) {
return mp_div_3(a, c, d);
}
#endif
/* no easy answer [c'est la vie]. Just division */
if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
return res;
}
q.used = a->used;
q.sign = a->sign;
w = 0;
for (ix = a->used - 1; ix >= 0; ix--) {
w = (w << (mp_word)MP_DIGIT_BIT) | (mp_word)a->dp[ix];
if (w >= b) {
t = (mp_digit)(w / b);
w -= (mp_word)t * (mp_word)b;
} else {
t = 0;
}
q.dp[ix] = t;
}
if (d != NULL) {
*d = (mp_digit)w;
}
if (c != NULL) {
mp_clamp(&q);
mp_exch(&q, c);
}
mp_clear(&q);
return res;
}
#endif

View file

@ -0,0 +1,27 @@
#include "tommath_private.h"
#ifdef BN_MP_DR_IS_MODULUS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* determines if a number is a valid DR modulus */
int mp_dr_is_modulus(const mp_int *a)
{
int ix;
/* must be at least two digits */
if (a->used < 2) {
return 0;
}
/* must be of the form b**k - a [a <= b] so all
* but the first digit must be equal to -1 (mod b).
*/
for (ix = 1; ix < a->used; ix++) {
if (a->dp[ix] != MP_MASK) {
return 0;
}
}
return 1;
}
#endif

View file

@ -0,0 +1,79 @@
#include "tommath_private.h"
#ifdef BN_MP_DR_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
*
* Based on algorithm from the paper
*
* "Generating Efficient Primes for Discrete Log Cryptosystems"
* Chae Hoon Lim, Pil Joong Lee,
* POSTECH Information Research Laboratories
*
* The modulus must be of a special format [see manual]
*
* Has been modified to use algorithm 7.10 from the LTM book instead
*
* Input x must be in the range 0 <= x <= (n-1)**2
*/
int mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k)
{
int err, i, m;
mp_word r;
mp_digit mu, *tmpx1, *tmpx2;
/* m = digits in modulus */
m = n->used;
/* ensure that "x" has at least 2m digits */
if (x->alloc < (m + m)) {
if ((err = mp_grow(x, m + m)) != MP_OKAY) {
return err;
}
}
/* top of loop, this is where the code resumes if
* another reduction pass is required.
*/
top:
/* aliases for digits */
/* alias for lower half of x */
tmpx1 = x->dp;
/* alias for upper half of x, or x/B**m */
tmpx2 = x->dp + m;
/* set carry to zero */
mu = 0;
/* compute (x mod B**m) + k * [x/B**m] inline and inplace */
for (i = 0; i < m; i++) {
r = ((mp_word)*tmpx2++ * (mp_word)k) + *tmpx1 + mu;
*tmpx1++ = (mp_digit)(r & MP_MASK);
mu = (mp_digit)(r >> ((mp_word)MP_DIGIT_BIT));
}
/* set final carry */
*tmpx1++ = mu;
/* zero words above m */
for (i = m + 1; i < x->used; i++) {
*tmpx1++ = 0;
}
/* clamp, sub and return */
mp_clamp(x);
/* if x >= n then subtract and reduce again
* Each successive "recursion" makes the input smaller and smaller.
*/
if (mp_cmp_mag(x, n) != MP_LT) {
if ((err = s_mp_sub(x, n, x)) != MP_OKAY) {
return err;
}
goto top;
}
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,15 @@
#include "tommath_private.h"
#ifdef BN_MP_DR_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* determines the setup value */
void mp_dr_setup(const mp_int *a, mp_digit *d)
{
/* the casts are required if MP_DIGIT_BIT is one less than
* the number of bits in a mp_digit [e.g. MP_DIGIT_BIT==31]
*/
*d = (mp_digit)(((mp_word)1 << (mp_word)MP_DIGIT_BIT) - (mp_word)a->dp[0]);
}
#endif

View file

@ -0,0 +1,23 @@
#include "tommath_private.h"
#ifdef BN_MP_ERROR_TO_STRING_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* return a char * string for a given code */
const char *mp_error_to_string(int code)
{
switch (code) {
case MP_OKAY:
return "Successful";
case MP_MEM:
return "Out of heap";
case MP_VAL:
return "Value out of range";
case MP_ITER:
return "Max. iterations reached";
default:
return "Invalid error code";
}
}
#endif

View file

@ -0,0 +1,17 @@
#include "tommath_private.h"
#ifdef BN_MP_EXCH_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* swap the elements of two integers, for cases where you can't simply swap the
* mp_int pointers around
*/
void mp_exch(mp_int *a, mp_int *b)
{
mp_int t;
t = *a;
*a = *b;
*b = t;
}
#endif

View file

@ -0,0 +1,71 @@
#include "tommath_private.h"
#ifdef BN_MP_EXPORT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* based on gmp's mpz_export.
* see http://gmplib.org/manual/Integer-Import-and-Export.html
*/
int mp_export(void *rop, size_t *countp, int order, size_t size,
int endian, size_t nails, const mp_int *op)
{
int result;
size_t odd_nails, nail_bytes, i, j, bits, count;
unsigned char odd_nail_mask;
mp_int t;
if ((result = mp_init_copy(&t, op)) != MP_OKAY) {
return result;
}
if (endian == 0) {
union {
unsigned int i;
char c[4];
} lint;
lint.i = 0x01020304;
endian = (lint.c[0] == '\x04') ? -1 : 1;
}
odd_nails = (nails % 8u);
odd_nail_mask = 0xff;
for (i = 0; i < odd_nails; ++i) {
odd_nail_mask ^= (unsigned char)(1u << (7u - i));
}
nail_bytes = nails / 8u;
bits = (size_t)mp_count_bits(&t);
count = (bits / ((size * 8u) - nails)) + (((bits % ((size * 8u) - nails)) != 0u) ? 1u : 0u);
for (i = 0; i < count; ++i) {
for (j = 0; j < size; ++j) {
unsigned char *byte = (unsigned char *)rop +
(((order == -1) ? i : ((count - 1u) - i)) * size) +
((endian == -1) ? j : ((size - 1u) - j));
if (j >= (size - nail_bytes)) {
*byte = 0;
continue;
}
*byte = (unsigned char)((j == ((size - nail_bytes) - 1u)) ? (t.dp[0] & odd_nail_mask) : (t.dp[0] & 0xFFuL));
if ((result = mp_div_2d(&t, (j == ((size - nail_bytes) - 1u)) ? (int)(8u - odd_nails) : 8, &t, NULL)) != MP_OKAY) {
mp_clear(&t);
return result;
}
}
}
mp_clear(&t);
if (countp != NULL) {
*countp = count;
}
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,12 @@
#include "tommath_private.h"
#ifdef BN_MP_EXPT_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* wrapper function for mp_expt_d_ex() */
int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c)
{
return mp_expt_d_ex(a, b, c, 0);
}
#endif

View file

@ -0,0 +1,66 @@
#include "tommath_private.h"
#ifdef BN_MP_EXPT_D_EX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* calculate c = a**b using a square-multiply algorithm */
int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
{
int res;
unsigned int x;
mp_int g;
if ((res = mp_init_copy(&g, a)) != MP_OKAY) {
return res;
}
/* set initial result */
mp_set(c, 1uL);
if (fast != 0) {
while (b > 0u) {
/* if the bit is set multiply */
if ((b & 1u) != 0u) {
if ((res = mp_mul(c, &g, c)) != MP_OKAY) {
mp_clear(&g);
return res;
}
}
/* square */
if (b > 1u) {
if ((res = mp_sqr(&g, &g)) != MP_OKAY) {
mp_clear(&g);
return res;
}
}
/* shift to next bit */
b >>= 1;
}
} else {
for (x = 0; x < (unsigned)MP_DIGIT_BIT; x++) {
/* square */
if ((res = mp_sqr(c, c)) != MP_OKAY) {
mp_clear(&g);
return res;
}
/* if the bit is set multiply */
if ((b & ((mp_digit)1 << (MP_DIGIT_BIT - 1))) != 0u) {
if ((res = mp_mul(c, &g, c)) != MP_OKAY) {
mp_clear(&g);
return res;
}
}
/* shift to next bit */
b <<= 1;
}
} /* if ... else */
mp_clear(&g);
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,95 @@
#include "tommath_private.h"
#ifdef BN_MP_EXPTMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* this is a shell function that calls either the normal or Montgomery
* exptmod functions. Originally the call to the montgomery code was
* embedded in the normal function but that wasted alot of stack space
* for nothing (since 99% of the time the Montgomery code would be called)
*/
int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y)
{
int dr;
/* modulus P must be positive */
if (P->sign == MP_NEG) {
return MP_VAL;
}
/* if exponent X is negative we have to recurse */
if (X->sign == MP_NEG) {
#ifdef BN_MP_INVMOD_C
mp_int tmpG, tmpX;
int err;
/* first compute 1/G mod P */
if ((err = mp_init(&tmpG)) != MP_OKAY) {
return err;
}
if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
mp_clear(&tmpG);
return err;
}
/* now get |X| */
if ((err = mp_init(&tmpX)) != MP_OKAY) {
mp_clear(&tmpG);
return err;
}
if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
mp_clear_multi(&tmpG, &tmpX, NULL);
return err;
}
/* and now compute (1/G)**|X| instead of G**X [X < 0] */
err = mp_exptmod(&tmpG, &tmpX, P, Y);
mp_clear_multi(&tmpG, &tmpX, NULL);
return err;
#else
/* no invmod */
return MP_VAL;
#endif
}
/* modified diminished radix reduction */
#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
if (mp_reduce_is_2k_l(P) == MP_YES) {
return s_mp_exptmod(G, X, P, Y, 1);
}
#endif
#ifdef BN_MP_DR_IS_MODULUS_C
/* is it a DR modulus? */
dr = mp_dr_is_modulus(P);
#else
/* default to no */
dr = 0;
#endif
#ifdef BN_MP_REDUCE_IS_2K_C
/* if not, is it a unrestricted DR modulus? */
if (dr == 0) {
dr = mp_reduce_is_2k(P) << 1;
}
#endif
/* if the modulus is odd or dr != 0 use the montgomery method */
#ifdef BN_S_MP_EXPTMOD_FAST_C
if (MP_IS_ODD(P) || (dr != 0)) {
return s_mp_exptmod_fast(G, X, P, Y, dr);
} else {
#endif
#ifdef BN_S_MP_EXPTMOD_C
/* otherwise use the generic Barrett reduction technique */
return s_mp_exptmod(G, X, P, Y, 0);
#else
/* no exptmod for evens */
return MP_VAL;
#endif
#ifdef BN_S_MP_EXPTMOD_FAST_C
}
#endif
}
#endif

View file

@ -0,0 +1,109 @@
#include "tommath_private.h"
#ifdef BN_MP_EXTEUCLID_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* Extended euclidean algorithm of (a, b) produces
a*u1 + b*u2 = u3
*/
int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
{
mp_int u1, u2, u3, v1, v2, v3, t1, t2, t3, q, tmp;
int err;
if ((err = mp_init_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL)) != MP_OKAY) {
return err;
}
/* initialize, (u1,u2,u3) = (1,0,a) */
mp_set(&u1, 1uL);
if ((err = mp_copy(a, &u3)) != MP_OKAY) {
goto LBL_ERR;
}
/* initialize, (v1,v2,v3) = (0,1,b) */
mp_set(&v2, 1uL);
if ((err = mp_copy(b, &v3)) != MP_OKAY) {
goto LBL_ERR;
}
/* loop while v3 != 0 */
while (!MP_IS_ZERO(&v3)) {
/* q = u3/v3 */
if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY) {
goto LBL_ERR;
}
/* (t1,t2,t3) = (u1,u2,u3) - (v1,v2,v3)q */
if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = mp_sub(&u1, &tmp, &t1)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = mp_mul(&v2, &q, &tmp)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = mp_sub(&u2, &tmp, &t2)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = mp_mul(&v3, &q, &tmp)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = mp_sub(&u3, &tmp, &t3)) != MP_OKAY) {
goto LBL_ERR;
}
/* (u1,u2,u3) = (v1,v2,v3) */
if ((err = mp_copy(&v1, &u1)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = mp_copy(&v2, &u2)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = mp_copy(&v3, &u3)) != MP_OKAY) {
goto LBL_ERR;
}
/* (v1,v2,v3) = (t1,t2,t3) */
if ((err = mp_copy(&t1, &v1)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = mp_copy(&t2, &v2)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = mp_copy(&t3, &v3)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* make sure U3 >= 0 */
if (u3.sign == MP_NEG) {
if ((err = mp_neg(&u1, &u1)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = mp_neg(&u2, &u2)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = mp_neg(&u3, &u3)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* copy result out */
if (U1 != NULL) {
mp_exch(U1, &u1);
}
if (U2 != NULL) {
mp_exch(U2, &u2);
}
if (U3 != NULL) {
mp_exch(U3, &u3);
}
err = MP_OKAY;
LBL_ERR:
mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL);
return err;
}
#endif

View file

@ -0,0 +1,55 @@
#include "tommath_private.h"
#ifdef BN_MP_FREAD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#ifndef LTM_NO_FILE
/* read a bigint from a file stream in ASCII */
int mp_fread(mp_int *a, int radix, FILE *stream)
{
int err, ch, neg, y;
unsigned pos;
/* clear a */
mp_zero(a);
/* if first digit is - then set negative */
ch = fgetc(stream);
if (ch == (int)'-') {
neg = MP_NEG;
ch = fgetc(stream);
} else {
neg = MP_ZPOS;
}
for (;;) {
pos = (unsigned)(ch - (int)'(');
if (mp_s_rmap_reverse_sz < pos) {
break;
}
y = (int)mp_s_rmap_reverse[pos];
if ((y == 0xff) || (y >= radix)) {
break;
}
/* shift up and add */
if ((err = mp_mul_d(a, (mp_digit)radix, a)) != MP_OKAY) {
return err;
}
if ((err = mp_add_d(a, (mp_digit)y, a)) != MP_OKAY) {
return err;
}
ch = fgetc(stream);
}
if (mp_cmp_d(a, 0uL) != MP_EQ) {
a->sign = neg;
}
return MP_OKAY;
}
#endif
#endif

View file

@ -0,0 +1,38 @@
#include "tommath_private.h"
#ifdef BN_MP_FWRITE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#ifndef LTM_NO_FILE
int mp_fwrite(const mp_int *a, int radix, FILE *stream)
{
char *buf;
int err, len, x;
if ((err = mp_radix_size(a, radix, &len)) != MP_OKAY) {
return err;
}
buf = (char *) MP_MALLOC((size_t)len);
if (buf == NULL) {
return MP_MEM;
}
if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) {
MP_FREE(buf, len);
return err;
}
for (x = 0; x < len; x++) {
if (fputc((int)buf[x], stream) == EOF) {
MP_FREE(buf, len);
return MP_VAL;
}
}
MP_FREE(buf, len);
return MP_OKAY;
}
#endif
#endif

View file

@ -0,0 +1,91 @@
#include "tommath_private.h"
#ifdef BN_MP_GCD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* Greatest Common Divisor using the binary method */
int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c)
{
mp_int u, v;
int k, u_lsb, v_lsb, res;
/* either zero than gcd is the largest */
if (MP_IS_ZERO(a)) {
return mp_abs(b, c);
}
if (MP_IS_ZERO(b)) {
return mp_abs(a, c);
}
/* get copies of a and b we can modify */
if ((res = mp_init_copy(&u, a)) != MP_OKAY) {
return res;
}
if ((res = mp_init_copy(&v, b)) != MP_OKAY) {
goto LBL_U;
}
/* must be positive for the remainder of the algorithm */
u.sign = v.sign = MP_ZPOS;
/* B1. Find the common power of two for u and v */
u_lsb = mp_cnt_lsb(&u);
v_lsb = mp_cnt_lsb(&v);
k = MP_MIN(u_lsb, v_lsb);
if (k > 0) {
/* divide the power of two out */
if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
goto LBL_V;
}
if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
goto LBL_V;
}
}
/* divide any remaining factors of two out */
if (u_lsb != k) {
if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
goto LBL_V;
}
}
if (v_lsb != k) {
if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
goto LBL_V;
}
}
while (!MP_IS_ZERO(&v)) {
/* make sure v is the largest */
if (mp_cmp_mag(&u, &v) == MP_GT) {
/* swap u and v to make sure v is >= u */
mp_exch(&u, &v);
}
/* subtract smallest from largest */
if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
goto LBL_V;
}
/* Divide out all factors of two */
if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
goto LBL_V;
}
}
/* multiply by 2**k which we divided out at the beginning */
if ((res = mp_mul_2d(&u, k, c)) != MP_OKAY) {
goto LBL_V;
}
c->sign = MP_ZPOS;
res = MP_OKAY;
LBL_V:
mp_clear(&u);
LBL_U:
mp_clear(&v);
return res;
}
#endif

View file

@ -0,0 +1,31 @@
#include "tommath_private.h"
#ifdef BN_MP_GET_BIT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* Checks the bit at position b and returns MP_YES
if the bit is 1, MP_NO if it is 0 and MP_VAL
in case of error */
int mp_get_bit(const mp_int *a, int b)
{
int limb;
mp_digit bit, isset;
if (b < 0) {
return MP_VAL;
}
limb = b / MP_DIGIT_BIT;
if (limb >= a->used) {
return MP_NO;
}
bit = (mp_digit)(1) << (b % MP_DIGIT_BIT);
isset = a->dp[limb] & bit;
return (isset != 0u) ? MP_YES : MP_NO;
}
#endif

View file

@ -0,0 +1,18 @@
#include "tommath_private.h"
#ifdef BN_MP_GET_DOUBLE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
double mp_get_double(const mp_int *a)
{
int i;
double d = 0.0, fac = 1.0;
for (i = 0; i < MP_DIGIT_BIT; ++i) {
fac *= 2.0;
}
for (i = a->used; i --> 0;) {
d = (d * fac) + (double)a->dp[i];
}
return (a->sign == MP_NEG) ? -d : d;
}
#endif

View file

@ -0,0 +1,12 @@
#include "tommath_private.h"
#ifdef BN_MP_GET_INT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* get the lower 32-bits of an mp_int */
unsigned long mp_get_int(const mp_int *a)
{
/* force result to 32-bits always so it is consistent on non 32-bit platforms */
return mp_get_long(a) & 0xFFFFFFFFUL;
}
#endif

View file

@ -0,0 +1,29 @@
#include "tommath_private.h"
#ifdef BN_MP_GET_LONG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* get the lower unsigned long of an mp_int, platform dependent */
unsigned long mp_get_long(const mp_int *a)
{
int i;
unsigned long res;
if (MP_IS_ZERO(a)) {
return 0;
}
/* get number of digits of the lsb we have to read */
i = MP_MIN(a->used, (((CHAR_BIT * (int)sizeof(unsigned long)) + MP_DIGIT_BIT - 1) / MP_DIGIT_BIT)) - 1;
/* get most significant digit of result */
res = (unsigned long)a->dp[i];
#if (ULONG_MAX != 0xFFFFFFFFUL) || (MP_DIGIT_BIT < 32)
while (--i >= 0) {
res = (res << MP_DIGIT_BIT) | (unsigned long)a->dp[i];
}
#endif
return res;
}
#endif

View file

@ -0,0 +1,29 @@
#include "tommath_private.h"
#ifdef BN_MP_GET_LONG_LONG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* get the lower unsigned long long of an mp_int, platform dependent */
unsigned long long mp_get_long_long(const mp_int *a)
{
int i;
unsigned long long res;
if (MP_IS_ZERO(a)) {
return 0;
}
/* get number of digits of the lsb we have to read */
i = MP_MIN(a->used, (((CHAR_BIT * (int)sizeof(unsigned long long)) + MP_DIGIT_BIT - 1) / MP_DIGIT_BIT)) - 1;
/* get most significant digit of result */
res = (unsigned long long)a->dp[i];
#if MP_DIGIT_BIT < 64
while (--i >= 0) {
res = (res << MP_DIGIT_BIT) | (unsigned long long)a->dp[i];
}
#endif
return res;
}
#endif

View file

@ -0,0 +1,43 @@
#include "tommath_private.h"
#ifdef BN_MP_GROW_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* grow as required */
int mp_grow(mp_int *a, int size)
{
int i;
mp_digit *tmp;
/* if the alloc size is smaller alloc more ram */
if (a->alloc < size) {
/* ensure there are always at least MP_PREC digits extra on top */
size += (MP_PREC * 2) - (size % MP_PREC);
/* reallocate the array a->dp
*
* We store the return in a temporary variable
* in case the operation failed we don't want
* to overwrite the dp member of a.
*/
tmp = (mp_digit *) MP_REALLOC(a->dp,
(size_t)a->alloc * sizeof(mp_digit),
(size_t)size * sizeof(mp_digit));
if (tmp == NULL) {
/* reallocation failed but "a" is still valid [can be freed] */
return MP_MEM;
}
/* reallocation succeeded so set a->dp */
a->dp = tmp;
/* zero excess digits */
i = a->alloc;
a->alloc = size;
for (; i < a->alloc; i++) {
a->dp[i] = 0;
}
}
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,193 @@
#include "tommath_private.h"
#ifdef BN_MP_ILOGB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* Compute log_{base}(a) */
static mp_word s_pow(mp_word base, mp_word exponent)
{
mp_word result = 1uLL;
while (exponent != 0u) {
if ((exponent & 1u) == 1u) {
result *= base;
}
exponent >>= 1;
base *= base;
}
return result;
}
static mp_digit s_digit_ilogb(mp_digit base, mp_digit n)
{
mp_word bracket_low = 1uLL, bracket_mid, bracket_high, N;
mp_digit ret, high = 1uL, low = 0uL, mid;
if (n < base) {
return (mp_digit)0uL;
}
if (n == base) {
return (mp_digit)1uL;
}
bracket_high = (mp_word) base ;
N = (mp_word) n;
while (bracket_high < N) {
low = high;
bracket_low = bracket_high;
high <<= 1;
bracket_high *= bracket_high;
}
while (((mp_digit)(high - low)) > 1uL) {
mid = (low + high) >> 1;
bracket_mid = bracket_low * s_pow(base, mid - low) ;
if (N < bracket_mid) {
high = mid ;
bracket_high = bracket_mid ;
}
if (N > bracket_mid) {
low = mid ;
bracket_low = bracket_mid ;
}
if (N == bracket_mid) {
return (mp_digit) mid;
}
}
if (bracket_high == N) {
ret = high;
} else {
ret = low;
}
return ret;
}
/* TODO: output could be "int" because the output of mp_radix_size is int, too,
as is the output of mp_bitcount.
With the same problem: max size is INT_MAX * MP_DIGIT not INT_MAX only!
*/
int mp_ilogb(mp_int *a, mp_digit base, mp_int *c)
{
int err, cmp;
unsigned int high, low, mid;
mp_int bracket_low, bracket_high, bracket_mid, t, bi_base;
mp_digit tmp;
err = MP_OKAY;
if (a->sign == MP_NEG) {
return MP_VAL;
}
if (MP_IS_ZERO(a)) {
return MP_VAL;
}
if (base < 2u) {
return MP_VAL;
}
if (base == 2u) {
cmp = mp_count_bits(a) - 1;
if ((err = mp_set_int(c, (unsigned long)cmp)) != MP_OKAY) {
goto LBL_ERR;
}
return err;
}
if (a->used == 1) {
tmp = s_digit_ilogb(base, a->dp[0]);
mp_set(c, tmp);
return err;
}
cmp = mp_cmp_d(a, base);
if (cmp == MP_LT) {
mp_zero(c);
return err;
}
if (cmp == MP_EQ) {
mp_set(c, (mp_digit)1uL);
return err;
}
if ((err =
mp_init_multi(&bracket_low, &bracket_high,
&bracket_mid, &t, &bi_base, NULL)) != MP_OKAY) {
return err;
}
low = 0u;
mp_set(&bracket_low, 1uL);
high = 1u;
mp_set(&bracket_high, base);
/*
A kind of Giant-step/baby-step algorithm.
Idea shamelessly stolen from https://programmingpraxis.com/2010/05/07/integer-logarithms/2/
The effect is asymptotic, hence needs benchmarks to test if the Giant-step should be skipped
for small n.
*/
while (mp_cmp(&bracket_high, a) == MP_LT) {
low = high;
if ((err = mp_copy(&bracket_high, &bracket_low)) != MP_OKAY) {
goto LBL_ERR;
}
high <<= 1;
if ((err = mp_sqr(&bracket_high, &bracket_high)) != MP_OKAY) {
goto LBL_ERR;
}
}
mp_set(&bi_base, base);
while ((high - low) > 1u) {
mid = (high + low) >> 1;
/* Difference can be larger then the type behind mp_digit can hold */
if ((mid - low) > (unsigned int)(MP_MASK)) {
err = MP_VAL;
goto LBL_ERR;
}
if ((err = mp_expt_d(&bi_base, (mp_digit)(mid - low), &t)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = mp_mul(&bracket_low, &t, &bracket_mid)) != MP_OKAY) {
goto LBL_ERR;
}
cmp = mp_cmp(a, &bracket_mid);
if (cmp == MP_LT) {
high = mid;
mp_exch(&bracket_mid, &bracket_high);
}
if (cmp == MP_GT) {
low = mid;
mp_exch(&bracket_mid, &bracket_low);
}
if (cmp == MP_EQ) {
if ((err = mp_set_int(c, (unsigned long)mid)) != MP_OKAY) {
goto LBL_ERR;
}
goto LBL_END;
}
}
if (mp_cmp(&bracket_high, a) == MP_EQ) {
if ((err = mp_set_int(c, (unsigned long)high)) != MP_OKAY) {
goto LBL_ERR;
}
} else {
if ((err = mp_set_int(c, (unsigned long)low)) != MP_OKAY) {
goto LBL_ERR;
}
}
LBL_END:
LBL_ERR:
mp_clear_multi(&bracket_low, &bracket_high, &bracket_mid,
&t, &bi_base, NULL);
return err;
}
#endif

View file

@ -0,0 +1,55 @@
#include "tommath_private.h"
#ifdef BN_MP_IMPORT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* based on gmp's mpz_import.
* see http://gmplib.org/manual/Integer-Import-and-Export.html
*/
int mp_import(mp_int *rop, size_t count, int order, size_t size,
int endian, size_t nails, const void *op)
{
int result;
size_t odd_nails, nail_bytes, i, j;
unsigned char odd_nail_mask;
mp_zero(rop);
if (endian == 0) {
union {
unsigned int i;
char c[4];
} lint;
lint.i = 0x01020304;
endian = (lint.c[0] == '\x04') ? -1 : 1;
}
odd_nails = (nails % 8u);
odd_nail_mask = 0xff;
for (i = 0; i < odd_nails; ++i) {
odd_nail_mask ^= (unsigned char)(1u << (7u - i));
}
nail_bytes = nails / 8u;
for (i = 0; i < count; ++i) {
for (j = 0; j < (size - nail_bytes); ++j) {
unsigned char byte = *((const unsigned char *)op +
(((order == 1) ? i : ((count - 1u) - i)) * size) +
((endian == 1) ? (j + nail_bytes) : (((size - 1u) - j) - nail_bytes)));
if ((result = mp_mul_2d(rop, (j == 0u) ? (int)(8u - odd_nails) : 8, rop)) != MP_OKAY) {
return result;
}
rop->dp[0] |= (j == 0u) ? (mp_digit)(byte & odd_nail_mask) : (mp_digit)byte;
rop->used += 1;
}
}
mp_clamp(rop);
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,30 @@
#include "tommath_private.h"
#ifdef BN_MP_INCR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* Increment "a" by one like "a++". Changes input! */
int mp_incr(mp_int *a)
{
int e = MP_OKAY;
if (MP_IS_ZERO(a)) {
mp_set(a,1uL);
return MP_OKAY;
} else if (a->sign == MP_NEG) {
a->sign = MP_ZPOS;
if ((e = mp_decr(a)) != MP_OKAY) {
return e;
}
/* There is no -0 in LTM */
if (!MP_IS_ZERO(a)) {
a->sign = MP_NEG;
}
return MP_OKAY;
} else if (a->dp[0] < MP_MASK) {
a->dp[0]++;
return MP_OKAY;
} else {
return mp_add_d(a, 1uL,a);
}
}
#endif

View file

@ -0,0 +1,23 @@
#include "tommath_private.h"
#ifdef BN_MP_INIT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* init a new mp_int */
int mp_init(mp_int *a)
{
/* allocate memory required and clear it */
a->dp = (mp_digit *) MP_CALLOC((size_t)MP_PREC, sizeof(mp_digit));
if (a->dp == NULL) {
return MP_MEM;
}
/* set the used to zero, allocated digits to the default precision
* and sign to positive */
a->used = 0;
a->alloc = MP_PREC;
a->sign = MP_ZPOS;
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,21 @@
#include "tommath_private.h"
#ifdef BN_MP_INIT_COPY_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* creates "a" then copies b into it */
int mp_init_copy(mp_int *a, const mp_int *b)
{
int res;
if ((res = mp_init_size(a, b->used)) != MP_OKAY) {
return res;
}
if ((res = mp_copy(b, a)) != MP_OKAY) {
mp_clear(a);
}
return res;
}
#endif

View file

@ -0,0 +1,41 @@
#include "tommath_private.h"
#ifdef BN_MP_INIT_MULTI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include <stdarg.h>
int mp_init_multi(mp_int *mp, ...)
{
mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
int n = 0; /* Number of ok inits */
mp_int *cur_arg = mp;
va_list args;
va_start(args, mp); /* init args to next argument from caller */
while (cur_arg != NULL) {
if (mp_init(cur_arg) != MP_OKAY) {
/* Oops - error! Back-track and mp_clear what we already
succeeded in init-ing, then return error.
*/
va_list clean_args;
/* now start cleaning up */
cur_arg = mp;
va_start(clean_args, mp);
while (n-- != 0) {
mp_clear(cur_arg);
cur_arg = va_arg(clean_args, mp_int *);
}
va_end(clean_args);
res = MP_MEM;
break;
}
n++;
cur_arg = va_arg(args, mp_int *);
}
va_end(args);
return res; /* Assumed ok, if error flagged above. */
}
#endif

View file

@ -0,0 +1,16 @@
#include "tommath_private.h"
#ifdef BN_MP_INIT_SET_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* initialize and set a digit */
int mp_init_set(mp_int *a, mp_digit b)
{
int err;
if ((err = mp_init(a)) != MP_OKAY) {
return err;
}
mp_set(a, b);
return err;
}
#endif

View file

@ -0,0 +1,15 @@
#include "tommath_private.h"
#ifdef BN_MP_INIT_SET_INT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* initialize and set a digit */
int mp_init_set_int(mp_int *a, unsigned long b)
{
int err;
if ((err = mp_init(a)) != MP_OKAY) {
return err;
}
return mp_set_int(a, b);
}
#endif

View file

@ -0,0 +1,25 @@
#include "tommath_private.h"
#ifdef BN_MP_INIT_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* init an mp_init for a given size */
int mp_init_size(mp_int *a, int size)
{
/* pad size so there are always extra digits */
size += (MP_PREC * 2) - (size % MP_PREC);
/* alloc mem */
a->dp = (mp_digit *) MP_CALLOC((size_t)size, sizeof(mp_digit));
if (a->dp == NULL) {
return MP_MEM;
}
/* set the members */
a->used = 0;
a->alloc = size;
a->sign = MP_ZPOS;
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,27 @@
#include "tommath_private.h"
#ifdef BN_MP_INVMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* hac 14.61, pp608 */
int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c)
{
/* b cannot be negative and has to be >1 */
if ((b->sign == MP_NEG) || (mp_cmp_d(b, 1uL) != MP_GT)) {
return MP_VAL;
}
#ifdef BN_S_MP_INVMOD_FAST_C
/* if the modulus is odd we can use a faster routine instead */
if (MP_IS_ODD(b)) {
return s_mp_invmod_fast(a, b, c);
}
#endif
#ifdef BN_S_MP_INVMOD_SLOW_C
return s_mp_invmod_slow(a, b, c);
#else
return MP_VAL;
#endif
}
#endif

View file

@ -0,0 +1,93 @@
#include "tommath_private.h"
#ifdef BN_MP_IS_SQUARE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* Check if remainders are possible squares - fast exclude non-squares */
static const char rem_128[128] = {
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1
};
static const char rem_105[105] = {
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1
};
/* Store non-zero to ret if arg is square, and zero if not */
int mp_is_square(const mp_int *arg, int *ret)
{
int res;
mp_digit c;
mp_int t;
unsigned long r;
/* Default to Non-square :) */
*ret = MP_NO;
if (arg->sign == MP_NEG) {
return MP_VAL;
}
if (MP_IS_ZERO(arg)) {
return MP_OKAY;
}
/* First check mod 128 (suppose that MP_DIGIT_BIT is at least 7) */
if (rem_128[127u & arg->dp[0]] == (char)1) {
return MP_OKAY;
}
/* Next check mod 105 (3*5*7) */
if ((res = mp_mod_d(arg, 105uL, &c)) != MP_OKAY) {
return res;
}
if (rem_105[c] == (char)1) {
return MP_OKAY;
}
if ((res = mp_init_set_int(&t, 11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) {
return res;
}
if ((res = mp_mod(arg, &t, &t)) != MP_OKAY) {
goto LBL_ERR;
}
r = mp_get_int(&t);
/* Check for other prime modules, note it's not an ERROR but we must
* free "t" so the easiest way is to goto LBL_ERR. We know that res
* is already equal to MP_OKAY from the mp_mod call
*/
if (((1uL<<(r%11uL)) & 0x5C4uL) != 0uL) goto LBL_ERR;
if (((1uL<<(r%13uL)) & 0x9E4uL) != 0uL) goto LBL_ERR;
if (((1uL<<(r%17uL)) & 0x5CE8uL) != 0uL) goto LBL_ERR;
if (((1uL<<(r%19uL)) & 0x4F50CuL) != 0uL) goto LBL_ERR;
if (((1uL<<(r%23uL)) & 0x7ACCA0uL) != 0uL) goto LBL_ERR;
if (((1uL<<(r%29uL)) & 0xC2EDD0CuL) != 0uL) goto LBL_ERR;
if (((1uL<<(r%31uL)) & 0x6DE2B848uL) != 0uL) goto LBL_ERR;
/* Final check - is sqr(sqrt(arg)) == arg ? */
if ((res = mp_sqrt(arg, &t)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_sqr(&t, &t)) != MP_OKAY) {
goto LBL_ERR;
}
*ret = (mp_cmp_mag(&t, arg) == MP_EQ) ? MP_YES : MP_NO;
LBL_ERR:
mp_clear(&t);
return res;
}
#endif

View file

@ -0,0 +1,10 @@
#include "tommath_private.h"
#ifdef BN_MP_ISEVEN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
int mp_iseven(const mp_int *a)
{
return MP_IS_EVEN(a) ? MP_YES : MP_NO;
}
#endif

View file

@ -0,0 +1,10 @@
#include "tommath_private.h"
#ifdef BN_MP_ISODD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
int mp_isodd(const mp_int *a)
{
return MP_IS_ODD(a) ? MP_YES : MP_NO;
}
#endif

View file

@ -0,0 +1,23 @@
#include "tommath_private.h"
#ifdef BN_MP_JACOBI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* computes the jacobi c = (a | n) (or Legendre if n is prime)
* Kept for legacy reasons, please use mp_kronecker() instead
*/
int mp_jacobi(const mp_int *a, const mp_int *n, int *c)
{
/* if a < 0 return MP_VAL */
if (a->sign == MP_NEG) {
return MP_VAL;
}
/* if n <= 0 return MP_VAL */
if (mp_cmp_d(n, 0uL) != MP_GT) {
return MP_VAL;
}
return mp_kronecker(a, n, c);
}
#endif

View file

@ -0,0 +1,131 @@
#include "tommath_private.h"
#ifdef BN_MP_KRONECKER_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/*
Kronecker symbol (a|p)
Straightforward implementation of algorithm 1.4.10 in
Henri Cohen: "A Course in Computational Algebraic Number Theory"
@book{cohen2013course,
title={A course in computational algebraic number theory},
author={Cohen, Henri},
volume={138},
year={2013},
publisher={Springer Science \& Business Media}
}
*/
int mp_kronecker(const mp_int *a, const mp_int *p, int *c)
{
mp_int a1, p1, r;
int e = MP_OKAY;
int v, k;
static const int table[8] = {0, 1, 0, -1, 0, -1, 0, 1};
if (MP_IS_ZERO(p)) {
if ((a->used == 1) && (a->dp[0] == 1u)) {
*c = 1;
return e;
} else {
*c = 0;
return e;
}
}
if (MP_IS_EVEN(a) && MP_IS_EVEN(p)) {
*c = 0;
return e;
}
if ((e = mp_init_copy(&a1, a)) != MP_OKAY) {
return e;
}
if ((e = mp_init_copy(&p1, p)) != MP_OKAY) {
goto LBL_KRON_0;
}
v = mp_cnt_lsb(&p1);
if ((e = mp_div_2d(&p1, v, &p1, NULL)) != MP_OKAY) {
goto LBL_KRON_1;
}
if ((v & 0x1) == 0) {
k = 1;
} else {
k = table[a->dp[0] & 7u];
}
if (p1.sign == MP_NEG) {
p1.sign = MP_ZPOS;
if (a1.sign == MP_NEG) {
k = -k;
}
}
if ((e = mp_init(&r)) != MP_OKAY) {
goto LBL_KRON_1;
}
for (;;) {
if (MP_IS_ZERO(&a1)) {
if (mp_cmp_d(&p1, 1uL) == MP_EQ) {
*c = k;
goto LBL_KRON;
} else {
*c = 0;
goto LBL_KRON;
}
}
v = mp_cnt_lsb(&a1);
if ((e = mp_div_2d(&a1, v, &a1, NULL)) != MP_OKAY) {
goto LBL_KRON;
}
if ((v & 0x1) == 1) {
k = k * table[p1.dp[0] & 7u];
}
if (a1.sign == MP_NEG) {
/*
* Compute k = (-1)^((a1)*(p1-1)/4) * k
* a1.dp[0] + 1 cannot overflow because the MSB
* of the type mp_digit is not set by definition
*/
if (((a1.dp[0] + 1u) & p1.dp[0] & 2u) != 0u) {
k = -k;
}
} else {
/* compute k = (-1)^((a1-1)*(p1-1)/4) * k */
if ((a1.dp[0] & p1.dp[0] & 2u) != 0u) {
k = -k;
}
}
if ((e = mp_copy(&a1, &r)) != MP_OKAY) {
goto LBL_KRON;
}
r.sign = MP_ZPOS;
if ((e = mp_mod(&p1, &r, &a1)) != MP_OKAY) {
goto LBL_KRON;
}
if ((e = mp_copy(&r, &p1)) != MP_OKAY) {
goto LBL_KRON;
}
}
LBL_KRON:
mp_clear(&r);
LBL_KRON_1:
mp_clear(&p1);
LBL_KRON_0:
mp_clear(&a1);
return e;
}
#endif

View file

@ -0,0 +1,44 @@
#include "tommath_private.h"
#ifdef BN_MP_LCM_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* computes least common multiple as |a*b|/(a, b) */
int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c)
{
int res;
mp_int t1, t2;
if ((res = mp_init_multi(&t1, &t2, NULL)) != MP_OKAY) {
return res;
}
/* t1 = get the GCD of the two inputs */
if ((res = mp_gcd(a, b, &t1)) != MP_OKAY) {
goto LBL_T;
}
/* divide the smallest by the GCD */
if (mp_cmp_mag(a, b) == MP_LT) {
/* store quotient in t2 such that t2 * b is the LCM */
if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) {
goto LBL_T;
}
res = mp_mul(b, &t2, c);
} else {
/* store quotient in t2 such that t2 * a is the LCM */
if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) {
goto LBL_T;
}
res = mp_mul(a, &t2, c);
}
/* fix the sign to positive */
c->sign = MP_ZPOS;
LBL_T:
mp_clear_multi(&t1, &t2, NULL);
return res;
}
#endif

View file

@ -0,0 +1,55 @@
#include "tommath_private.h"
#ifdef BN_MP_LSHD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* shift left a certain amount of digits */
int mp_lshd(mp_int *a, int b)
{
int x, res;
/* if its less than zero return */
if (b <= 0) {
return MP_OKAY;
}
/* no need to shift 0 around */
if (MP_IS_ZERO(a)) {
return MP_OKAY;
}
/* grow to fit the new digits */
if (a->alloc < (a->used + b)) {
if ((res = mp_grow(a, a->used + b)) != MP_OKAY) {
return res;
}
}
{
mp_digit *top, *bottom;
/* increment the used by the shift amount then copy upwards */
a->used += b;
/* top */
top = a->dp + a->used - 1;
/* base */
bottom = (a->dp + a->used - 1) - b;
/* much like mp_rshd this is implemented using a sliding window
* except the window goes the otherway around. Copying from
* the bottom to the top. see bn_mp_rshd.c for more info.
*/
for (x = a->used - 1; x >= b; x--) {
*top-- = *bottom--;
}
/* zero the lower digits */
top = a->dp;
for (x = 0; x < b; x++) {
*top++ = 0;
}
}
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,31 @@
#include "tommath_private.h"
#ifdef BN_MP_MOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* c = a mod b, 0 <= c < b if b > 0, b < c <= 0 if b < 0 */
int mp_mod(const mp_int *a, const mp_int *b, mp_int *c)
{
mp_int t;
int res;
if ((res = mp_init_size(&t, b->used)) != MP_OKAY) {
return res;
}
if ((res = mp_div(a, b, NULL, &t)) != MP_OKAY) {
mp_clear(&t);
return res;
}
if (MP_IS_ZERO(&t) || (t.sign == b->sign)) {
res = MP_OKAY;
mp_exch(&t, c);
} else {
res = mp_add(b, &t, c);
}
mp_clear(&t);
return res;
}
#endif

View file

@ -0,0 +1,38 @@
#include "tommath_private.h"
#ifdef BN_MP_MOD_2D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* calc a value mod 2**b */
int mp_mod_2d(const mp_int *a, int b, mp_int *c)
{
int x, res;
/* if b is <= 0 then zero the int */
if (b <= 0) {
mp_zero(c);
return MP_OKAY;
}
/* if the modulus is larger than the value than return */
if (b >= (a->used * MP_DIGIT_BIT)) {
res = mp_copy(a, c);
return res;
}
/* copy */
if ((res = mp_copy(a, c)) != MP_OKAY) {
return res;
}
/* zero digits above the last digit of the modulus */
for (x = (b / MP_DIGIT_BIT) + (((b % MP_DIGIT_BIT) == 0) ? 0 : 1); x < c->used; x++) {
c->dp[x] = 0;
}
/* clear the digit that is not completely outside/inside the modulus */
c->dp[b / MP_DIGIT_BIT] &=
((mp_digit)1 << (mp_digit)(b % MP_DIGIT_BIT)) - (mp_digit)1;
mp_clamp(c);
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,10 @@
#include "tommath_private.h"
#ifdef BN_MP_MOD_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c)
{
return mp_div_d(a, b, NULL, c);
}
#endif

View file

@ -0,0 +1,43 @@
#include "tommath_private.h"
#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/*
* shifts with subtractions when the result is greater than b.
*
* The method is slightly modified to shift B unconditionally upto just under
* the leading bit of b. This saves alot of multiple precision shifting.
*/
int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b)
{
int x, bits, res;
/* how many bits of last digit does b use */
bits = mp_count_bits(b) % MP_DIGIT_BIT;
if (b->used > 1) {
if ((res = mp_2expt(a, ((b->used - 1) * MP_DIGIT_BIT) + bits - 1)) != MP_OKAY) {
return res;
}
} else {
mp_set(a, 1uL);
bits = 1;
}
/* now compute C = A * B mod b */
for (x = bits - 1; x < (int)MP_DIGIT_BIT; x++) {
if ((res = mp_mul_2(a, a)) != MP_OKAY) {
return res;
}
if (mp_cmp_mag(a, b) != MP_LT) {
if ((res = s_mp_sub(a, b, a)) != MP_OKAY) {
return res;
}
}
}
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,102 @@
#include "tommath_private.h"
#ifdef BN_MP_MONTGOMERY_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* computes xR**-1 == x (mod N) via Montgomery Reduction */
int mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
{
int ix, res, digs;
mp_digit mu;
/* can the fast reduction [comba] method be used?
*
* Note that unlike in mul you're safely allowed *less*
* than the available columns [255 per default] since carries
* are fixed up in the inner loop.
*/
digs = (n->used * 2) + 1;
if ((digs < (int)MP_WARRAY) &&
(x->used <= (int)MP_WARRAY) &&
(n->used <
(int)(1u << ((CHAR_BIT * sizeof(mp_word)) - (2u * (size_t)MP_DIGIT_BIT))))) {
return s_mp_montgomery_reduce_fast(x, n, rho);
}
/* grow the input as required */
if (x->alloc < digs) {
if ((res = mp_grow(x, digs)) != MP_OKAY) {
return res;
}
}
x->used = digs;
for (ix = 0; ix < n->used; ix++) {
/* mu = ai * rho mod b
*
* The value of rho must be precalculated via
* montgomery_setup() such that
* it equals -1/n0 mod b this allows the
* following inner loop to reduce the
* input one digit at a time
*/
mu = (mp_digit)(((mp_word)x->dp[ix] * (mp_word)rho) & MP_MASK);
/* a = a + mu * m * b**i */
{
int iy;
mp_digit *tmpn, *tmpx, u;
mp_word r;
/* alias for digits of the modulus */
tmpn = n->dp;
/* alias for the digits of x [the input] */
tmpx = x->dp + ix;
/* set the carry to zero */
u = 0;
/* Multiply and add in place */
for (iy = 0; iy < n->used; iy++) {
/* compute product and sum */
r = ((mp_word)mu * (mp_word)*tmpn++) +
(mp_word)u + (mp_word)*tmpx;
/* get carry */
u = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT);
/* fix digit */
*tmpx++ = (mp_digit)(r & (mp_word)MP_MASK);
}
/* At this point the ix'th digit of x should be zero */
/* propagate carries upwards as required*/
while (u != 0u) {
*tmpx += u;
u = *tmpx >> MP_DIGIT_BIT;
*tmpx++ &= MP_MASK;
}
}
}
/* at this point the n.used'th least
* significant digits of x are all zero
* which means we can shift x to the
* right by n.used digits and the
* residue is unchanged.
*/
/* x = x/b**n.used */
mp_clamp(x);
mp_rshd(x, n->used);
/* if x >= n then x = x - n */
if (mp_cmp_mag(x, n) != MP_LT) {
return s_mp_sub(x, n, x);
}
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,42 @@
#include "tommath_private.h"
#ifdef BN_MP_MONTGOMERY_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* setups the montgomery reduction stuff */
int mp_montgomery_setup(const mp_int *n, mp_digit *rho)
{
mp_digit x, b;
/* fast inversion mod 2**k
*
* Based on the fact that
*
* XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
* => 2*X*A - X*X*A*A = 1
* => 2*(1) - (1) = 1
*/
b = n->dp[0];
if ((b & 1u) == 0u) {
return MP_VAL;
}
x = (((b + 2u) & 4u) << 1) + b; /* here x*a==1 mod 2**4 */
x *= 2u - (b * x); /* here x*a==1 mod 2**8 */
#if !defined(MP_8BIT)
x *= 2u - (b * x); /* here x*a==1 mod 2**16 */
#endif
#if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
x *= 2u - (b * x); /* here x*a==1 mod 2**32 */
#endif
#ifdef MP_64BIT
x *= 2u - (b * x); /* here x*a==1 mod 2**64 */
#endif
/* rho = -1/m mod b */
*rho = (mp_digit)(((mp_word)1 << (mp_word)MP_DIGIT_BIT) - x) & MP_MASK;
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,86 @@
#include "tommath_private.h"
#ifdef BN_MP_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* high level multiplication (handles sign) */
int mp_mul(const mp_int *a, const mp_int *b, mp_int *c)
{
int res, neg;
#ifdef BN_S_MP_BALANCE_MUL_C
int len_b, len_a;
#endif
neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
#ifdef BN_S_MP_BALANCE_MUL_C
len_a = a->used;
len_b = b->used;
if (len_a == len_b) {
goto GO_ON;
}
/*
* Check sizes. The smaller one needs to be larger than the Karatsuba cut-off.
* The bigger one needs to be at least about one KARATSUBA_MUL_CUTOFF bigger
* to make some sense, but it depends on architecture, OS, position of the
* stars... so YMMV.
* Using it to cut the input into slices small enough for fast_s_mp_mul_digs
* was actually slower on the author's machine, but YMMV.
*/
if ((MP_MIN(len_a, len_b) < KARATSUBA_MUL_CUTOFF)
|| ((MP_MAX(len_a, len_b) / 2) < KARATSUBA_MUL_CUTOFF)) {
goto GO_ON;
}
/*
* Not much effect was observed below a ratio of 1:2, but again: YMMV.
*/
if ((MP_MAX(len_a, len_b) / MP_MIN(len_a, len_b)) < 2) {
goto GO_ON;
}
res = s_mp_balance_mul(a,b,c);
goto END;
GO_ON:
#endif
/* use Toom-Cook? */
#ifdef BN_S_MP_TOOM_MUL_C
if (MP_MIN(a->used, b->used) >= TOOM_MUL_CUTOFF) {
res = s_mp_toom_mul(a, b, c);
} else
#endif
#ifdef BN_S_MP_KARATSUBA_MUL_C
/* use Karatsuba? */
if (MP_MIN(a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
res = s_mp_karatsuba_mul(a, b, c);
} else
#endif
{
/* can we use the fast multiplier?
*
* The fast multiplier can be used if the output will
* have less than MP_WARRAY digits and the number of
* digits won't affect carry propagation
*/
int digs = a->used + b->used + 1;
#ifdef BN_S_MP_MUL_DIGS_FAST_C
if ((digs < (int)MP_WARRAY) &&
(MP_MIN(a->used, b->used) <=
(int)(1u << ((CHAR_BIT * sizeof(mp_word)) - (2u * (size_t)MP_DIGIT_BIT))))) {
res = s_mp_mul_digs_fast(a, b, c, digs);
} else
#endif
{
#ifdef BN_S_MP_MUL_DIGS_C
res = s_mp_mul_digs(a, b, c, a->used + b->used + 1);
#else
res = MP_VAL;
#endif
}
}
END:
c->sign = (c->used > 0) ? neg : MP_ZPOS;
return res;
}
#endif

View file

@ -0,0 +1,66 @@
#include "tommath_private.h"
#ifdef BN_MP_MUL_2_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* b = a*2 */
int mp_mul_2(const mp_int *a, mp_int *b)
{
int x, res, oldused;
/* grow to accomodate result */
if (b->alloc < (a->used + 1)) {
if ((res = mp_grow(b, a->used + 1)) != MP_OKAY) {
return res;
}
}
oldused = b->used;
b->used = a->used;
{
mp_digit r, rr, *tmpa, *tmpb;
/* alias for source */
tmpa = a->dp;
/* alias for dest */
tmpb = b->dp;
/* carry */
r = 0;
for (x = 0; x < a->used; x++) {
/* get what will be the *next* carry bit from the
* MSB of the current digit
*/
rr = *tmpa >> (mp_digit)(MP_DIGIT_BIT - 1);
/* now shift up this digit, add in the carry [from the previous] */
*tmpb++ = ((*tmpa++ << 1uL) | r) & MP_MASK;
/* copy the carry that would be from the source
* digit into the next iteration
*/
r = rr;
}
/* new leading digit? */
if (r != 0u) {
/* add a MSB which is always 1 at this point */
*tmpb = 1;
++(b->used);
}
/* now zero any excess digits on the destination
* that we didn't write to
*/
tmpb = b->dp + b->used;
for (x = b->used; x < oldused; x++) {
*tmpb++ = 0;
}
}
b->sign = a->sign;
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,69 @@
#include "tommath_private.h"
#ifdef BN_MP_MUL_2D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* shift left by a certain bit count */
int mp_mul_2d(const mp_int *a, int b, mp_int *c)
{
mp_digit d;
int res;
/* copy */
if (a != c) {
if ((res = mp_copy(a, c)) != MP_OKAY) {
return res;
}
}
if (c->alloc < (c->used + (b / MP_DIGIT_BIT) + 1)) {
if ((res = mp_grow(c, c->used + (b / MP_DIGIT_BIT) + 1)) != MP_OKAY) {
return res;
}
}
/* shift by as many digits in the bit count */
if (b >= MP_DIGIT_BIT) {
if ((res = mp_lshd(c, b / MP_DIGIT_BIT)) != MP_OKAY) {
return res;
}
}
/* shift any bit count < MP_DIGIT_BIT */
d = (mp_digit)(b % MP_DIGIT_BIT);
if (d != 0u) {
mp_digit *tmpc, shift, mask, r, rr;
int x;
/* bitmask for carries */
mask = ((mp_digit)1 << d) - (mp_digit)1;
/* shift for msbs */
shift = (mp_digit)MP_DIGIT_BIT - d;
/* alias */
tmpc = c->dp;
/* carry */
r = 0;
for (x = 0; x < c->used; x++) {
/* get the higher bits of the current word */
rr = (*tmpc >> shift) & mask;
/* shift the current word and OR in the carry */
*tmpc = ((*tmpc << d) | r) & MP_MASK;
++tmpc;
/* set the carry to the carry bits of the current word */
r = rr;
}
/* set final carry */
if (r != 0u) {
c->dp[(c->used)++] = r;
}
}
mp_clamp(c);
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,62 @@
#include "tommath_private.h"
#ifdef BN_MP_MUL_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* multiply by a digit */
int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c)
{
mp_digit u, *tmpa, *tmpc;
mp_word r;
int ix, res, olduse;
/* make sure c is big enough to hold a*b */
if (c->alloc < (a->used + 1)) {
if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
return res;
}
}
/* get the original destinations used count */
olduse = c->used;
/* set the sign */
c->sign = a->sign;
/* alias for a->dp [source] */
tmpa = a->dp;
/* alias for c->dp [dest] */
tmpc = c->dp;
/* zero carry */
u = 0;
/* compute columns */
for (ix = 0; ix < a->used; ix++) {
/* compute product and carry sum for this term */
r = (mp_word)u + ((mp_word)*tmpa++ * (mp_word)b);
/* mask off higher bits to get a single digit */
*tmpc++ = (mp_digit)(r & (mp_word)MP_MASK);
/* send carry into next iteration */
u = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT);
}
/* store final carry [if any] and increment ix offset */
*tmpc++ = u;
++ix;
/* now zero digits above the top */
while (ix++ < olduse) {
*tmpc++ = 0;
}
/* set used count */
c->used = a->used + 1;
mp_clamp(c);
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,24 @@
#include "tommath_private.h"
#ifdef BN_MP_MULMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* d = a * b (mod c) */
int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)
{
int res;
mp_int t;
if ((res = mp_init_size(&t, c->used)) != MP_OKAY) {
return res;
}
if ((res = mp_mul(a, b, &t)) != MP_OKAY) {
mp_clear(&t);
return res;
}
res = mp_mod(&t, c, d);
mp_clear(&t);
return res;
}
#endif

View file

@ -0,0 +1,14 @@
#include "tommath_private.h"
#ifdef BN_MP_N_ROOT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* wrapper function for mp_n_root_ex()
* computes c = (a)**(1/b) such that (c)**b <= a and (c+1)**b > a
*/
int mp_n_root(const mp_int *a, mp_digit b, mp_int *c)
{
return mp_n_root_ex(a, b, c, 0);
}
#endif

View file

@ -0,0 +1,180 @@
#include "tommath_private.h"
#ifdef BN_MP_N_ROOT_EX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* find the n'th root of an integer
*
* Result found such that (c)**b <= a and (c+1)**b > a
*
* This algorithm uses Newton's approximation
* x[i+1] = x[i] - f(x[i])/f'(x[i])
* which will find the root in log(N) time where
* each step involves a fair bit.
*/
int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
{
mp_int t1, t2, t3, a_;
int res, cmp;
int ilog2;
/* input must be positive if b is even */
if (((b & 1u) == 0u) && (a->sign == MP_NEG)) {
return MP_VAL;
}
if ((res = mp_init(&t1)) != MP_OKAY) {
return res;
}
if ((res = mp_init(&t2)) != MP_OKAY) {
goto LBL_T1;
}
if ((res = mp_init(&t3)) != MP_OKAY) {
goto LBL_T2;
}
/* if a is negative fudge the sign but keep track */
a_ = *a;
a_.sign = MP_ZPOS;
/* Compute seed: 2^(log_2(n)/b + 2)*/
ilog2 = mp_count_bits(a);
/*
GCC and clang do not understand the sizeof(bla) tests and complain,
icc (the Intel compiler) seems to understand, at least it doesn't complain.
2 of 3 say these macros are necessary, so there they are.
*/
#if ( !(defined MP_8BIT) && !(defined MP_16BIT) )
/*
The type of mp_digit might be larger than an int.
If "b" is larger than INT_MAX it is also larger than
log_2(n) because the bit-length of the "n" is measured
with an int and hence the root is always < 2 (two).
*/
if (sizeof(mp_digit) >= sizeof(int)) {
if (b > (mp_digit)(INT_MAX/2)) {
mp_set(c, 1uL);
c->sign = a->sign;
res = MP_OKAY;
goto LBL_T3;
}
}
#endif
/* "b" is smaller than INT_MAX, we can cast safely */
if (ilog2 < (int)b) {
mp_set(c, 1uL);
c->sign = a->sign;
res = MP_OKAY;
goto LBL_T3;
}
ilog2 = ilog2 / ((int)b);
if (ilog2 == 0) {
mp_set(c, 1uL);
c->sign = a->sign;
res = MP_OKAY;
goto LBL_T3;
}
/* Start value must be larger than root */
ilog2 += 2;
if ((res = mp_2expt(&t2,ilog2)) != MP_OKAY) {
goto LBL_T3;
}
do {
/* t1 = t2 */
if ((res = mp_copy(&t2, &t1)) != MP_OKAY) {
goto LBL_T3;
}
/* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
/* t3 = t1**(b-1) */
if ((res = mp_expt_d_ex(&t1, b - 1u, &t3, fast)) != MP_OKAY) {
goto LBL_T3;
}
/* numerator */
/* t2 = t1**b */
if ((res = mp_mul(&t3, &t1, &t2)) != MP_OKAY) {
goto LBL_T3;
}
/* t2 = t1**b - a */
if ((res = mp_sub(&t2, &a_, &t2)) != MP_OKAY) {
goto LBL_T3;
}
/* denominator */
/* t3 = t1**(b-1) * b */
if ((res = mp_mul_d(&t3, b, &t3)) != MP_OKAY) {
goto LBL_T3;
}
/* t3 = (t1**b - a)/(b * t1**(b-1)) */
if ((res = mp_div(&t2, &t3, &t3, NULL)) != MP_OKAY) {
goto LBL_T3;
}
if ((res = mp_sub(&t1, &t3, &t2)) != MP_OKAY) {
goto LBL_T3;
}
/*
Number of rounds is at most log_2(root). If it is more it
got stuck, so break out of the loop and do the rest manually.
*/
if (ilog2-- == 0) {
break;
}
} while (mp_cmp(&t1, &t2) != MP_EQ);
/* result can be off by a few so check */
/* Loop beneath can overshoot by one if found root is smaller than actual root */
for (;;) {
if ((res = mp_expt_d_ex(&t1, b, &t2, fast)) != MP_OKAY) {
goto LBL_T3;
}
cmp = mp_cmp(&t2, &a_);
if (cmp == MP_EQ) {
res = MP_OKAY;
goto LBL_T3;
}
if (cmp == MP_LT) {
if ((res = mp_add_d(&t1, 1uL, &t1)) != MP_OKAY) {
goto LBL_T3;
}
} else {
break;
}
}
/* correct overshoot from above or from recurrence */
for (;;) {
if ((res = mp_expt_d_ex(&t1, b, &t2, fast)) != MP_OKAY) {
goto LBL_T3;
}
if (mp_cmp(&t2, &a_) == MP_GT) {
if ((res = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) {
goto LBL_T3;
}
} else {
break;
}
}
/* set the result */
mp_exch(&t1, c);
/* set the sign of the result */
c->sign = a->sign;
res = MP_OKAY;
LBL_T3:
mp_clear(&t3);
LBL_T2:
mp_clear(&t2);
LBL_T1:
mp_clear(&t1);
return res;
}
#endif

View file

@ -0,0 +1,24 @@
#include "tommath_private.h"
#ifdef BN_MP_NEG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* b = -a */
int mp_neg(const mp_int *a, mp_int *b)
{
int res;
if (a != b) {
if ((res = mp_copy(a, b)) != MP_OKAY) {
return res;
}
}
if (!MP_IS_ZERO(b)) {
b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
} else {
b->sign = MP_ZPOS;
}
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,35 @@
#include "tommath_private.h"
#ifdef BN_MP_OR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* OR two ints together */
int mp_or(const mp_int *a, const mp_int *b, mp_int *c)
{
int res, ix, px;
mp_int t;
const mp_int *x;
if (a->used > b->used) {
if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
return res;
}
px = b->used;
x = b;
} else {
if ((res = mp_init_copy(&t, b)) != MP_OKAY) {
return res;
}
px = a->used;
x = a;
}
for (ix = 0; ix < px; ix++) {
t.dp[ix] |= x->dp[ix];
}
mp_clamp(&t);
mp_exch(c, &t);
mp_clear(&t);
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,47 @@
#include "tommath_private.h"
#ifdef BN_MP_PRIME_FERMAT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* performs one Fermat test.
*
* If "a" were prime then b**a == b (mod a) since the order of
* the multiplicative sub-group would be phi(a) = a-1. That means
* it would be the same as b**(a mod (a-1)) == b**1 == b (mod a).
*
* Sets result to 1 if the congruence holds, or zero otherwise.
*/
int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result)
{
mp_int t;
int err;
/* default to composite */
*result = MP_NO;
/* ensure b > 1 */
if (mp_cmp_d(b, 1uL) != MP_GT) {
return MP_VAL;
}
/* init t */
if ((err = mp_init(&t)) != MP_OKAY) {
return err;
}
/* compute t = b**a mod a */
if ((err = mp_exptmod(b, a, a, &t)) != MP_OKAY) {
goto LBL_T;
}
/* is it equal to b? */
if (mp_cmp(&t, b) == MP_EQ) {
*result = MP_YES;
}
err = MP_OKAY;
LBL_T:
mp_clear(&t);
return err;
}
#endif

View file

@ -0,0 +1,185 @@
#include "tommath_private.h"
#ifdef BN_MP_PRIME_FROBENIUS_UNDERWOOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/*
* See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details
*/
#ifndef LTM_USE_FIPS_ONLY
#ifdef MP_8BIT
/*
* floor of positive solution of
* (2^16)-1 = (a+4)*(2*a+5)
* TODO: Both values are smaller than N^(1/4), would have to use a bigint
* for a instead but any a biger than about 120 are already so rare that
* it is possible to ignore them and still get enough pseudoprimes.
* But it is still a restriction of the set of available pseudoprimes
* which makes this implementation less secure if used stand-alone.
*/
#define LTM_FROBENIUS_UNDERWOOD_A 177
#else
#define LTM_FROBENIUS_UNDERWOOD_A 32764
#endif
int mp_prime_frobenius_underwood(const mp_int *N, int *result)
{
mp_int T1z, T2z, Np1z, sz, tz;
int a, ap2, length, i, j, isset;
int e;
*result = MP_NO;
if ((e = mp_init_multi(&T1z, &T2z, &Np1z, &sz, &tz, NULL)) != MP_OKAY) {
return e;
}
for (a = 0; a < LTM_FROBENIUS_UNDERWOOD_A; a++) {
/* TODO: That's ugly! No, really, it is! */
if ((a==2) || (a==4) || (a==7) || (a==8) || (a==10) ||
(a==14) || (a==18) || (a==23) || (a==26) || (a==28)) {
continue;
}
/* (32764^2 - 4) < 2^31, no bigint for >MP_8BIT needed) */
if ((e = mp_set_long(&T1z, (unsigned long)a)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_sqr(&T1z, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_sub_d(&T1z, 4uL, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_kronecker(&T1z, N, &j)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if (j == -1) {
break;
}
if (j == 0) {
/* composite */
goto LBL_FU_ERR;
}
}
/* Tell it a composite and set return value accordingly */
if (a >= LTM_FROBENIUS_UNDERWOOD_A) {
e = MP_ITER;
goto LBL_FU_ERR;
}
/* Composite if N and (a+4)*(2*a+5) are not coprime */
if ((e = mp_set_long(&T1z, (unsigned long)((a+4)*((2*a)+5)))) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_gcd(N, &T1z, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if (!((T1z.used == 1) && (T1z.dp[0] == 1u))) {
goto LBL_FU_ERR;
}
ap2 = a + 2;
if ((e = mp_add_d(N, 1uL, &Np1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
mp_set(&sz, 1uL);
mp_set(&tz, 2uL);
length = mp_count_bits(&Np1z);
for (i = length - 2; i >= 0; i--) {
/*
* temp = (sz*(a*sz+2*tz))%N;
* tz = ((tz-sz)*(tz+sz))%N;
* sz = temp;
*/
if ((e = mp_mul_2(&tz, &T2z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
/* a = 0 at about 50% of the cases (non-square and odd input) */
if (a != 0) {
if ((e = mp_mul_d(&sz, (mp_digit)a, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_add(&T1z, &T2z, &T2z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
}
if ((e = mp_mul(&T2z, &sz, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_sub(&tz, &sz, &T2z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_add(&sz, &tz, &sz)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_mul(&sz, &T2z, &tz)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_mod(&tz, N, &tz)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_mod(&T1z, N, &sz)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((isset = mp_get_bit(&Np1z, i)) == MP_VAL) {
e = isset;
goto LBL_FU_ERR;
}
if (isset == MP_YES) {
/*
* temp = (a+2) * sz + tz
* tz = 2 * tz - sz
* sz = temp
*/
if (a == 0) {
if ((e = mp_mul_2(&sz, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
} else {
if ((e = mp_mul_d(&sz, (mp_digit)ap2, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
}
if ((e = mp_add(&T1z, &tz, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_mul_2(&tz, &T2z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_sub(&T2z, &sz, &tz)) != MP_OKAY) {
goto LBL_FU_ERR;
}
mp_exch(&sz, &T1z);
}
}
if ((e = mp_set_long(&T1z, (unsigned long)((2 * a) + 5))) != MP_OKAY) {
goto LBL_FU_ERR;
}
if ((e = mp_mod(&T1z, N, &T1z)) != MP_OKAY) {
goto LBL_FU_ERR;
}
if (MP_IS_ZERO(&sz) && (mp_cmp(&tz, &T1z) == MP_EQ)) {
*result = MP_YES;
goto LBL_FU_ERR;
}
LBL_FU_ERR:
mp_clear_multi(&tz, &sz, &Np1z, &T2z, &T1z, NULL);
return e;
}
#endif
#endif

View file

@ -0,0 +1,34 @@
#include "tommath_private.h"
#ifdef BN_MP_PRIME_IS_DIVISIBLE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* determines if an integers is divisible by one
* of the first PRIME_SIZE primes or not
*
* sets result to 0 if not, 1 if yes
*/
int mp_prime_is_divisible(const mp_int *a, int *result)
{
int err, ix;
mp_digit res;
/* default to not */
*result = MP_NO;
for (ix = 0; ix < PRIME_SIZE; ix++) {
/* what is a mod LBL_prime_tab[ix] */
if ((err = mp_mod_d(a, ltm_prime_tab[ix], &res)) != MP_OKAY) {
return err;
}
/* is the residue zero? */
if (res == 0u) {
*result = MP_YES;
return MP_OKAY;
}
}
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,356 @@
#include "tommath_private.h"
#ifdef BN_MP_PRIME_IS_PRIME_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* portable integer log of two with small footprint */
static unsigned int s_floor_ilog2(int value)
{
unsigned int r = 0;
while ((value >>= 1) != 0) {
r++;
}
return r;
}
int mp_prime_is_prime(const mp_int *a, int t, int *result)
{
mp_int b;
int ix, err, res, p_max = 0, size_a, len;
unsigned int fips_rand, mask;
/* default to no */
*result = MP_NO;
/* valid value of t? */
if (t > PRIME_SIZE) {
return MP_VAL;
}
/* Some shortcuts */
/* N > 3 */
if (a->used == 1) {
if ((a->dp[0] == 0u) || (a->dp[0] == 1u)) {
*result = 0;
return MP_OKAY;
}
if (a->dp[0] == 2u) {
*result = 1;
return MP_OKAY;
}
}
/* N must be odd */
if (MP_IS_EVEN(a)) {
return MP_OKAY;
}
/* N is not a perfect square: floor(sqrt(N))^2 != N */
if ((err = mp_is_square(a, &res)) != MP_OKAY) {
return err;
}
if (res != 0) {
return MP_OKAY;
}
/* is the input equal to one of the primes in the table? */
for (ix = 0; ix < PRIME_SIZE; ix++) {
if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) {
*result = MP_YES;
return MP_OKAY;
}
}
#ifdef MP_8BIT
/* The search in the loop above was exhaustive in this case */
if ((a->used == 1) && (PRIME_SIZE >= 31)) {
return MP_OKAY;
}
#endif
/* first perform trial division */
if ((err = mp_prime_is_divisible(a, &res)) != MP_OKAY) {
return err;
}
/* return if it was trivially divisible */
if (res == MP_YES) {
return MP_OKAY;
}
/*
Run the Miller-Rabin test with base 2 for the BPSW test.
*/
if ((err = mp_init_set(&b, 2uL)) != MP_OKAY) {
return err;
}
if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
goto LBL_B;
}
if (res == MP_NO) {
goto LBL_B;
}
/*
Rumours have it that Mathematica does a second M-R test with base 3.
Other rumours have it that their strong L-S test is slightly different.
It does not hurt, though, beside a bit of extra runtime.
*/
b.dp[0]++;
if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
goto LBL_B;
}
if (res == MP_NO) {
goto LBL_B;
}
/*
* Both, the Frobenius-Underwood test and the the Lucas-Selfridge test are quite
* slow so if speed is an issue, define LTM_USE_FIPS_ONLY to use M-R tests with
* bases 2, 3 and t random bases.
*/
#ifndef LTM_USE_FIPS_ONLY
if (t >= 0) {
/*
* Use a Frobenius-Underwood test instead of the Lucas-Selfridge test for
* MP_8BIT (It is unknown if the Lucas-Selfridge test works with 16-bit
* integers but the necesssary analysis is on the todo-list).
*/
#if defined (MP_8BIT) || defined (LTM_USE_FROBENIUS_TEST)
err = mp_prime_frobenius_underwood(a, &res);
if ((err != MP_OKAY) && (err != MP_ITER)) {
goto LBL_B;
}
if (res == MP_NO) {
goto LBL_B;
}
#else
if ((err = mp_prime_strong_lucas_selfridge(a, &res)) != MP_OKAY) {
goto LBL_B;
}
if (res == MP_NO) {
goto LBL_B;
}
#endif
}
#endif
/* run at least one Miller-Rabin test with a random base */
if (t == 0) {
t = 1;
}
/*
abs(t) extra rounds of M-R to extend the range of primes it can find if t < 0.
Only recommended if the input range is known to be < 3317044064679887385961981
It uses the bases for a deterministic M-R test if input < 3317044064679887385961981
The caller has to check the size.
Not for cryptographic use because with known bases strong M-R pseudoprimes can
be constructed. Use at least one M-R test with a random base (t >= 1).
The 1119 bit large number
80383745745363949125707961434194210813883768828755814583748891752229742737653\
33652186502336163960045457915042023603208766569966760987284043965408232928738\
79185086916685732826776177102938969773947016708230428687109997439976544144845\
34115587245063340927902227529622941498423068816854043264575340183297861112989\
60644845216191652872597534901
has been constructed by F. Arnault (F. Arnault, "Rabin-Miller primality test:
composite numbers which pass it.", Mathematics of Computation, 1995, 64. Jg.,
Nr. 209, S. 355-361), is a semiprime with the two factors
40095821663949960541830645208454685300518816604113250877450620473800321707011\
96242716223191597219733582163165085358166969145233813917169287527980445796800\
452592031836601
20047910831974980270915322604227342650259408302056625438725310236900160853505\
98121358111595798609866791081582542679083484572616906958584643763990222898400\
226296015918301
and it is a strong pseudoprime to all forty-six prime M-R bases up to 200
It does not fail the strong Bailley-PSP test as implemented here, it is just
given as an example, if not the reason to use the BPSW-test instead of M-R-tests
with a sequence of primes 2...n.
*/
if (t < 0) {
t = -t;
/*
Sorenson, Jonathan; Webster, Jonathan (2015).
"Strong Pseudoprimes to Twelve Prime Bases".
*/
/* 0x437ae92817f9fc85b7e5 = 318665857834031151167461 */
if ((err = mp_read_radix(&b, "437ae92817f9fc85b7e5", 16)) != MP_OKAY) {
goto LBL_B;
}
if (mp_cmp(a, &b) == MP_LT) {
p_max = 12;
} else {
/* 0x2be6951adc5b22410a5fd = 3317044064679887385961981 */
if ((err = mp_read_radix(&b, "2be6951adc5b22410a5fd", 16)) != MP_OKAY) {
goto LBL_B;
}
if (mp_cmp(a, &b) == MP_LT) {
p_max = 13;
} else {
err = MP_VAL;
goto LBL_B;
}
}
/* for compatibility with the current API (well, compatible within a sign's width) */
if (p_max < t) {
p_max = t;
}
if (p_max > PRIME_SIZE) {
err = MP_VAL;
goto LBL_B;
}
/* we did bases 2 and 3 already, skip them */
for (ix = 2; ix < p_max; ix++) {
mp_set(&b, ltm_prime_tab[ix]);
if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
goto LBL_B;
}
if (res == MP_NO) {
goto LBL_B;
}
}
}
/*
Do "t" M-R tests with random bases between 3 and "a".
See Fips 186.4 p. 126ff
*/
else if (t > 0) {
/*
* The mp_digit's have a defined bit-size but the size of the
* array a.dp is a simple 'int' and this library can not assume full
* compliance to the current C-standard (ISO/IEC 9899:2011) because
* it gets used for small embeded processors, too. Some of those MCUs
* have compilers that one cannot call standard compliant by any means.
* Hence the ugly type-fiddling in the following code.
*/
size_a = mp_count_bits(a);
mask = (1u << s_floor_ilog2(size_a)) - 1u;
/*
Assuming the General Rieman hypothesis (never thought to write that in a
comment) the upper bound can be lowered to 2*(log a)^2.
E. Bach, "Explicit bounds for primality testing and related problems,"
Math. Comp. 55 (1990), 355-380.
size_a = (size_a/10) * 7;
len = 2 * (size_a * size_a);
E.g.: a number of size 2^2048 would be reduced to the upper limit
floor(2048/10)*7 = 1428
2 * 1428^2 = 4078368
(would have been ~4030331.9962 with floats and natural log instead)
That number is smaller than 2^28, the default bit-size of mp_digit.
*/
/*
How many tests, you might ask? Dana Jacobsen of Math::Prime::Util fame
does exactly 1. In words: one. Look at the end of _GMP_is_prime() in
Math-Prime-Util-GMP-0.50/primality.c if you do not believe it.
The function mp_rand() goes to some length to use a cryptographically
good PRNG. That also means that the chance to always get the same base
in the loop is non-zero, although very low.
If the BPSW test and/or the addtional Frobenious test have been
performed instead of just the Miller-Rabin test with the bases 2 and 3,
a single extra test should suffice, so such a very unlikely event
will not do much harm.
To preemptivly answer the dangling question: no, a witness does not
need to be prime.
*/
for (ix = 0; ix < t; ix++) {
/* mp_rand() guarantees the first digit to be non-zero */
if ((err = mp_rand(&b, 1)) != MP_OKAY) {
goto LBL_B;
}
/*
* Reduce digit before casting because mp_digit might be bigger than
* an unsigned int and "mask" on the other side is most probably not.
*/
fips_rand = (unsigned int)(b.dp[0] & (mp_digit) mask);
#ifdef MP_8BIT
/*
* One 8-bit digit is too small, so concatenate two if the size of
* unsigned int allows for it.
*/
if (((sizeof(unsigned int) * CHAR_BIT)/2) >= (sizeof(mp_digit) * CHAR_BIT)) {
if ((err = mp_rand(&b, 1)) != MP_OKAY) {
goto LBL_B;
}
fips_rand <<= CHAR_BIT * sizeof(mp_digit);
fips_rand |= (unsigned int) b.dp[0];
fips_rand &= mask;
}
#endif
if (fips_rand > (unsigned int)(INT_MAX - MP_DIGIT_BIT)) {
len = INT_MAX / MP_DIGIT_BIT;
} else {
len = (((int)fips_rand + MP_DIGIT_BIT) / MP_DIGIT_BIT);
}
/* Unlikely. */
if (len < 0) {
ix--;
continue;
}
/*
* As mentioned above, one 8-bit digit is too small and
* although it can only happen in the unlikely case that
* an "unsigned int" is smaller than 16 bit a simple test
* is cheap and the correction even cheaper.
*/
#ifdef MP_8BIT
/* All "a" < 2^8 have been caught before */
if (len == 1) {
len++;
}
#endif
if ((err = mp_rand(&b, len)) != MP_OKAY) {
goto LBL_B;
}
/*
* That number might got too big and the witness has to be
* smaller than "a"
*/
len = mp_count_bits(&b);
if (len >= size_a) {
len = (len - size_a) + 1;
if ((err = mp_div_2d(&b, len, &b, NULL)) != MP_OKAY) {
goto LBL_B;
}
}
/* Although the chance for b <= 3 is miniscule, try again. */
if (mp_cmp_d(&b, 3uL) != MP_GT) {
ix--;
continue;
}
if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
goto LBL_B;
}
if (res == MP_NO) {
goto LBL_B;
}
}
}
/* passed the test */
*result = MP_YES;
LBL_B:
mp_clear(&b);
return err;
}
#endif

View file

@ -0,0 +1,90 @@
#include "tommath_private.h"
#ifdef BN_MP_PRIME_MILLER_RABIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* Miller-Rabin test of "a" to the base of "b" as described in
* HAC pp. 139 Algorithm 4.24
*
* Sets result to 0 if definitely composite or 1 if probably prime.
* Randomly the chance of error is no more than 1/4 and often
* very much lower.
*/
int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result)
{
mp_int n1, y, r;
int s, j, err;
/* default */
*result = MP_NO;
/* ensure b > 1 */
if (mp_cmp_d(b, 1uL) != MP_GT) {
return MP_VAL;
}
/* get n1 = a - 1 */
if ((err = mp_init_copy(&n1, a)) != MP_OKAY) {
return err;
}
if ((err = mp_sub_d(&n1, 1uL, &n1)) != MP_OKAY) {
goto LBL_N1;
}
/* set 2**s * r = n1 */
if ((err = mp_init_copy(&r, &n1)) != MP_OKAY) {
goto LBL_N1;
}
/* count the number of least significant bits
* which are zero
*/
s = mp_cnt_lsb(&r);
/* now divide n - 1 by 2**s */
if ((err = mp_div_2d(&r, s, &r, NULL)) != MP_OKAY) {
goto LBL_R;
}
/* compute y = b**r mod a */
if ((err = mp_init(&y)) != MP_OKAY) {
goto LBL_R;
}
if ((err = mp_exptmod(b, &r, a, &y)) != MP_OKAY) {
goto LBL_Y;
}
/* if y != 1 and y != n1 do */
if ((mp_cmp_d(&y, 1uL) != MP_EQ) && (mp_cmp(&y, &n1) != MP_EQ)) {
j = 1;
/* while j <= s-1 and y != n1 */
while ((j <= (s - 1)) && (mp_cmp(&y, &n1) != MP_EQ)) {
if ((err = mp_sqrmod(&y, a, &y)) != MP_OKAY) {
goto LBL_Y;
}
/* if y == 1 then composite */
if (mp_cmp_d(&y, 1uL) == MP_EQ) {
goto LBL_Y;
}
++j;
}
/* if y != n1 then composite */
if (mp_cmp(&y, &n1) != MP_EQ) {
goto LBL_Y;
}
}
/* probably prime now */
*result = MP_YES;
LBL_Y:
mp_clear(&y);
LBL_R:
mp_clear(&r);
LBL_N1:
mp_clear(&n1);
return err;
}
#endif

View file

@ -0,0 +1,143 @@
#include "tommath_private.h"
#ifdef BN_MP_PRIME_NEXT_PRIME_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* finds the next prime after the number "a" using "t" trials
* of Miller-Rabin.
*
* bbs_style = 1 means the prime must be congruent to 3 mod 4
*/
int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
{
int err, res = MP_NO, x, y;
mp_digit res_tab[PRIME_SIZE], step, kstep;
mp_int b;
/* force positive */
a->sign = MP_ZPOS;
/* simple algo if a is less than the largest prime in the table */
if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) {
/* find which prime it is bigger than */
for (x = PRIME_SIZE - 2; x >= 0; x--) {
if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) {
if (bbs_style == 1) {
/* ok we found a prime smaller or
* equal [so the next is larger]
*
* however, the prime must be
* congruent to 3 mod 4
*/
if ((ltm_prime_tab[x + 1] & 3u) != 3u) {
/* scan upwards for a prime congruent to 3 mod 4 */
for (y = x + 1; y < PRIME_SIZE; y++) {
if ((ltm_prime_tab[y] & 3u) == 3u) {
mp_set(a, ltm_prime_tab[y]);
return MP_OKAY;
}
}
}
} else {
mp_set(a, ltm_prime_tab[x + 1]);
return MP_OKAY;
}
}
}
/* at this point a maybe 1 */
if (mp_cmp_d(a, 1uL) == MP_EQ) {
mp_set(a, 2uL);
return MP_OKAY;
}
/* fall through to the sieve */
}
/* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */
if (bbs_style == 1) {
kstep = 4;
} else {
kstep = 2;
}
/* at this point we will use a combination of a sieve and Miller-Rabin */
if (bbs_style == 1) {
/* if a mod 4 != 3 subtract the correct value to make it so */
if ((a->dp[0] & 3u) != 3u) {
if ((err = mp_sub_d(a, (a->dp[0] & 3u) + 1u, a)) != MP_OKAY) {
return err;
};
}
} else {
if (MP_IS_EVEN(a)) {
/* force odd */
if ((err = mp_sub_d(a, 1uL, a)) != MP_OKAY) {
return err;
}
}
}
/* generate the restable */
for (x = 1; x < PRIME_SIZE; x++) {
if ((err = mp_mod_d(a, ltm_prime_tab[x], res_tab + x)) != MP_OKAY) {
return err;
}
}
/* init temp used for Miller-Rabin Testing */
if ((err = mp_init(&b)) != MP_OKAY) {
return err;
}
for (;;) {
/* skip to the next non-trivially divisible candidate */
step = 0;
do {
/* y == 1 if any residue was zero [e.g. cannot be prime] */
y = 0;
/* increase step to next candidate */
step += kstep;
/* compute the new residue without using division */
for (x = 1; x < PRIME_SIZE; x++) {
/* add the step to each residue */
res_tab[x] += kstep;
/* subtract the modulus [instead of using division] */
if (res_tab[x] >= ltm_prime_tab[x]) {
res_tab[x] -= ltm_prime_tab[x];
}
/* set flag if zero */
if (res_tab[x] == 0u) {
y = 1;
}
}
} while ((y == 1) && (step < (((mp_digit)1 << MP_DIGIT_BIT) - kstep)));
/* add the step */
if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
goto LBL_ERR;
}
/* if didn't pass sieve and step == MP_MAX then skip test */
if ((y == 1) && (step >= (((mp_digit)1 << MP_DIGIT_BIT) - kstep))) {
continue;
}
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
goto LBL_ERR;
}
if (res == MP_YES) {
break;
}
}
err = MP_OKAY;
LBL_ERR:
mp_clear(&b);
return err;
}
#endif

View file

@ -0,0 +1,42 @@
#include "tommath_private.h"
#ifdef BN_MP_PRIME_RABIN_MILLER_TRIALS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
static const struct {
int k, t;
} sizes[] = {
{ 80, -1 }, /* Use deterministic algorithm for size <= 80 bits */
{ 81, 39 },
{ 96, 37 },
{ 128, 32 },
{ 160, 27 },
{ 192, 21 },
{ 256, 16 },
{ 384, 10 },
{ 512, 7 },
{ 640, 6 },
{ 768, 5 },
{ 896, 4 },
{ 1024, 4 },
{ 2048, 2 },
{ 4096, 1 },
};
/* returns # of RM trials required for a given bit size and max. error of 2^(-96)*/
int mp_prime_rabin_miller_trials(int size)
{
int x;
for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) {
if (sizes[x].k == size) {
return sizes[x].t;
} else if (sizes[x].k > size) {
return (x == 0) ? sizes[0].t : sizes[x - 1].t;
}
}
return sizes[x-1].t + 1;
}
#endif

View file

@ -0,0 +1,122 @@
#include "tommath_private.h"
#ifdef BN_MP_PRIME_RANDOM_EX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* makes a truly random prime of a given size (bits),
*
* Flags are as follows:
*
* LTM_PRIME_BBS - make prime congruent to 3 mod 4
* LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
* LTM_PRIME_2MSB_ON - make the 2nd highest bit one
*
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
* so it can be NULL
*
*/
/* This is possibly the mother of all prime generation functions, muahahahahaha! */
int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat)
{
unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb;
int res, err, bsize, maskOR_msb_offset;
/* sanity check the input */
if ((size <= 1) || (t <= 0)) {
return MP_VAL;
}
/* LTM_PRIME_SAFE implies LTM_PRIME_BBS */
if ((flags & LTM_PRIME_SAFE) != 0) {
flags |= LTM_PRIME_BBS;
}
/* calc the byte size */
bsize = (size>>3) + ((size&7)?1:0);
/* we need a buffer of bsize bytes */
tmp = (unsigned char *) MP_MALLOC((size_t)bsize);
if (tmp == NULL) {
return MP_MEM;
}
/* calc the maskAND value for the MSbyte*/
maskAND = ((size&7) == 0) ? 0xFF : (unsigned char)(0xFF >> (8 - (size & 7)));
/* calc the maskOR_msb */
maskOR_msb = 0;
maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0;
if ((flags & LTM_PRIME_2MSB_ON) != 0) {
maskOR_msb |= (unsigned char)(0x80 >> ((9 - size) & 7));
}
/* get the maskOR_lsb */
maskOR_lsb = 1;
if ((flags & LTM_PRIME_BBS) != 0) {
maskOR_lsb |= 3;
}
do {
/* read the bytes */
if (cb(tmp, bsize, dat) != bsize) {
err = MP_VAL;
goto error;
}
/* work over the MSbyte */
tmp[0] &= maskAND;
tmp[0] |= (unsigned char)(1 << ((size - 1) & 7));
/* mix in the maskORs */
tmp[maskOR_msb_offset] |= maskOR_msb;
tmp[bsize-1] |= maskOR_lsb;
/* read it in */
if ((err = mp_read_unsigned_bin(a, tmp, bsize)) != MP_OKAY) {
goto error;
}
/* is it prime? */
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
goto error;
}
if (res == MP_NO) {
continue;
}
if ((flags & LTM_PRIME_SAFE) != 0) {
/* see if (a-1)/2 is prime */
if ((err = mp_sub_d(a, 1uL, a)) != MP_OKAY) {
goto error;
}
if ((err = mp_div_2(a, a)) != MP_OKAY) {
goto error;
}
/* is it prime? */
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
goto error;
}
}
} while (res == MP_NO);
if ((flags & LTM_PRIME_SAFE) != 0) {
/* restore a to the original value */
if ((err = mp_mul_2(a, a)) != MP_OKAY) {
goto error;
}
if ((err = mp_add_d(a, 1uL, a)) != MP_OKAY) {
goto error;
}
}
err = MP_OKAY;
error:
MP_FREE(tmp, bsize);
return err;
}
#endif

View file

@ -0,0 +1,398 @@
#include "tommath_private.h"
#ifdef BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/*
* See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details
*/
#ifndef LTM_USE_FIPS_ONLY
/*
* 8-bit is just too small. You can try the Frobenius test
* but that frobenius test can fail, too, for the same reason.
*/
#ifndef MP_8BIT
/*
* multiply bigint a with int d and put the result in c
* Like mp_mul_d() but with a signed long as the small input
*/
static int s_mp_mul_si(const mp_int *a, long d, mp_int *c)
{
mp_int t;
int err, neg = 0;
if ((err = mp_init(&t)) != MP_OKAY) {
return err;
}
if (d < 0) {
neg = 1;
d = -d;
}
/*
* mp_digit might be smaller than a long, which excludes
* the use of mp_mul_d() here.
*/
if ((err = mp_set_long(&t, (unsigned long) d)) != MP_OKAY) {
goto LBL_MPMULSI_ERR;
}
if ((err = mp_mul(a, &t, c)) != MP_OKAY) {
goto LBL_MPMULSI_ERR;
}
if (neg == 1) {
c->sign = (a->sign == MP_NEG) ? MP_ZPOS: MP_NEG;
}
LBL_MPMULSI_ERR:
mp_clear(&t);
return err;
}
/*
Strong Lucas-Selfridge test.
returns MP_YES if it is a strong L-S prime, MP_NO if it is composite
Code ported from Thomas Ray Nicely's implementation of the BPSW test
at http://www.trnicely.net/misc/bpsw.html
Freeware copyright (C) 2016 Thomas R. Nicely <http://www.trnicely.net>.
Released into the public domain by the author, who disclaims any legal
liability arising from its use
The multi-line comments are made by Thomas R. Nicely and are copied verbatim.
Additional comments marked "CZ" (without the quotes) are by the code-portist.
(If that name sounds familiar, he is the guy who found the fdiv bug in the
Pentium (P5x, I think) Intel processor)
*/
int mp_prime_strong_lucas_selfridge(const mp_int *a, int *result)
{
/* CZ TODO: choose better variable names! */
mp_int Dz, gcd, Np1, Uz, Vz, U2mz, V2mz, Qmz, Q2mz, Qkdz, T1z, T2z, T3z, T4z, Q2kdz;
/* CZ TODO: Some of them need the full 32 bit, hence the (temporary) exclusion of MP_8BIT */
int32_t D, Ds, J, sign, P, Q, r, s, u, Nbits;
int e;
int isset, oddness;
*result = MP_NO;
/*
Find the first element D in the sequence {5, -7, 9, -11, 13, ...}
such that Jacobi(D,N) = -1 (Selfridge's algorithm). Theory
indicates that, if N is not a perfect square, D will "nearly
always" be "small." Just in case, an overflow trap for D is
included.
*/
if ((e = mp_init_multi(&Dz, &gcd, &Np1, &Uz, &Vz, &U2mz, &V2mz, &Qmz, &Q2mz, &Qkdz, &T1z, &T2z, &T3z, &T4z, &Q2kdz,
NULL)) != MP_OKAY) {
return e;
}
D = 5;
sign = 1;
for (;;) {
Ds = sign * D;
sign = -sign;
if ((e = mp_set_long(&Dz, (unsigned long)D)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_gcd(a, &Dz, &gcd)) != MP_OKAY) {
goto LBL_LS_ERR;
}
/* if 1 < GCD < N then N is composite with factor "D", and
Jacobi(D,N) is technically undefined (but often returned
as zero). */
if ((mp_cmp_d(&gcd, 1uL) == MP_GT) && (mp_cmp(&gcd, a) == MP_LT)) {
goto LBL_LS_ERR;
}
if (Ds < 0) {
Dz.sign = MP_NEG;
}
if ((e = mp_kronecker(&Dz, a, &J)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if (J == -1) {
break;
}
D += 2;
if (D > (INT_MAX - 2)) {
e = MP_VAL;
goto LBL_LS_ERR;
}
}
P = 1; /* Selfridge's choice */
Q = (1 - Ds) / 4; /* Required so D = P*P - 4*Q */
/* NOTE: The conditions (a) N does not divide Q, and
(b) D is square-free or not a perfect square, are included by
some authors; e.g., "Prime numbers and computer methods for
factorization," Hans Riesel (2nd ed., 1994, Birkhauser, Boston),
p. 130. For this particular application of Lucas sequences,
these conditions were found to be immaterial. */
/* Now calculate N - Jacobi(D,N) = N + 1 (even), and calculate the
odd positive integer d and positive integer s for which
N + 1 = 2^s*d (similar to the step for N - 1 in Miller's test).
The strong Lucas-Selfridge test then returns N as a strong
Lucas probable prime (slprp) if any of the following
conditions is met: U_d=0, V_d=0, V_2d=0, V_4d=0, V_8d=0,
V_16d=0, ..., etc., ending with V_{2^(s-1)*d}=V_{(N+1)/2}=0
(all equalities mod N). Thus d is the highest index of U that
must be computed (since V_2m is independent of U), compared
to U_{N+1} for the standard Lucas-Selfridge test; and no
index of V beyond (N+1)/2 is required, just as in the
standard Lucas-Selfridge test. However, the quantity Q^d must
be computed for use (if necessary) in the latter stages of
the test. The result is that the strong Lucas-Selfridge test
has a running time only slightly greater (order of 10 %) than
that of the standard Lucas-Selfridge test, while producing
only (roughly) 30 % as many pseudoprimes (and every strong
Lucas pseudoprime is also a standard Lucas pseudoprime). Thus
the evidence indicates that the strong Lucas-Selfridge test is
more effective than the standard Lucas-Selfridge test, and a
Baillie-PSW test based on the strong Lucas-Selfridge test
should be more reliable. */
if ((e = mp_add_d(a, 1uL, &Np1)) != MP_OKAY) {
goto LBL_LS_ERR;
}
s = mp_cnt_lsb(&Np1);
/* CZ
* This should round towards zero because
* Thomas R. Nicely used GMP's mpz_tdiv_q_2exp()
* and mp_div_2d() is equivalent. Additionally:
* dividing an even number by two does not produce
* any leftovers.
*/
if ((e = mp_div_2d(&Np1, s, &Dz, NULL)) != MP_OKAY) {
goto LBL_LS_ERR;
}
/* We must now compute U_d and V_d. Since d is odd, the accumulated
values U and V are initialized to U_1 and V_1 (if the target
index were even, U and V would be initialized instead to U_0=0
and V_0=2). The values of U_2m and V_2m are also initialized to
U_1 and V_1; the FOR loop calculates in succession U_2 and V_2,
U_4 and V_4, U_8 and V_8, etc. If the corresponding bits
(1, 2, 3, ...) of t are on (the zero bit having been accounted
for in the initialization of U and V), these values are then
combined with the previous totals for U and V, using the
composition formulas for addition of indices. */
mp_set(&Uz, 1uL); /* U=U_1 */
mp_set(&Vz, (mp_digit)P); /* V=V_1 */
mp_set(&U2mz, 1uL); /* U_1 */
mp_set(&V2mz, (mp_digit)P); /* V_1 */
if (Q < 0) {
Q = -Q;
if ((e = mp_set_long(&Qmz, (unsigned long)Q)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
/* Initializes calculation of Q^d */
if ((e = mp_set_long(&Qkdz, (unsigned long)Q)) != MP_OKAY) {
goto LBL_LS_ERR;
}
Qmz.sign = MP_NEG;
Q2mz.sign = MP_NEG;
Qkdz.sign = MP_NEG;
Q = -Q;
} else {
if ((e = mp_set_long(&Qmz, (unsigned long)Q)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
/* Initializes calculation of Q^d */
if ((e = mp_set_long(&Qkdz, (unsigned long)Q)) != MP_OKAY) {
goto LBL_LS_ERR;
}
}
Nbits = mp_count_bits(&Dz);
for (u = 1; u < Nbits; u++) { /* zero bit off, already accounted for */
/* Formulas for doubling of indices (carried out mod N). Note that
* the indices denoted as "2m" are actually powers of 2, specifically
* 2^(ul-1) beginning each loop and 2^ul ending each loop.
*
* U_2m = U_m*V_m
* V_2m = V_m*V_m - 2*Q^m
*/
if ((e = mp_mul(&U2mz, &V2mz, &U2mz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mod(&U2mz, a, &U2mz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_sqr(&V2mz, &V2mz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_sub(&V2mz, &Q2mz, &V2mz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mod(&V2mz, a, &V2mz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
/* Must calculate powers of Q for use in V_2m, also for Q^d later */
if ((e = mp_sqr(&Qmz, &Qmz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
/* prevents overflow */ /* CZ still necessary without a fixed prealloc'd mem.? */
if ((e = mp_mod(&Qmz, a, &Qmz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((isset = mp_get_bit(&Dz, u)) == MP_VAL) {
e = isset;
goto LBL_LS_ERR;
}
if (isset == MP_YES) {
/* Formulas for addition of indices (carried out mod N);
*
* U_(m+n) = (U_m*V_n + U_n*V_m)/2
* V_(m+n) = (V_m*V_n + D*U_m*U_n)/2
*
* Be careful with division by 2 (mod N)!
*/
if ((e = mp_mul(&U2mz, &Vz, &T1z)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mul(&Uz, &V2mz, &T2z)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mul(&V2mz, &Vz, &T3z)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mul(&U2mz, &Uz, &T4z)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = s_mp_mul_si(&T4z, (long)Ds, &T4z)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_add(&T1z, &T2z, &Uz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if (MP_IS_ODD(&Uz)) {
if ((e = mp_add(&Uz, a, &Uz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
}
/* CZ
* This should round towards negative infinity because
* Thomas R. Nicely used GMP's mpz_fdiv_q_2exp().
* But mp_div_2() does not do so, it is truncating instead.
*/
oddness = MP_IS_ODD(&Uz) ? MP_YES : MP_NO;
if ((e = mp_div_2(&Uz, &Uz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((Uz.sign == MP_NEG) && (oddness != MP_NO)) {
if ((e = mp_sub_d(&Uz, 1uL, &Uz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
}
if ((e = mp_add(&T3z, &T4z, &Vz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if (MP_IS_ODD(&Vz)) {
if ((e = mp_add(&Vz, a, &Vz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
}
oddness = MP_IS_ODD(&Vz) ? MP_YES : MP_NO;
if ((e = mp_div_2(&Vz, &Vz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((Vz.sign == MP_NEG) && (oddness != MP_NO)) {
if ((e = mp_sub_d(&Vz, 1uL, &Vz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
}
if ((e = mp_mod(&Uz, a, &Uz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mod(&Vz, a, &Vz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
/* Calculating Q^d for later use */
if ((e = mp_mul(&Qkdz, &Qmz, &Qkdz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mod(&Qkdz, a, &Qkdz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
}
}
/* If U_d or V_d is congruent to 0 mod N, then N is a prime or a
strong Lucas pseudoprime. */
if (MP_IS_ZERO(&Uz) || MP_IS_ZERO(&Vz)) {
*result = MP_YES;
goto LBL_LS_ERR;
}
/* NOTE: Ribenboim ("The new book of prime number records," 3rd ed.,
1995/6) omits the condition V0 on p.142, but includes it on
p. 130. The condition is NECESSARY; otherwise the test will
return false negatives---e.g., the primes 29 and 2000029 will be
returned as composite. */
/* Otherwise, we must compute V_2d, V_4d, V_8d, ..., V_{2^(s-1)*d}
by repeated use of the formula V_2m = V_m*V_m - 2*Q^m. If any of
these are congruent to 0 mod N, then N is a prime or a strong
Lucas pseudoprime. */
/* Initialize 2*Q^(d*2^r) for V_2m */
if ((e = mp_mul_2(&Qkdz, &Q2kdz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
for (r = 1; r < s; r++) {
if ((e = mp_sqr(&Vz, &Vz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_sub(&Vz, &Q2kdz, &Vz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mod(&Vz, a, &Vz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if (MP_IS_ZERO(&Vz)) {
*result = MP_YES;
goto LBL_LS_ERR;
}
/* Calculate Q^{d*2^r} for next r (final iteration irrelevant). */
if (r < (s - 1)) {
if ((e = mp_sqr(&Qkdz, &Qkdz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mod(&Qkdz, a, &Qkdz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
if ((e = mp_mul_2(&Qkdz, &Q2kdz)) != MP_OKAY) {
goto LBL_LS_ERR;
}
}
}
LBL_LS_ERR:
mp_clear_multi(&Q2kdz, &T4z, &T3z, &T2z, &T1z, &Qkdz, &Q2mz, &Qmz, &V2mz, &U2mz, &Vz, &Uz, &Np1, &gcd, &Dz, NULL);
return e;
}
#endif
#endif
#endif

View file

@ -0,0 +1,62 @@
#include "tommath_private.h"
#ifdef BN_MP_RADIX_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* returns size of ASCII reprensentation */
int mp_radix_size(const mp_int *a, int radix, int *size)
{
int res, digs;
mp_int t;
mp_digit d;
*size = 0;
/* make sure the radix is in range */
if ((radix < 2) || (radix > 64)) {
return MP_VAL;
}
if (MP_IS_ZERO(a)) {
*size = 2;
return MP_OKAY;
}
/* special case for binary */
if (radix == 2) {
*size = mp_count_bits(a) + ((a->sign == MP_NEG) ? 1 : 0) + 1;
return MP_OKAY;
}
/* digs is the digit count */
digs = 0;
/* if it's negative add one for the sign */
if (a->sign == MP_NEG) {
++digs;
}
/* init a copy of the input */
if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
return res;
}
/* force temp to positive */
t.sign = MP_ZPOS;
/* fetch out all of the digits */
while (!MP_IS_ZERO(&t)) {
if ((res = mp_div_d(&t, (mp_digit)radix, &t, &d)) != MP_OKAY) {
mp_clear(&t);
return res;
}
++digs;
}
mp_clear(&t);
/* return digs + 1, the 1 is for the NULL byte that would be required. */
*size = digs + 1;
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,22 @@
#include "tommath_private.h"
#ifdef BN_MP_RADIX_SMAP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* chars used in radix conversions */
const char *const mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
const uint8_t mp_s_rmap_reverse[] = {
0xff, 0xff, 0xff, 0x3e, 0xff, 0xff, 0xff, 0x3f, /* ()*+,-./ */
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, /* 01234567 */
0x08, 0x09, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 89:;<=>? */
0xff, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, /* @ABCDEFG */
0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, /* HIJKLMNO */
0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, /* PQRSTUVW */
0x21, 0x22, 0x23, 0xff, 0xff, 0xff, 0xff, 0xff, /* XYZ[\]^_ */
0xff, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, /* `abcdefg */
0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, /* hijklmno */
0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, /* pqrstuvw */
0x3b, 0x3c, 0x3d, 0xff, 0xff, 0xff, 0xff, 0xff, /* xyz{|}~. */
};
const size_t mp_s_rmap_reverse_sz = sizeof(mp_s_rmap_reverse);
#endif

View file

@ -0,0 +1,209 @@
#include "tommath_private.h"
#ifdef BN_MP_RAND_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* First the OS-specific special cases
* - *BSD
* - Windows
*/
#if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
#define MP_ARC4RANDOM
#define MP_GEN_RANDOM_MAX 0xffffffffu
#define MP_GEN_RANDOM_SHIFT 32
static int s_read_arc4random(mp_digit *p)
{
mp_digit d = 0, msk = 0;
do {
d <<= MP_GEN_RANDOM_SHIFT;
d |= ((mp_digit) arc4random());
msk <<= MP_GEN_RANDOM_SHIFT;
msk |= (MP_MASK & MP_GEN_RANDOM_MAX);
} while ((MP_MASK & msk) != MP_MASK);
*p = d;
return MP_OKAY;
}
#endif
#if defined(_WIN32) || defined(_WIN32_WCE)
#define MP_WIN_CSP
#ifndef _WIN32_WINNT
#define _WIN32_WINNT 0x0400
#endif
#ifdef _WIN32_WCE
#define UNDER_CE
#define ARM
#endif
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <wincrypt.h>
static HCRYPTPROV hProv = 0;
static void s_cleanup_win_csp(void)
{
CryptReleaseContext(hProv, 0);
hProv = 0;
}
static int s_read_win_csp(mp_digit *p)
{
int ret = -1;
if (hProv == 0) {
if (!CryptAcquireContext(&hProv, NULL, MS_DEF_PROV, PROV_RSA_FULL,
(CRYPT_VERIFYCONTEXT | CRYPT_MACHINE_KEYSET)) &&
!CryptAcquireContext(&hProv, NULL, MS_DEF_PROV, PROV_RSA_FULL,
CRYPT_VERIFYCONTEXT | CRYPT_MACHINE_KEYSET | CRYPT_NEWKEYSET)) {
hProv = 0;
return ret;
}
atexit(s_cleanup_win_csp);
}
if (CryptGenRandom(hProv, sizeof(*p), (void *)p) == TRUE) {
ret = MP_OKAY;
}
return ret;
}
#endif /* WIN32 */
#if !defined(MP_WIN_CSP) && defined(__linux__) && defined(__GLIBC_PREREQ)
#if __GLIBC_PREREQ(2, 25)
#define MP_GETRANDOM
#include <sys/random.h>
#include <errno.h>
static int s_read_getrandom(mp_digit *p)
{
ssize_t ret;
do {
ret = getrandom(p, sizeof(*p), 0);
} while ((ret == -1) && (errno == EINTR));
if (ret == sizeof(*p)) return MP_OKAY;
return -1;
}
#endif
#endif
/* We assume all platforms besides windows provide "/dev/urandom".
* In case yours doesn't, define MP_NO_DEV_URANDOM at compile-time.
*/
#if !defined(MP_WIN_CSP) && !defined(MP_NO_DEV_URANDOM)
#ifndef MP_DEV_URANDOM
#define MP_DEV_URANDOM "/dev/urandom"
#endif
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
static int s_read_dev_urandom(mp_digit *p)
{
ssize_t r;
int fd;
do {
fd = open(MP_DEV_URANDOM, O_RDONLY);
} while ((fd == -1) && (errno == EINTR));
if (fd == -1) return -1;
do {
r = read(fd, p, sizeof(*p));
} while ((r == -1) && (errno == EINTR));
close(fd);
if (r != sizeof(*p)) return -1;
return MP_OKAY;
}
#endif
#if defined(MP_PRNG_ENABLE_LTM_RNG)
unsigned long (*ltm_rng)(unsigned char *out, unsigned long outlen, void (*callback)(void));
void (*ltm_rng_callback)(void);
static int s_read_ltm_rng(mp_digit *p)
{
unsigned long ret;
if (ltm_rng == NULL) return -1;
ret = ltm_rng((void *)p, sizeof(*p), ltm_rng_callback);
if (ret != sizeof(*p)) return -1;
return MP_OKAY;
}
#endif
static int s_rand_digit(mp_digit *p)
{
int ret = -1;
#if defined(MP_ARC4RANDOM)
ret = s_read_arc4random(p);
if (ret == MP_OKAY) return ret;
#endif
#if defined(MP_WIN_CSP)
ret = s_read_win_csp(p);
if (ret == MP_OKAY) return ret;
#else
#if defined(MP_GETRANDOM)
ret = s_read_getrandom(p);
if (ret == MP_OKAY) return ret;
#endif
#if defined(MP_DEV_URANDOM)
ret = s_read_dev_urandom(p);
if (ret == MP_OKAY) return ret;
#endif
#endif /* MP_WIN_CSP */
#if defined(MP_PRNG_ENABLE_LTM_RNG)
ret = s_read_ltm_rng(p);
if (ret == MP_OKAY) return ret;
#endif
return ret;
}
/* makes a pseudo-random int of a given size */
int mp_rand_digit(mp_digit *r)
{
int ret = s_rand_digit(r);
*r &= MP_MASK;
return ret;
}
int mp_rand(mp_int *a, int digits)
{
int res;
mp_digit d;
mp_zero(a);
if (digits <= 0) {
return MP_OKAY;
}
/* first place a random non-zero digit */
do {
if (mp_rand_digit(&d) != MP_OKAY) {
return MP_VAL;
}
} while (d == 0u);
if ((res = mp_add_d(a, d, a)) != MP_OKAY) {
return res;
}
while (--digits > 0) {
if ((res = mp_lshd(a, 1)) != MP_OKAY) {
return res;
}
if (mp_rand_digit(&d) != MP_OKAY) {
return MP_VAL;
}
if ((res = mp_add_d(a, d, a)) != MP_OKAY) {
return res;
}
}
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,77 @@
#include "tommath_private.h"
#ifdef BN_MP_READ_RADIX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#define MP_TOUPPER(c) ((((c) >= 'a') && ((c) <= 'z')) ? (((c) + 'A') - 'a') : (c))
/* read a string [ASCII] in a given radix */
int mp_read_radix(mp_int *a, const char *str, int radix)
{
int y, res, neg;
unsigned pos;
char ch;
/* zero the digit bignum */
mp_zero(a);
/* make sure the radix is ok */
if ((radix < 2) || (radix > 64)) {
return MP_VAL;
}
/* if the leading digit is a
* minus set the sign to negative.
*/
if (*str == '-') {
++str;
neg = MP_NEG;
} else {
neg = MP_ZPOS;
}
/* set the integer to the default of zero */
mp_zero(a);
/* process each digit of the string */
while (*str != '\0') {
/* if the radix <= 36 the conversion is case insensitive
* this allows numbers like 1AB and 1ab to represent the same value
* [e.g. in hex]
*/
ch = (radix <= 36) ? (char)MP_TOUPPER((int)*str) : *str;
pos = (unsigned)(ch - '(');
if (mp_s_rmap_reverse_sz < pos) {
break;
}
y = (int)mp_s_rmap_reverse[pos];
/* if the char was found in the map
* and is less than the given radix add it
* to the number, otherwise exit the loop.
*/
if ((y == 0xff) || (y >= radix)) {
break;
}
if ((res = mp_mul_d(a, (mp_digit)radix, a)) != MP_OKAY) {
return res;
}
if ((res = mp_add_d(a, (mp_digit)y, a)) != MP_OKAY) {
return res;
}
++str;
}
/* if an illegal character was found, fail. */
if (!((*str == '\0') || (*str == '\r') || (*str == '\n'))) {
mp_zero(a);
return MP_VAL;
}
/* set the sign only if a != 0 */
if (!MP_IS_ZERO(a)) {
a->sign = neg;
}
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,25 @@
#include "tommath_private.h"
#ifdef BN_MP_READ_SIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* read signed bin, big endian, first byte is 0==positive or 1==negative */
int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c)
{
int res;
/* read magnitude */
if ((res = mp_read_unsigned_bin(a, b + 1, c - 1)) != MP_OKAY) {
return res;
}
/* first byte is 0 for positive, non-zero for negative */
if (b[0] == (unsigned char)0) {
a->sign = MP_ZPOS;
} else {
a->sign = MP_NEG;
}
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,39 @@
#include "tommath_private.h"
#ifdef BN_MP_READ_UNSIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* reads a unsigned char array, assumes the msb is stored first [big endian] */
int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c)
{
int res;
/* make sure there are at least two digits */
if (a->alloc < 2) {
if ((res = mp_grow(a, 2)) != MP_OKAY) {
return res;
}
}
/* zero the int */
mp_zero(a);
/* read the bytes in */
while (c-- > 0) {
if ((res = mp_mul_2d(a, 8, a)) != MP_OKAY) {
return res;
}
#ifndef MP_8BIT
a->dp[0] |= *b++;
a->used += 1;
#else
a->dp[0] = (*b & MP_MASK);
a->dp[1] |= ((*b++ >> 7) & 1u);
a->used += 2;
#endif
}
mp_clamp(a);
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,84 @@
#include "tommath_private.h"
#ifdef BN_MP_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* reduces x mod m, assumes 0 < x < m**2, mu is
* precomputed via mp_reduce_setup.
* From HAC pp.604 Algorithm 14.42
*/
int mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu)
{
mp_int q;
int res, um = m->used;
/* q = x */
if ((res = mp_init_copy(&q, x)) != MP_OKAY) {
return res;
}
/* q1 = x / b**(k-1) */
mp_rshd(&q, um - 1);
/* according to HAC this optimization is ok */
if ((mp_digit)um > ((mp_digit)1 << (MP_DIGIT_BIT - 1))) {
if ((res = mp_mul(&q, mu, &q)) != MP_OKAY) {
goto CLEANUP;
}
} else {
#ifdef BN_S_MP_MUL_HIGH_DIGS_C
if ((res = s_mp_mul_high_digs(&q, mu, &q, um)) != MP_OKAY) {
goto CLEANUP;
}
#elif defined(BN_S_MP_MUL_HIGH_DIGS_FAST_C)
if ((res = s_mp_mul_high_digs_fast(&q, mu, &q, um)) != MP_OKAY) {
goto CLEANUP;
}
#else
{
res = MP_VAL;
goto CLEANUP;
}
#endif
}
/* q3 = q2 / b**(k+1) */
mp_rshd(&q, um + 1);
/* x = x mod b**(k+1), quick (no division) */
if ((res = mp_mod_2d(x, MP_DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
goto CLEANUP;
}
/* q = q * m mod b**(k+1), quick (no division) */
if ((res = s_mp_mul_digs(&q, m, &q, um + 1)) != MP_OKAY) {
goto CLEANUP;
}
/* x = x - q */
if ((res = mp_sub(x, &q, x)) != MP_OKAY) {
goto CLEANUP;
}
/* If x < 0, add b**(k+1) to it */
if (mp_cmp_d(x, 0uL) == MP_LT) {
mp_set(&q, 1uL);
if ((res = mp_lshd(&q, um + 1)) != MP_OKAY)
goto CLEANUP;
if ((res = mp_add(x, &q, x)) != MP_OKAY)
goto CLEANUP;
}
/* Back off if it's too big */
while (mp_cmp(x, m) != MP_LT) {
if ((res = s_mp_sub(x, m, x)) != MP_OKAY) {
goto CLEANUP;
}
}
CLEANUP:
mp_clear(&q);
return res;
}
#endif

View file

@ -0,0 +1,47 @@
#include "tommath_private.h"
#ifdef BN_MP_REDUCE_2K_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* reduces a modulo n where n is of the form 2**p - d */
int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d)
{
mp_int q;
int p, res;
if ((res = mp_init(&q)) != MP_OKAY) {
return res;
}
p = mp_count_bits(n);
top:
/* q = a/2**p, a = a mod 2**p */
if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
goto LBL_ERR;
}
if (d != 1u) {
/* q = q * d */
if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* a = a + q */
if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
goto LBL_ERR;
}
if (mp_cmp_mag(a, n) != MP_LT) {
if ((res = s_mp_sub(a, n, a)) != MP_OKAY) {
goto LBL_ERR;
}
goto top;
}
LBL_ERR:
mp_clear(&q);
return res;
}
#endif

View file

@ -0,0 +1,48 @@
#include "tommath_private.h"
#ifdef BN_MP_REDUCE_2K_L_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* reduces a modulo n where n is of the form 2**p - d
This differs from reduce_2k since "d" can be larger
than a single digit.
*/
int mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d)
{
mp_int q;
int p, res;
if ((res = mp_init(&q)) != MP_OKAY) {
return res;
}
p = mp_count_bits(n);
top:
/* q = a/2**p, a = a mod 2**p */
if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
goto LBL_ERR;
}
/* q = q * d */
if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
goto LBL_ERR;
}
/* a = a + q */
if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
goto LBL_ERR;
}
if (mp_cmp_mag(a, n) != MP_LT) {
if ((res = s_mp_sub(a, n, a)) != MP_OKAY) {
goto LBL_ERR;
}
goto top;
}
LBL_ERR:
mp_clear(&q);
return res;
}
#endif

View file

@ -0,0 +1,31 @@
#include "tommath_private.h"
#ifdef BN_MP_REDUCE_2K_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* determines the setup value */
int mp_reduce_2k_setup(const mp_int *a, mp_digit *d)
{
int res, p;
mp_int tmp;
if ((res = mp_init(&tmp)) != MP_OKAY) {
return res;
}
p = mp_count_bits(a);
if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
mp_clear(&tmp);
return res;
}
if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
mp_clear(&tmp);
return res;
}
*d = tmp.dp[0];
mp_clear(&tmp);
return MP_OKAY;
}
#endif

View file

@ -0,0 +1,28 @@
#include "tommath_private.h"
#ifdef BN_MP_REDUCE_2K_SETUP_L_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* determines the setup value */
int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d)
{
int res;
mp_int tmp;
if ((res = mp_init(&tmp)) != MP_OKAY) {
return res;
}
if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
goto LBL_ERR;
}
LBL_ERR:
mp_clear(&tmp);
return res;
}
#endif

View file

@ -0,0 +1,36 @@
#include "tommath_private.h"
#ifdef BN_MP_REDUCE_IS_2K_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* determines if mp_reduce_2k can be used */
int mp_reduce_is_2k(const mp_int *a)
{
int ix, iy, iw;
mp_digit iz;
if (a->used == 0) {
return MP_NO;
} else if (a->used == 1) {
return MP_YES;
} else if (a->used > 1) {
iy = mp_count_bits(a);
iz = 1;
iw = 1;
/* Test every bit from the second digit up, must be 1 */
for (ix = MP_DIGIT_BIT; ix < iy; ix++) {
if ((a->dp[iw] & iz) == 0u) {
return MP_NO;
}
iz <<= 1;
if (iz > (mp_digit)MP_MASK) {
++iw;
iz = 1;
}
}
}
return MP_YES;
}
#endif

View file

@ -0,0 +1,28 @@
#include "tommath_private.h"
#ifdef BN_MP_REDUCE_IS_2K_L_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* determines if reduce_2k_l can be used */
int mp_reduce_is_2k_l(const mp_int *a)
{
int ix, iy;
if (a->used == 0) {
return MP_NO;
} else if (a->used == 1) {
return MP_YES;
} else if (a->used > 1) {
/* if more than half of the digits are -1 we're sold */
for (iy = ix = 0; ix < a->used; ix++) {
if (a->dp[ix] == MP_MASK) {
++iy;
}
}
return (iy >= (a->used/2)) ? MP_YES : MP_NO;
}
return MP_NO;
}
#endif

View file

@ -0,0 +1,18 @@
#include "tommath_private.h"
#ifdef BN_MP_REDUCE_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* pre-calculate the value required for Barrett reduction
* For a given modulus "b" it calulates the value required in "a"
*/
int mp_reduce_setup(mp_int *a, const mp_int *b)
{
int res;
if ((res = mp_2expt(a, b->used * 2 * MP_DIGIT_BIT)) != MP_OKAY) {
return res;
}
return mp_div(a, b, a, NULL);
}
#endif

View file

@ -0,0 +1,56 @@
#include "tommath_private.h"
#ifdef BN_MP_RSHD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* shift right a certain amount of digits */
void mp_rshd(mp_int *a, int b)
{
int x;
/* if b <= 0 then ignore it */
if (b <= 0) {
return;
}
/* if b > used then simply zero it and return */
if (a->used <= b) {
mp_zero(a);
return;
}
{
mp_digit *bottom, *top;
/* shift the digits down */
/* bottom */
bottom = a->dp;
/* top [offset into digits] */
top = a->dp + b;
/* this is implemented as a sliding window where
* the window is b-digits long and digits from
* the top of the window are copied to the bottom
*
* e.g.
b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
/\ | ---->
\-------------------/ ---->
*/
for (x = 0; x < (a->used - b); x++) {
*bottom++ = *top++;
}
/* zero the top digits */
for (; x < a->used; x++) {
*bottom++ = 0;
}
}
/* remove excess digits */
a->used -= b;
}
#endif

View file

@ -0,0 +1,13 @@
#include "tommath_private.h"
#ifdef BN_MP_SET_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* set to a digit */
void mp_set(mp_int *a, mp_digit b)
{
mp_zero(a);
a->dp[0] = b & MP_MASK;
a->used = (a->dp[0] != 0u) ? 1 : 0;
}
#endif

View file

@ -0,0 +1,49 @@
#include "tommath_private.h"
#ifdef BN_MP_SET_DOUBLE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#if defined(__STDC_IEC_559__) || defined(__GCC_IEC_559)
int mp_set_double(mp_int *a, double b)
{
uint64_t frac;
int exp, res;
union {
double dbl;
uint64_t bits;
} cast;
cast.dbl = b;
exp = (int)((unsigned)(cast.bits >> 52) & 0x7FFU);
frac = (cast.bits & ((1ULL << 52) - 1ULL)) | (1ULL << 52);
if (exp == 0x7FF) { /* +-inf, NaN */
return MP_VAL;
}
exp -= 1023 + 52;
res = mp_set_long_long(a, frac);
if (res != MP_OKAY) {
return res;
}
res = (exp < 0) ? mp_div_2d(a, -exp, a, NULL) : mp_mul_2d(a, exp, a);
if (res != MP_OKAY) {
return res;
}
if (((cast.bits >> 63) != 0ULL) && !MP_IS_ZERO(a)) {
a->sign = MP_NEG;
}
return MP_OKAY;
}
#else
/* pragma message() not supported by several compilers (in mostly older but still used versions) */
# ifdef _MSC_VER
# pragma message("mp_set_double implementation is only available on platforms with IEEE754 floating point format")
# else
# warning "mp_set_double implementation is only available on platforms with IEEE754 floating point format"
# endif
#endif
#endif

Some files were not shown because too many files have changed in this diff Show more