[10097] Update G3D up to v8.0b4

+ Got rid of zip lib requirement in G3D...
  Still can re-enable code by defining _HAVE_ZIP...

+ Remove silly X11 lib dependency from G3D
  Code doesn't seem to do anything yet anyway, and even if, we don't want it :p

+ Fix another weird G3D build problem...

+ Remove some __asm usage in g3d, which is not available on Win64
  My editor also decided to remove a ton of trailing white spaces...tss...

+ Reapply G3D fixes for 64bit VC

+ not use SSE specific header when SSE not enabled in *nix

+ Updated project files

+ New vmap_assembler VC90/VC80 Project

+ vmap assembler binaries updates

NOTE: Old vmap fikes expected work (as tests show) with new library version.
      But better use new generated versions. Its different in small parts to bad or good...

(based on Lynx3d's repo commit 44798d3)

Signed-off-by: VladimirMangos <vladimir@getmangos.com>
This commit is contained in:
Lynx3d 2010-06-23 04:01:54 +04:00 committed by VladimirMangos
parent 2f3c518935
commit ae3ad10bcf
235 changed files with 58189 additions and 4547 deletions

View file

@ -102,7 +102,7 @@ namespace G3D {
inline Indirector() : handle(NULL) {}
/** Returns true iff the values referenced by the handles are equivalent. */
inline bool operator==(const Indirector& m) {
inline bool operator==(const Indirector& m) const {
return *handle == *(m.handle);
}
@ -117,10 +117,13 @@ namespace G3D {
} // namespace internal
} // namespace G3D
template <class Handle>
/* template <class Handle>
struct GHashCode< G3D::_internal::Indirector<Handle> >
{
size_t operator()(const G3D::_internal::Indirector<Handle>& key) const { return key.hashCode(); }
}; */
template <class Handle> struct HashTrait<typename G3D::_internal::Indirector<Handle> > {
static size_t hashCode(const G3D::_internal::Indirector<Handle>& key) { return key.hashCode(); }
};
namespace G3D {
@ -330,7 +333,6 @@ public:
inline int operator()(_AABSPTree::Handle<T>* /*ignore*/, const _AABSPTree::Handle<T>* handle) const {
const AABox& box = handle->bounds;
debugAssert(ignore == NULL);
if (box.high()[sortAxis] < sortLocation) {
// Box is strictly below the sort location
@ -606,10 +608,10 @@ public:
bool alreadyInsideBounds = false;
bool rayWillHitBounds =
VMAP::MyCollisionDetection::collisionLocationForMovingPointFixedAABox(
ray.origin, ray.direction, splitBounds, location, alreadyInsideBounds);
ray.origin(), ray.direction(), splitBounds, location, alreadyInsideBounds);
bool canHitThisNode = (alreadyInsideBounds ||
(rayWillHitBounds && ((location - ray.origin).squaredLength() < square(distance))));
(rayWillHitBounds && ((location - ray.origin()).squaredLength() < square(distance))));
return canHitThisNode;
}
@ -639,10 +641,10 @@ public:
bool alreadyInsideBounds = false;
bool rayWillHitBounds =
VMAP::MyCollisionDetection::collisionLocationForMovingPointFixedAABox(
ray.origin, ray.direction, bounds, location, alreadyInsideBounds);
ray.origin(), ray.direction(), bounds, location, alreadyInsideBounds);
canHitThisObject = (alreadyInsideBounds ||
(rayWillHitBounds && ((location - ray.origin).squaredLength() < square(distance))));
(rayWillHitBounds && ((location - ray.origin()).squaredLength() < square(distance))));
}
if (canHitThisObject) {
@ -665,30 +667,30 @@ public:
int firstChild = NONE;
int secondChild = NONE;
if (ray.origin[splitAxis] < splitLocation) {
if (ray.origin()[splitAxis] < splitLocation) {
// The ray starts on the small side
firstChild = 0;
if (ray.direction[splitAxis] > 0) {
if (ray.direction()[splitAxis] > 0) {
// The ray will eventually reach the other side
secondChild = 1;
}
} else if (ray.origin[splitAxis] > splitLocation) {
} else if (ray.origin()[splitAxis] > splitLocation) {
// The ray starts on the large side
firstChild = 1;
if (ray.direction[splitAxis] < 0) {
if (ray.direction()[splitAxis] < 0) {
secondChild = 0;
}
} else {
// The ray starts on the splitting plane
if (ray.direction[splitAxis] < 0) {
if (ray.direction()[splitAxis] < 0) {
// ...and goes to the small side
firstChild = 0;
} else if (ray.direction[splitAxis] > 0) {
} else if (ray.direction()[splitAxis] > 0) {
// ...and goes to the large side
firstChild = 1;
}
@ -701,10 +703,10 @@ public:
return;
}
if (ray.direction[splitAxis] != 0) {
if (ray.direction()[splitAxis] != 0) {
// See if there was an intersection before hitting the splitting plane.
// If so, there is no need to look on the far side and recursion terminates.
float distanceToSplittingPlane = (splitLocation - ray.origin[splitAxis]) / ray.direction[splitAxis];
float distanceToSplittingPlane = (splitLocation - ray.origin()[splitAxis]) / ray.direction()[splitAxis];
if (distanceToSplittingPlane > distance) {
// We aren't going to hit anything else before hitting the splitting plane,
// so don't bother looking on the far side of the splitting plane at the other

View file

@ -66,7 +66,7 @@ namespace VMAP
bool isInside = false;
float d = MyCollisionDetection::collisionLocationForMovingPointFixedAABox(
pRay.origin, pRay.direction,
pRay.origin(), pRay.direction(),
pBox,
pOutLocation, isInside);
if (!isInside && ((d > 0) && (d < pMaxDist)))
@ -84,10 +84,10 @@ namespace VMAP
bool alreadyInsideBounds = false;
bool rayWillHitBounds =
MyCollisionDetection::collisionLocationForMovingPointFixedAABox(
pRay.origin, pRay.direction, pBox, location, alreadyInsideBounds);
pRay.origin(), pRay.direction(), pBox, location, alreadyInsideBounds);
bool canHitThisNode = (alreadyInsideBounds ||
(rayWillHitBounds && ((location - pRay.origin).squaredLength() < (pMaxDist * pMaxDist))));
(rayWillHitBounds && ((location - pRay.origin()).squaredLength() < (pMaxDist * pMaxDist))));
return canHitThisNode;
}

View file

@ -337,7 +337,7 @@ namespace VMAP
{
IntersectionCallBack<SubModel> intersectCallback;
NodeValueAccess<TreeNode, SubModel> vna = NodeValueAccess<TreeNode, SubModel>(getTreeNodes(), iSubModel);
Ray relativeRay = Ray::fromOriginAndDirection(pRay.origin - getBasePosition(), pRay.direction);
Ray relativeRay = Ray::fromOriginAndDirection(pRay.origin() - getBasePosition(), pRay.direction());
iTreeNodes[0].intersectRay(pRay, intersectCallback, pMaxDist, vna, pStopAtFirstHit, false);
}

View file

@ -216,7 +216,7 @@ namespace VMAP
{
NodeValueAccess<TreeNode, TriangleBox> vna = NodeValueAccess<TreeNode, TriangleBox>(getTreeNodes(), getTriangles());
IntersectionCallBack<TriangleBox> intersectCallback;
Ray relativeRay = Ray::fromOriginAndDirection(pRay.origin - getBasePosition(), pRay.direction);
Ray relativeRay = Ray::fromOriginAndDirection(pRay.origin() - getBasePosition(), pRay.direction());
#ifdef _DEBUG_VMAPS
//p6=getBasePosition();
//gBoxArray.push_back(getAABoxBounds());

View file

@ -109,10 +109,10 @@ namespace VMAP
bool alreadyInsideBounds = false;
bool rayWillHitBounds =
MyCollisionDetection::collisionLocationForMovingPointFixedAABox(
ray.origin, ray.direction, iBounds, location, alreadyInsideBounds);
ray.origin(), ray.direction(), iBounds, location, alreadyInsideBounds);
bool canHitThisNode = (alreadyInsideBounds ||
(rayWillHitBounds && ((location - ray.origin).squaredLength() < (distance*distance))));
(rayWillHitBounds && ((location - ray.origin()).squaredLength() < (distance*distance))));
return canHitThisNode;
}
@ -142,10 +142,10 @@ namespace VMAP
bool alreadyInsideBounds = false;
bool rayWillHitBounds =
MyCollisionDetection::collisionLocationForMovingPointFixedAABox(
ray.origin, ray.direction, bounds, location, alreadyInsideBounds);
ray.origin(), ray.direction(), bounds, location, alreadyInsideBounds);
canHitThisObject = (alreadyInsideBounds ||
(rayWillHitBounds && ((location - ray.origin).squaredLength() < (distance*distance))));
(rayWillHitBounds && ((location - ray.origin()).squaredLength() < (distance*distance))));
}
if (canHitThisObject) {
@ -167,30 +167,30 @@ namespace VMAP
int firstChild = NONE;
int secondChild = NONE;
if (ray.origin[iSplitAxis] < iSplitLocation) {
if (ray.origin()[iSplitAxis] < iSplitLocation) {
// The ray starts on the small side
firstChild = 0;
if (ray.direction[iSplitAxis] > 0) {
if (ray.direction()[iSplitAxis] > 0) {
// The ray will eventually reach the other side
secondChild = 1;
}
} else if (ray.origin[iSplitAxis] > iSplitLocation) {
} else if (ray.origin()[iSplitAxis] > iSplitLocation) {
// The ray starts on the large side
firstChild = 1;
if (ray.direction[iSplitAxis] < 0) {
if (ray.direction()[iSplitAxis] < 0) {
secondChild = 0;
}
} else {
// The ray starts on the splitting plane
if (ray.direction[iSplitAxis] < 0) {
if (ray.direction()[iSplitAxis] < 0) {
// ...and goes to the small side
firstChild = 0;
} else if (ray.direction[iSplitAxis] > 0) {
} else if (ray.direction()[iSplitAxis] > 0) {
// ...and goes to the large side
firstChild = 1;
}
@ -202,10 +202,10 @@ namespace VMAP
if(pStopAtFirstHit && distance < enterDistance)
return;
}
if (ray.direction[iSplitAxis] != 0) {
if (ray.direction()[iSplitAxis] != 0) {
// See if there was an intersection before hitting the splitting plane.
// If so, there is no need to look on the far side and recursion terminates.
float distanceToSplittingPlane = (iSplitLocation - ray.origin[iSplitAxis]) / ray.direction[iSplitAxis];
float distanceToSplittingPlane = (iSplitLocation - ray.origin()[iSplitAxis]) / ray.direction()[iSplitAxis];
if (distanceToSplittingPlane > distance) {
// We aren't going to hit anything else before hitting the splitting plane,
// so don't bother looking on the far side of the splitting plane at the other