Some missing from merge.

Signed-off-by: Salja <salja2012@hotmail.de>
This commit is contained in:
Salja 2012-08-05 14:54:07 +02:00 committed by Antz
parent ec939a5bce
commit f4be15a7af
1895 changed files with 160408 additions and 53601 deletions

File diff suppressed because it is too large Load diff

View file

@ -14,77 +14,58 @@
//-----------------------------------------------------------------------------
// Function prototypes
typedef void (*STREAM_INIT)(
struct TFileStream * pStream // Pointer to an unopened stream
);
typedef bool (*STREAM_CREATE)(
struct TFileStream * pStream // Pointer to an unopened stream
);
typedef bool (*STREAM_OPEN)(
struct TFileStream * pStream, // Pointer to an unopened stream
const TCHAR * szFileName, // Pointer to file name to be open
DWORD dwStreamFlags // Stream flags
);
typedef bool (*STREAM_READ)(
struct TFileStream * pStream, // Pointer to an open stream
ULONGLONG * pByteOffset, // Pointer to file byte offset. If NULL, it reads from the current position
void * pvBuffer, // Pointer to data to be read
DWORD dwBytesToRead // Number of bytes to read from the file
);
struct TFileStream * pStream, // Pointer to an open stream
ULONGLONG * pByteOffset, // Pointer to file byte offset. If NULL, it reads from the current position
void * pvBuffer, // Pointer to data to be read
DWORD dwBytesToRead // Number of bytes to read from the file
);
typedef bool (*STREAM_WRITE)(
struct TFileStream * pStream, // Pointer to an open stream
ULONGLONG * pByteOffset, // Pointer to file byte offset. If NULL, it writes to the current position
const void * pvBuffer, // Pointer to data to be written
DWORD dwBytesToWrite // Number of bytes to read from the file
);
typedef bool (*STREAM_RESIZE)(
struct TFileStream * pStream, // Pointer to an open stream
ULONGLONG FileSize // New size for the file, in bytes
);
typedef bool (*STREAM_GETSIZE)(
struct TFileStream * pStream, // Pointer to an open stream
ULONGLONG * pFileSize // Receives the file size, in bytes
);
struct TFileStream * pStream, // Pointer to an open stream
ULONGLONG * pByteOffset, // Pointer to file byte offset. If NULL, it writes to the current position
const void * pvBuffer, // Pointer to data to be written
DWORD dwBytesToWrite // Number of bytes to read from the file
);
typedef bool (*STREAM_GETPOS)(
struct TFileStream * pStream, // Pointer to an open stream
ULONGLONG * pByteOffset // Pointer to store current file position
);
struct TFileStream * pStream, // Pointer to an open stream
ULONGLONG * pByteOffset // Pointer to store current file position
);
typedef bool (*STREAM_GETSIZE)(
struct TFileStream * pStream, // Pointer to an open stream
ULONGLONG * pFileSize // Receives the file size, in bytes
);
typedef bool (*STREAM_SETSIZE)(
struct TFileStream * pStream, // Pointer to an open stream
ULONGLONG FileSize // New size for the file, in bytes
);
typedef bool (*STREAM_GETTIME)(
struct TFileStream * pStream,
ULONGLONG * pFT
);
typedef bool (*STREAM_SWITCH)(
struct TFileStream * pStream,
struct TFileStream * pNewStream
);
typedef bool (*STREAM_GETBMP)(
TFileStream * pStream,
TFileBitmap * pBitmap,
DWORD Length,
LPDWORD LengthNeeded
);
typedef void (*STREAM_CLOSE)(
struct TFileStream * pStream // Pointer to an open stream
);
typedef bool (*BLOCK_READ)(
struct TFileStream * pStream, // Pointer to a block-oriented stream
ULONGLONG StartOffset, // Byte offset of start of the block array
ULONGLONG EndOffset, // End offset (either end of the block or end of the file)
LPBYTE BlockBuffer, // Pointer to block-aligned buffer
DWORD BytesNeeded, // Number of bytes that are really needed
bool bAvailable // true if the block is available
);
typedef bool (*BLOCK_CHECK)(
struct TFileStream * pStream, // Pointer to a block-oriented stream
ULONGLONG BlockOffset // Offset of the file to check
);
typedef void (*BLOCK_SAVEMAP)(
struct TFileStream * pStream // Pointer to a block-oriented stream
);
struct TFileStream * pStream
);
//-----------------------------------------------------------------------------
// Local structures - partial file structure and bitmap footer
#define ID_FILE_BITMAP_FOOTER 0x33767470 // Signature of the file bitmap footer ('ptv3')
#define DEFAULT_BLOCK_SIZE 0x00004000 // Default size of the stream block
#define DEFAULT_BUILD_NUMBER 10958 // Build number for newly created partial MPQs
// Local structures - part file structure
typedef struct _PART_FILE_HEADER
{
@ -108,108 +89,99 @@ typedef struct _PART_FILE_MAP_ENTRY
} PART_FILE_MAP_ENTRY, *PPART_FILE_MAP_ENTRY;
typedef struct _FILE_BITMAP_FOOTER
{
DWORD Signature; // 'ptv3' (ID_FILE_BITMAP_FOOTER)
DWORD Version; // Unknown, seems to always have value of 3 (version?)
DWORD BuildNumber; // Game build number for that MPQ
DWORD MapOffsetLo; // Low 32-bits of the offset of the bit map
DWORD MapOffsetHi; // High 32-bits of the offset of the bit map
DWORD BlockSize; // Size of one block (usually 0x4000 bytes)
} FILE_BITMAP_FOOTER, *PFILE_BITMAP_FOOTER;
//-----------------------------------------------------------------------------
// Structure for file stream
// Local structures
union TBaseProviderData
union TBaseData
{
struct
{
ULONGLONG FileSize; // Size of the file
ULONGLONG FilePos; // Current file position
ULONGLONG FileTime; // Last write time
ULONGLONG FileTime; // Date/time of last modification of the file
HANDLE hFile; // File handle
} File;
struct
{
ULONGLONG FileSize; // Size of the file
ULONGLONG FilePos; // Current file position
ULONGLONG FileTime; // Last write time
ULONGLONG FileSize; // Mapped file size
ULONGLONG FilePos; // Current stream position
ULONGLONG FileTime; // Date/time of last modification of the file
LPBYTE pbFile; // Pointer to mapped view
} Map;
struct
{
ULONGLONG FileSize; // Size of the file
ULONGLONG FilePos; // Current file position
ULONGLONG FileTime; // Last write time
ULONGLONG FileSize; // Size of the internet file
ULONGLONG FilePos; // Current position in the file
ULONGLONG FileTime; // Date/time of last modification of the file
HANDLE hInternet; // Internet handle
HANDLE hConnect; // Connection to the internet server
} Http;
};
//-----------------------------------------------------------------------------
// Structure for linear stream
struct TFileStream
{
// Stream provider functions
STREAM_READ StreamRead; // Pointer to stream read function for this archive. Do not use directly.
STREAM_WRITE StreamWrite; // Pointer to stream write function for this archive. Do not use directly.
STREAM_RESIZE StreamResize; // Pointer to function changing file size
STREAM_GETSIZE StreamGetSize; // Pointer to function returning file size
STREAM_GETPOS StreamGetPos; // Pointer to function that returns current file position
STREAM_GETSIZE StreamGetSize; // Pointer to function returning file size
STREAM_SETSIZE StreamSetSize; // Pointer to function changing file size
STREAM_GETTIME StreamGetTime; // Pointer to function retrieving the file time
STREAM_GETBMP StreamGetBmp; // Pointer to function that retrieves the file bitmap
STREAM_SWITCH StreamSwitch; // Pointer to function changing the stream to another file
STREAM_CLOSE StreamClose; // Pointer to function closing the stream
// Block-oriented functions
BLOCK_READ BlockRead; // Pointer to function reading one or more blocks
BLOCK_CHECK BlockCheck; // Pointer to function checking whether the block is present
// Stream provider data members
TCHAR szFileName[MAX_PATH]; // File name
DWORD dwFlags; // Stream flags
// Base provider functions
STREAM_CREATE BaseCreate; // Pointer to base create function
STREAM_OPEN BaseOpen; // Pointer to base open function
STREAM_READ BaseRead; // Read from the stream
STREAM_WRITE BaseWrite; // Write to the stream
STREAM_RESIZE BaseResize; // Pointer to function changing file size
STREAM_GETSIZE BaseGetSize; // Pointer to function returning file size
STREAM_READ BaseRead;
STREAM_WRITE BaseWrite;
STREAM_GETPOS BaseGetPos; // Pointer to function that returns current file position
STREAM_GETSIZE BaseGetSize; // Pointer to function returning file size
STREAM_SETSIZE BaseSetSize; // Pointer to function changing file size
STREAM_GETTIME BaseGetTime; // Pointer to function retrieving the file time
STREAM_CLOSE BaseClose; // Pointer to function closing the stream
// Base provider data (file size, file position)
TBaseProviderData Base;
// Stream provider data
TFileStream * pMaster; // Master stream (e.g. MPQ on a web server)
TCHAR * szFileName; // File name (self-relative pointer)
ULONGLONG StreamSize; // Stream size (can be less than file size)
ULONGLONG StreamPos; // Stream position
DWORD BuildNumber; // Game build number
DWORD dwFlags; // Stream flags
// Base provider data members
TBaseData Base; // Base provider data
// Followed by stream provider data, with variable length
};
//-----------------------------------------------------------------------------
// Structures for block-oriented stream
// Structure for linear stream
struct TBlockStream : public TFileStream
struct TLinearStream : public TFileStream
{
SFILE_DOWNLOAD_CALLBACK pfnCallback; // Callback for downloading
void * FileBitmap; // Array of bits for file blocks
void * UserData; // User data to be passed to the download callback
DWORD BitmapSize; // Size of the file bitmap (in bytes)
DWORD BlockSize; // Size of one block, in bytes
DWORD BlockCount; // Number of data blocks in the file
DWORD IsComplete; // If nonzero, no blocks are missing
DWORD IsModified; // nonzero if the bitmap has been modified
};
TFileBitmap * pBitmap; // Pointer to the stream bitmap
};
//-----------------------------------------------------------------------------
// Structure for partial stream
struct TPartialStream : public TFileStream
{
ULONGLONG VirtualSize; // Virtual size of the file
ULONGLONG VirtualPos; // Virtual position in the file
DWORD BlockCount; // Number of file blocks. Used by partial file stream
DWORD BlockSize; // Size of one block. Used by partial file stream
PPART_FILE_MAP_ENTRY PartMap; // File map, variable length
};
//-----------------------------------------------------------------------------
// Structure for encrypted stream
#define MPQE_CHUNK_SIZE 0x40 // Size of one chunk to be decrypted
struct TEncryptedStream : public TBlockStream
struct TEncryptedStream : public TFileStream
{
BYTE Key[MPQE_CHUNK_SIZE]; // File key
};

File diff suppressed because it is too large Load diff

View file

@ -41,26 +41,6 @@ void DumpMpqHeader(TMPQHeader * pHeader)
printf("-----------------------------------------------\n\n");
}
void DumpHashTable(TMPQHash * pHashTable, DWORD dwHashTableSize)
{
DWORD i;
if(pHashTable == NULL || dwHashTableSize == 0)
return;
printf("== Hash Table =================================\n");
for(i = 0; i < dwHashTableSize; i++)
{
printf("[%08x] %08X %08X %04X %02X %08X\n", i,
pHashTable[i].dwName1,
pHashTable[i].dwName2,
pHashTable[i].lcLocale,
pHashTable[i].Platform,
pHashTable[i].dwBlockIndex);
}
printf("-----------------------------------------------\n\n");
}
void DumpHetAndBetTable(TMPQHetTable * pHetTable, TMPQBetTable * pBetTable)
{
DWORD i;
@ -69,14 +49,14 @@ void DumpHetAndBetTable(TMPQHetTable * pHetTable, TMPQBetTable * pBetTable)
return;
printf("== HET Header =================================\n");
printf("ULONGLONG AndMask64 = %016llX\n", pHetTable->AndMask64);
printf("ULONGLONG OrMask64 = %016llX\n", pHetTable->OrMask64);
printf("DWORD dwEntryCount = %08X\n", pHetTable->dwEntryCount);
printf("DWORD dwTotalCount = %08X\n", pHetTable->dwTotalCount);
printf("DWORD dwNameHashBitSize = %08X\n", pHetTable->dwNameHashBitSize);
printf("ULONGLONG AndMask64 = %016llX\n", pHetTable->AndMask64);
printf("ULONGLONG OrMask64 = %016llX\n", pHetTable->OrMask64);
printf("DWORD dwIndexSizeTotal = %08X\n", pHetTable->dwIndexSizeTotal);
printf("DWORD dwIndexSizeExtra = %08X\n", pHetTable->dwIndexSizeExtra);
printf("DWORD dwIndexSize = %08X\n", pHetTable->dwIndexSize);
printf("DWORD dwIndexSize = %08X\n", pHetTable->dwIndexSize);
printf("DWORD dwMaxFileCount = %08X\n", pHetTable->dwMaxFileCount);
printf("DWORD dwHashTableSize = %08X\n", pHetTable->dwHashTableSize);
printf("DWORD dwHashBitSize = %08X\n", pHetTable->dwHashBitSize);
printf("-----------------------------------------------\n\n");
printf("== BET Header =================================\n");
@ -89,19 +69,19 @@ void DumpHetAndBetTable(TMPQHetTable * pHetTable, TMPQBetTable * pBetTable)
printf("DWORD dwBitCount_FilePos = %08X\n", pBetTable->dwBitCount_FilePos);
printf("DWORD dwBitCount_FileSize = %08X\n", pBetTable->dwBitCount_FileSize);
printf("DWORD dwBitCount_CmpSize = %08X\n", pBetTable->dwBitCount_CmpSize);
printf("DWORD dwBitCount_FlagIndex = %08X\n", pBetTable->dwBitCount_FlagIndex);
printf("DWORD dwBitCount_FlagIndex = %08X\n", pBetTable->dwBitCount_FlagIndex);
printf("DWORD dwBitCount_Unknown = %08X\n", pBetTable->dwBitCount_Unknown);
printf("DWORD dwBitTotal_NameHash2 = %08X\n", pBetTable->dwBitTotal_NameHash2);
printf("DWORD dwBitExtra_NameHash2 = %08X\n", pBetTable->dwBitExtra_NameHash2);
printf("DWORD dwBitCount_NameHash2 = %08X\n", pBetTable->dwBitCount_NameHash2);
printf("DWORD dwEntryCount = %08X\n", pBetTable->dwEntryCount);
printf("DWORD dwBetHashSizeTotal = %08X\n", pBetTable->dwBetHashSizeTotal);
printf("DWORD dwBetHashSizeExtra = %08X\n", pBetTable->dwBetHashSizeExtra);
printf("DWORD dwBetHashSize = %08X\n", pBetTable->dwBetHashSize);
printf("DWORD dwMaxFileCount = %08X\n", pBetTable->dwMaxFileCount);
printf("DWORD dwFlagCount = %08X\n", pBetTable->dwFlagCount);
printf("-----------------------------------------------\n\n");
printf("== HET & Bet Table ======================================================================\n\n");
printf("HetIdx HetHash BetIdx BetHash ByteOffset FileSize CmpSize FlgIdx Flags \n");
printf("------ ------- ------ ---------------- ---------------- -------- -------- ------ --------\n");
for(i = 0; i < pHetTable->dwTotalCount; i++)
for(i = 0; i < pHetTable->dwHashTableSize; i++)
{
ULONGLONG ByteOffset = 0;
ULONGLONG BetHash = 0;
@ -113,77 +93,52 @@ void DumpHetAndBetTable(TMPQHetTable * pHetTable, TMPQBetTable * pBetTable)
GetBits(pHetTable->pBetIndexes, i * pHetTable->dwIndexSizeTotal,
pHetTable->dwIndexSize,
&dwBetIndex,
&dwBetIndex,
4);
if(dwBetIndex < pHetTable->dwTotalCount)
if(dwBetIndex < pHetTable->dwMaxFileCount)
{
DWORD dwEntryIndex = pBetTable->dwTableEntrySize * dwBetIndex;
GetBits(pBetTable->pNameHashes, dwBetIndex * pBetTable->dwBitTotal_NameHash2,
pBetTable->dwBitCount_NameHash2,
GetBits(pBetTable->pBetHashes, dwBetIndex * pBetTable->dwBetHashSizeTotal,
pBetTable->dwBetHashSize,
&BetHash,
8);
GetBits(pBetTable->pFileTable, dwEntryIndex + pBetTable->dwBitIndex_FilePos,
pBetTable->dwBitCount_FilePos,
&ByteOffset,
8);
GetBits(pBetTable->pFileTable, dwEntryIndex + pBetTable->dwBitIndex_FileSize,
GetBits(dwEntryIndex + pBetTable->dwBitIndex_FilePos,
pBetTable->dwBitCount_FilePos,
&ByteOffset,
8);
GetBits(dwEntryIndex + pBetTable->dwBitIndex_FileSize,
pBetTable->dwBitCount_FileSize,
&dwFileSize,
&dwFileSize,
4);
GetBits(pBetTable->pFileTable, dwEntryIndex + pBetTable->dwBitIndex_CmpSize,
GetBits(dwEntryIndex + pBetTable->dwBitIndex_CmpSize,
pBetTable->dwBitCount_CmpSize,
&dwCmpSize,
&dwCmpSize,
4);
GetBits(pBetTable->pFileTable, dwEntryIndex + pBetTable->dwBitIndex_FlagIndex,
GetBits(dwEntryIndex + pBetTable->dwBitIndex_FlagIndex,
pBetTable->dwBitCount_FlagIndex,
&dwFlagIndex,
&dwFlagIndex,
4);
dwFlags = pBetTable->pFileFlags[dwFlagIndex];
}
printf(" %04X %02lX %04X %016llX %016llX %08X %08X %04X %08X\n", i,
pHetTable->pNameHashes[i],
dwBetIndex,
BetHash,
ByteOffset,
dwFileSize,
dwCmpSize,
dwFlagIndex,
dwFlags);
pHetTable->pHetHashes[i],
dwBetIndex,
BetHash,
ByteOffset,
dwFileSize,
dwCmpSize,
dwFlagIndex,
dwFlags);
}
printf("-----------------------------------------------------------------------------------------\n");
}
void DumpFileTable(TFileEntry * pFileTable, DWORD dwFileTableSize)
{
DWORD i;
if(pFileTable == NULL || dwFileTableSize == 0)
return;
printf("== File Table =================================\n");
for(i = 0; i < dwFileTableSize; i++, pFileTable++)
{
printf("[%04u] %08X-%08X %08X-%08X %08X-%08X 0x%08X 0x%08X 0x%08X %s\n", i,
(DWORD)(pFileTable->FileNameHash >> 0x20),
(DWORD)(pFileTable->FileNameHash & 0xFFFFFFFF),
(DWORD)(pFileTable->ByteOffset >> 0x20),
(DWORD)(pFileTable->ByteOffset & 0xFFFFFFFF),
(DWORD)(pFileTable->FileTime >> 0x20),
(DWORD)(pFileTable->FileTime & 0xFFFFFFFF),
pFileTable->dwFileSize,
pFileTable->dwCmpSize,
pFileTable->dwFlags,
pFileTable->szFileName != NULL ? pFileTable->szFileName : "");
}
printf("-----------------------------------------------\n\n");
}
#endif // __STORMLIB_DUMP_DATA__

File diff suppressed because it is too large Load diff

View file

@ -2,7 +2,7 @@
/* SCompression.cpp Copyright (c) Ladislav Zezula 2003 */
/*---------------------------------------------------------------------------*/
/* This module serves as a bridge between StormLib code and (de)compression */
/* functions. All (de)compression calls go (and should only go) through this */
/* functions. All (de)compression calls go (and should only go) through this */
/* module. No system headers should be included in this module to prevent */
/* compile-time problems. */
/*---------------------------------------------------------------------------*/
@ -22,34 +22,35 @@
// Information about the input and output buffers for pklib
typedef struct
{
unsigned char * pbInBuff; // Pointer to input data buffer
unsigned char * pbInBuffEnd; // End of the input buffer
unsigned char * pbOutBuff; // Pointer to output data buffer
unsigned char * pbOutBuffEnd; // Pointer to output data buffer
char * pbInBuff; // Pointer to input data buffer
char * pbInBuffEnd; // End of the input buffer
char * pbOutBuff; // Pointer to output data buffer
char * pbOutBuffEnd; // Pointer to output data buffer
} TDataInfo;
// Prototype of the compression function
// Function doesn't return an error. A success means that the size of compressed buffer
// is lower than size of uncompressed buffer.
typedef void (*COMPRESS)(
void * pvOutBuffer, // [out] Pointer to the buffer where the compressed data will be stored
int * pcbOutBuffer, // [in] Pointer to length of the buffer pointed by pvOutBuffer
void * pvInBuffer, // [in] Pointer to the buffer with data to compress
int cbInBuffer, // [in] Length of the buffer pointer by pvInBuffer
int * pCmpType, // [in] Compression-method specific value. ADPCM Setups this for the following Huffman compression
int nCmpLevel); // [in] Compression specific value. ADPCM uses this. Should be set to zero.
char * pbOutBuffer, // [out] Pointer to the buffer where the compressed data will be stored
int * pcbOutBuffer, // [in] Pointer to length of the buffer pointed by pbOutBuffer
// [out] Contains length of the compressed data
char * pbInBuffer, // [in] Pointer to the buffer with data to compress
int cbInBuffer, // [in] Length of the buffer pointer by pbInBuffer
int * pCmpType, // [in] Compression-method specific value. ADPCM Setups this for the following Huffman compression
int nCmpLevel); // [in] Compression specific value. ADPCM uses this. Should be set to zero.
// Prototype of the decompression function
// Returns 1 if success, 0 if failure
typedef int (*DECOMPRESS)(
void * pvOutBuffer, // [out] Pointer to the buffer where to store decompressed data
int * pcbOutBuffer, // [in] Pointer to total size of the buffer pointed by pvOutBuffer
// [out] Contains length of the decompressed data
void * pvInBuffer, // [in] Pointer to data to be decompressed
int cbInBuffer); // [in] Length of the data to be decompressed
char * pbOutBuffer, // [out] Pointer to the buffer where to store decompressed data
int * pcbOutBuffer, // [in] Pointer to total size of the buffer pointed by pbOutBuffer
// [out] Contains length of the decompressed data
char * pbInBuffer, // [in] Pointer to data to be decompressed
int cbInBuffer); // [in] Length of the data to be decompressed
// Table of compression functions
typedef struct
typedef struct
{
unsigned long uMask; // Compression mask
COMPRESS Compress; // Compression function
@ -69,22 +70,59 @@ typedef struct
/* */
/*****************************************************************************/
void Compress_huff(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, int cbInBuffer, int * pCmpType, int nCmpLevel)
// 1500F4C0
void Compress_huff(
char * pbOutBuffer,
int * pcbOutBuffer,
char * pbInBuffer,
int cbInBuffer,
int * pCmpType,
int /* nCmpLevel */)
{
THuffmannTree ht(true);
TOutputStream os(pvOutBuffer, *pcbOutBuffer);
THuffmannTree ht; // Huffmann tree for compression
TOutputStream os; // Output stream
STORMLIB_UNUSED(nCmpLevel);
*pcbOutBuffer = ht.Compress(&os, pvInBuffer, cbInBuffer, *pCmpType);
}
// Initialize output stream
os.pbOutBuffer = (unsigned char *)pbOutBuffer;
os.cbOutSize = *pcbOutBuffer;
os.pbOutPos = (unsigned char *)pbOutBuffer;
os.dwBitBuff = 0;
os.nBits = 0;
int Decompress_huff(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, int cbInBuffer)
// Initialize the Huffmann tree for compression
ht.InitTree(true);
*pcbOutBuffer = ht.DoCompression(&os, (unsigned char *)pbInBuffer, cbInBuffer, *pCmpType);
// The following code is not necessary to run, because it has no
// effect on the output data. It only clears the huffmann tree, but when
// the tree is on the stack, who cares ?
// ht.UninitTree();
}
// 1500F5F0
int Decompress_huff(char * pbOutBuffer, int * pcbOutBuffer, char * pbInBuffer, int cbInBuffer)
{
THuffmannTree ht(false);
TInputStream is(pvInBuffer, cbInBuffer);
THuffmannTree ht;
TInputStream is;
*pcbOutBuffer = ht.Decompress(pvOutBuffer, *pcbOutBuffer, &is);
return (*pcbOutBuffer == 0) ? 0 : 1;
// Initialize input stream
is.pbInBufferEnd = (unsigned char *)pbInBuffer + cbInBuffer;
is.pbInBuffer = (unsigned char *)pbInBuffer;
is.BitBuffer = 0;
is.BitCount = 0;
// Initialize the Huffmann tree for compression
ht.InitTree(false);
*pcbOutBuffer = ht.DoDecompression((unsigned char *)pbOutBuffer, *pcbOutBuffer, &is);
if(*pcbOutBuffer == 0)
return 0;
// The following code is not necessary to run, because it has no
// effect on the output data. It only clears the huffmann tree, but when
// the tree is on the stack, who cares ?
// ht.UninitTree();
return 1;
}
/******************************************************************************/
@ -93,21 +131,23 @@ int Decompress_huff(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, i
/* */
/******************************************************************************/
void Compress_ZLIB(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, int cbInBuffer, int * pCmpType, int nCmpLevel)
void Compress_ZLIB(
char * pbOutBuffer,
int * pcbOutBuffer,
char * pbInBuffer,
int cbInBuffer,
int * /* pCmpType */,
int /* nCmpLevel */)
{
z_stream z; // Stream information for zlib
int windowBits;
int nResult;
// Keep compilers happy
STORMLIB_UNUSED(pCmpType);
STORMLIB_UNUSED(nCmpLevel);
// Fill the stream structure for zlib
z.next_in = (Bytef *)pvInBuffer;
z.next_in = (Bytef *)pbInBuffer;
z.avail_in = (uInt)cbInBuffer;
z.total_in = cbInBuffer;
z.next_out = (Bytef *)pvOutBuffer;
z.next_out = (Bytef *)pbOutBuffer;
z.avail_out = *pcbOutBuffer;
z.total_out = 0;
z.zalloc = NULL;
@ -135,16 +175,16 @@ void Compress_ZLIB(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, in
// Storm.dll uses zlib version 1.1.3
// Wow.exe uses zlib version 1.2.3
nResult = deflateInit2(&z,
6, // Compression level used by WoW MPQs
Z_DEFLATED,
windowBits,
8,
Z_DEFAULT_STRATEGY);
6, // Compression level used by WoW MPQs
Z_DEFLATED,
windowBits,
8,
Z_DEFAULT_STRATEGY);
if(nResult == Z_OK)
{
// Call zlib to compress the data
nResult = deflate(&z, Z_FINISH);
if(nResult == Z_OK || nResult == Z_STREAM_END)
*pcbOutBuffer = z.total_out;
@ -152,16 +192,16 @@ void Compress_ZLIB(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, in
}
}
int Decompress_ZLIB(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, int cbInBuffer)
int Decompress_ZLIB(char * pbOutBuffer, int * pcbOutBuffer, char * pbInBuffer, int cbInBuffer)
{
z_stream z; // Stream information for zlib
int nResult;
// Fill the stream structure for zlib
z.next_in = (Bytef *)pvInBuffer;
z.next_in = (Bytef *)pbInBuffer;
z.avail_in = (uInt)cbInBuffer;
z.total_in = cbInBuffer;
z.next_out = (Bytef *)pvOutBuffer;
z.next_out = (Bytef *)pbOutBuffer;
z.avail_out = *pcbOutBuffer;
z.total_out = 0;
z.zalloc = NULL;
@ -187,7 +227,7 @@ int Decompress_ZLIB(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, i
// Function loads data from the input buffer. Used by Pklib's "implode"
// and "explode" function as user-defined callback
// Returns number of bytes loaded
//
//
// char * buf - Pointer to a buffer where to store loaded data
// unsigned int * size - Max. number of bytes to read
// void * param - Custom pointer, parameter of implode/explode
@ -201,7 +241,7 @@ static unsigned int ReadInputData(char * buf, unsigned int * size, void * param)
// Check the case when not enough data available
if(nToRead > nMaxAvail)
nToRead = nMaxAvail;
// Load data and increment offsets
memcpy(buf, pInfo->pbInBuff, nToRead);
pInfo->pbInBuff += nToRead;
@ -211,7 +251,7 @@ static unsigned int ReadInputData(char * buf, unsigned int * size, void * param)
// Function for store output data. Used by Pklib's "implode" and "explode"
// as user-defined callback
//
//
// char * buf - Pointer to data to be written
// unsigned int * size - Number of bytes to write
// void * param - Custom pointer, parameter of implode/explode
@ -232,77 +272,68 @@ static void WriteOutputData(char * buf, unsigned int * size, void * param)
assert(pInfo->pbOutBuff <= pInfo->pbOutBuffEnd);
}
static void Compress_PKLIB(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, int cbInBuffer, int * pCmpType, int nCmpLevel)
static void Compress_PKLIB(
char * pbOutBuffer,
int * pcbOutBuffer,
char * pbInBuffer,
int cbInBuffer,
int * /* pCmpType */,
int /* nCmpLevel */)
{
TDataInfo Info; // Data information
char * work_buf = STORM_ALLOC(char, CMP_BUFFER_SIZE);// Pklib's work buffer
unsigned int dict_size; // Dictionary size
unsigned int ctype = CMP_BINARY; // Compression type
// Keep compilers happy
STORMLIB_UNUSED(pCmpType);
STORMLIB_UNUSED(nCmpLevel);
// Fill data information structure
memset(work_buf, 0, CMP_BUFFER_SIZE);
Info.pbInBuff = pbInBuffer;
Info.pbInBuffEnd = pbInBuffer + cbInBuffer;
Info.pbOutBuff = pbOutBuffer;
Info.pbOutBuffEnd = pbOutBuffer + *pcbOutBuffer;
// Handle no-memory condition
if(work_buf != NULL)
{
// Fill data information structure
memset(work_buf, 0, CMP_BUFFER_SIZE);
Info.pbInBuff = (unsigned char *)pvInBuffer;
Info.pbInBuffEnd = (unsigned char *)pvInBuffer + cbInBuffer;
Info.pbOutBuff = (unsigned char *)pvOutBuffer;
Info.pbOutBuffEnd = (unsigned char *)pvOutBuffer + *pcbOutBuffer;
//
// Set the dictionary size
//
// Diablo I ues fixed dictionary size of CMP_IMPLODE_DICT_SIZE3
// Starcraft uses the variable dictionary size based on algorithm below
//
//
// Set the dictionary size
//
// Diablo I uses fixed dictionary size of CMP_IMPLODE_DICT_SIZE3
// Starcraft I uses the variable dictionary size based on algorithm below
//
if (cbInBuffer < 0x600)
dict_size = CMP_IMPLODE_DICT_SIZE1;
else if(0x600 <= cbInBuffer && cbInBuffer < 0xC00)
dict_size = CMP_IMPLODE_DICT_SIZE2;
else
dict_size = CMP_IMPLODE_DICT_SIZE3;
if (cbInBuffer < 0x600)
dict_size = CMP_IMPLODE_DICT_SIZE1;
else if(0x600 <= cbInBuffer && cbInBuffer < 0xC00)
dict_size = CMP_IMPLODE_DICT_SIZE2;
else
dict_size = CMP_IMPLODE_DICT_SIZE3;
// Do the compression
if(implode(ReadInputData, WriteOutputData, work_buf, &Info, &ctype, &dict_size) == CMP_NO_ERROR)
*pcbOutBuffer = (int)(Info.pbOutBuff - pbOutBuffer);
// Do the compression
if(implode(ReadInputData, WriteOutputData, work_buf, &Info, &ctype, &dict_size) == CMP_NO_ERROR)
*pcbOutBuffer = (int)(Info.pbOutBuff - (unsigned char *)pvOutBuffer);
STORM_FREE(work_buf);
}
STORM_FREE(work_buf);
}
static int Decompress_PKLIB(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, int cbInBuffer)
static int Decompress_PKLIB(char * pbOutBuffer, int * pcbOutBuffer, char * pbInBuffer, int cbInBuffer)
{
TDataInfo Info; // Data information
char * work_buf = STORM_ALLOC(char, EXP_BUFFER_SIZE);// Pklib's work buffer
// Handle no-memory condition
if(work_buf == NULL)
return 0;
// Fill data information structure
memset(work_buf, 0, EXP_BUFFER_SIZE);
Info.pbInBuff = (unsigned char *)pvInBuffer;
Info.pbInBuffEnd = (unsigned char *)pvInBuffer + cbInBuffer;
Info.pbOutBuff = (unsigned char *)pvOutBuffer;
Info.pbOutBuffEnd = (unsigned char *)pvOutBuffer + *pcbOutBuffer;
Info.pbInBuff = pbInBuffer;
Info.pbInBuffEnd = pbInBuffer + cbInBuffer;
Info.pbOutBuff = pbOutBuffer;
Info.pbOutBuffEnd = pbOutBuffer + *pcbOutBuffer;
// Do the decompression
explode(ReadInputData, WriteOutputData, work_buf, &Info);
// If PKLIB is unable to decompress the data, return 0;
if(Info.pbOutBuff == pvOutBuffer)
{
STORM_FREE(work_buf);
if(Info.pbOutBuff == pbOutBuffer)
return 0;
}
// Give away the number of decompressed bytes
*pcbOutBuffer = (int)(Info.pbOutBuff - (unsigned char *)pvOutBuffer);
*pcbOutBuffer = (int)(Info.pbOutBuff - pbOutBuffer);
STORM_FREE(work_buf);
return 1;
}
@ -313,29 +344,30 @@ static int Decompress_PKLIB(void * pvOutBuffer, int * pcbOutBuffer, void * pvInB
/* */
/******************************************************************************/
static void Compress_BZIP2(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, int cbInBuffer, int * pCmpType, int nCmpLevel)
static void Compress_BZIP2(
char * pbOutBuffer,
int * pcbOutBuffer,
char * pbInBuffer,
int cbInBuffer,
int * /* pCmpType */,
int /* nCmpLevel */)
{
bz_stream strm;
int blockSize100k = 9;
int workFactor = 30;
int bzError;
// Keep compilers happy
STORMLIB_UNUSED(pCmpType);
STORMLIB_UNUSED(nCmpLevel);
// Initialize the BZIP2 compression
strm.bzalloc = NULL;
strm.bzfree = NULL;
strm.opaque = NULL;
// Blizzard uses 9 as blockSize100k, (0x30 as workFactor)
// Last checked on Starcraft II
if(BZ2_bzCompressInit(&strm, blockSize100k, 0, workFactor) == BZ_OK)
{
strm.next_in = (char *)pvInBuffer;
strm.next_in = pbInBuffer;
strm.avail_in = cbInBuffer;
strm.next_out = (char *)pvOutBuffer;
strm.next_out = pbOutBuffer;
strm.avail_out = *pcbOutBuffer;
// Perform the compression
@ -354,7 +386,7 @@ static void Compress_BZIP2(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBu
}
}
static int Decompress_BZIP2(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, int cbInBuffer)
static int Decompress_BZIP2(char * pbOutBuffer, int * pcbOutBuffer, char * pbInBuffer, int cbInBuffer)
{
bz_stream strm;
int nResult = BZ_OK;
@ -362,22 +394,19 @@ static int Decompress_BZIP2(void * pvOutBuffer, int * pcbOutBuffer, void * pvInB
// Initialize the BZIP2 decompression
strm.bzalloc = NULL;
strm.bzfree = NULL;
strm.opaque = NULL;
// Initialize decompression
if(BZ2_bzDecompressInit(&strm, 0, 0) == BZ_OK)
{
strm.next_in = (char *)pvInBuffer;
strm.next_in = pbInBuffer;
strm.avail_in = cbInBuffer;
strm.next_out = (char *)pvOutBuffer;
strm.next_out = pbOutBuffer;
strm.avail_out = *pcbOutBuffer;
// Perform the decompression
while(nResult != BZ_STREAM_END)
{
nResult = BZ2_bzDecompress(&strm);
// If any error there, break the loop
// If any error there, break the loop
if(nResult < BZ_OK)
break;
}
@ -432,12 +461,17 @@ static void LZMA_Callback_Free(void *p, void *address)
// the data compressed by StormLib.
//
static void Compress_LZMA(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, int cbInBuffer, int * pCmpType, int nCmpLevel)
/*static */ void Compress_LZMA(
char * pbOutBuffer,
int * pcbOutBuffer,
char * pbInBuffer,
int cbInBuffer,
int * /* pCmpType */,
int /* nCmpLevel */)
{
ICompressProgress Progress;
CLzmaEncProps props;
ISzAlloc SzAlloc;
Byte * pbOutBuffer = (Byte *)pvOutBuffer;
Byte * destBuffer;
SizeT destLen = *pcbOutBuffer;
SizeT srcLen = cbInBuffer;
@ -445,10 +479,6 @@ static void Compress_LZMA(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuf
size_t encodedPropsSize = LZMA_PROPS_SIZE;
SRes nResult;
// Keep compilers happy
STORMLIB_UNUSED(pCmpType);
STORMLIB_UNUSED(nCmpLevel);
// Fill the callbacks in structures
Progress.Progress = LZMA_Callback_Progress;
SzAlloc.Alloc = LZMA_Callback_Alloc;
@ -458,19 +488,19 @@ static void Compress_LZMA(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuf
LzmaEncProps_Init(&props);
// Perform compression
destBuffer = (Byte *)pvOutBuffer + LZMA_HEADER_SIZE;
destBuffer = (Byte *)pbOutBuffer + LZMA_HEADER_SIZE;
destLen = *pcbOutBuffer - LZMA_HEADER_SIZE;
nResult = LzmaEncode(destBuffer,
&destLen,
(Byte *)pvInBuffer,
&destLen,
(Byte *)pbInBuffer,
srcLen,
&props,
&props,
encodedProps,
&encodedPropsSize,
&encodedPropsSize,
0,
&Progress,
&SzAlloc,
&SzAlloc);
&Progress,
&SzAlloc,
&SzAlloc);
if(nResult != SZ_OK)
return;
@ -482,7 +512,7 @@ static void Compress_LZMA(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuf
*pbOutBuffer++ = 0;
// Copy the encoded properties to the output buffer
memcpy(pvOutBuffer, encodedProps, encodedPropsSize);
memcpy(pbOutBuffer, encodedProps, encodedPropsSize);
pbOutBuffer += encodedPropsSize;
// Copy the size of the data
@ -499,18 +529,18 @@ static void Compress_LZMA(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuf
*pcbOutBuffer = (unsigned int)(destLen + LZMA_HEADER_SIZE);
}
static int Decompress_LZMA(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, int cbInBuffer)
static int Decompress_LZMA(char * pbOutBuffer, int * pcbOutBuffer, char * pbInBuffer, int cbInBuffer)
{
ELzmaStatus LzmaStatus;
ISzAlloc SzAlloc;
Byte * destBuffer = (Byte *)pvOutBuffer;
Byte * srcBuffer = (Byte *)pvInBuffer;
Byte * destBuffer = (Byte *)pbOutBuffer;
Byte * srcBuffer = (Byte *)pbInBuffer;
SizeT destLen = *pcbOutBuffer;
SizeT srcLen = cbInBuffer;
SRes nResult;
// There must be at least 0x0E bytes in the buffer
if(srcLen <= LZMA_HEADER_SIZE)
if(srcLen <= LZMA_HEADER_SIZE)
return 0;
// We only accept blocks that have no filter used
@ -524,55 +554,14 @@ static int Decompress_LZMA(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBu
// Perform compression
srcLen = cbInBuffer - LZMA_HEADER_SIZE;
nResult = LzmaDecode(destBuffer,
&destLen,
&destLen,
srcBuffer + LZMA_HEADER_SIZE,
&srcLen,
srcBuffer + 1,
&srcLen,
srcBuffer + 1,
LZMA_PROPS_SIZE,
LZMA_FINISH_END,
&LzmaStatus,
&SzAlloc);
if(nResult != SZ_OK)
return 0;
*pcbOutBuffer = (unsigned int)destLen;
return 1;
}
static int Decompress_LZMA_MPK(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, int cbInBuffer)
{
ELzmaStatus LzmaStatus;
ISzAlloc SzAlloc;
Byte * destBuffer = (Byte *)pvOutBuffer;
Byte * srcBuffer = (Byte *)pvInBuffer;
SizeT destLen = *pcbOutBuffer;
SizeT srcLen = cbInBuffer;
SRes nResult;
BYTE LZMA_Props[] = {0x5D, 0x00, 0x00, 0x00, 0x01};
// There must be at least 0x0E bytes in the buffer
if(srcLen <= sizeof(LZMA_Props))
return 0;
// Verify the props header
if(memcmp(pvInBuffer, LZMA_Props, sizeof(LZMA_Props)))
return 0;
// Fill the callbacks in structures
SzAlloc.Alloc = LZMA_Callback_Alloc;
SzAlloc.Free = LZMA_Callback_Free;
// Perform compression
srcLen = cbInBuffer - sizeof(LZMA_Props);
nResult = LzmaDecode(destBuffer,
&destLen,
srcBuffer + sizeof(LZMA_Props),
&srcLen,
srcBuffer,
sizeof(LZMA_Props),
LZMA_FINISH_END,
&LzmaStatus,
&SzAlloc);
&LzmaStatus,
&SzAlloc);
if(nResult != SZ_OK)
return 0;
@ -586,18 +575,20 @@ static int Decompress_LZMA_MPK(void * pvOutBuffer, int * pcbOutBuffer, void * pv
/* */
/******************************************************************************/
void Compress_SPARSE(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, int cbInBuffer, int * pCmpType, int nCmpLevel)
void Compress_SPARSE(
char * pbOutBuffer,
int * pcbOutBuffer,
char * pbInBuffer,
int cbInBuffer,
int * /* pCmpType */,
int /* nCmpLevel */)
{
// Keep compilers happy
STORMLIB_UNUSED(pCmpType);
STORMLIB_UNUSED(nCmpLevel);
CompressSparse(pvOutBuffer, pcbOutBuffer, pvInBuffer, cbInBuffer);
CompressSparse((unsigned char *)pbOutBuffer, pcbOutBuffer, (unsigned char *)pbInBuffer, cbInBuffer);
}
int Decompress_SPARSE(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, int cbInBuffer)
int Decompress_SPARSE(char * pbOutBuffer, int * pcbOutBuffer, char * pbInBuffer, int cbInBuffer)
{
return DecompressSparse(pvOutBuffer, pcbOutBuffer, pvInBuffer, cbInBuffer);
return DecompressSparse((unsigned char *)pbOutBuffer, pcbOutBuffer, (unsigned char *)pbInBuffer, cbInBuffer);
}
/******************************************************************************/
@ -606,7 +597,13 @@ int Decompress_SPARSE(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer,
/* */
/******************************************************************************/
static void Compress_ADPCM_mono(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, int cbInBuffer, int * pCmpType, int nCmpLevel)
static void Compress_ADPCM_mono(
char * pbOutBuffer,
int * pcbOutBuffer,
char * pbInBuffer,
int cbInBuffer,
int * pCmpType,
int nCmpLevel)
{
// Prepare the compression level for Huffmann compression,
// which will be called as next step
@ -625,12 +622,12 @@ static void Compress_ADPCM_mono(void * pvOutBuffer, int * pcbOutBuffer, void * p
nCmpLevel = 5;
*pCmpType = 7;
}
*pcbOutBuffer = CompressADPCM(pvOutBuffer, *pcbOutBuffer, pvInBuffer, cbInBuffer, 1, nCmpLevel);
*pcbOutBuffer = CompressADPCM((unsigned char *)pbOutBuffer, *pcbOutBuffer, (short *)pbInBuffer, cbInBuffer, 1, nCmpLevel);
}
static int Decompress_ADPCM_mono(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, int cbInBuffer)
static int Decompress_ADPCM_mono(char * pbOutBuffer, int * pcbOutBuffer, char * pbInBuffer, int cbInBuffer)
{
*pcbOutBuffer = DecompressADPCM(pvOutBuffer, *pcbOutBuffer, pvInBuffer, cbInBuffer, 1);
*pcbOutBuffer = DecompressADPCM((unsigned char *)pbOutBuffer, *pcbOutBuffer, (unsigned char *)pbInBuffer, cbInBuffer, 1);
return 1;
}
@ -640,7 +637,13 @@ static int Decompress_ADPCM_mono(void * pvOutBuffer, int * pcbOutBuffer, void *
/* */
/******************************************************************************/
static void Compress_ADPCM_stereo(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, int cbInBuffer, int * pCmpType, int nCmpLevel)
static void Compress_ADPCM_stereo(
char * pbOutBuffer,
int * pcbOutBuffer,
char * pbInBuffer,
int cbInBuffer,
int * pCmpType,
int nCmpLevel)
{
// Prepare the compression level for Huffmann compression,
// which will be called as next step
@ -659,12 +662,12 @@ static void Compress_ADPCM_stereo(void * pvOutBuffer, int * pcbOutBuffer, void *
nCmpLevel = 5;
*pCmpType = 7;
}
*pcbOutBuffer = CompressADPCM(pvOutBuffer, *pcbOutBuffer, pvInBuffer, cbInBuffer, 2, nCmpLevel);
*pcbOutBuffer = CompressADPCM((unsigned char *)pbOutBuffer, *pcbOutBuffer, (short *)pbInBuffer, cbInBuffer, 2, nCmpLevel);
}
static int Decompress_ADPCM_stereo(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, int cbInBuffer)
static int Decompress_ADPCM_stereo(char * pbOutBuffer, int * pcbOutBuffer, char * pbInBuffer, int cbInBuffer)
{
*pcbOutBuffer = DecompressADPCM(pvOutBuffer, *pcbOutBuffer, pvInBuffer, cbInBuffer, 2);
*pcbOutBuffer = DecompressADPCM((unsigned char *)pbOutBuffer, *pcbOutBuffer, (unsigned char *)pbInBuffer, cbInBuffer, 2);
return 1;
}
@ -674,25 +677,24 @@ static int Decompress_ADPCM_stereo(void * pvOutBuffer, int * pcbOutBuffer, void
/* */
/*****************************************************************************/
int WINAPI SCompImplode(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, int cbInBuffer)
int WINAPI SCompImplode(char * pbOutBuffer, int * pcbOutBuffer, char * pbInBuffer, int cbInBuffer)
{
int cbOutBuffer;
int cbOutBuffer = *pcbOutBuffer;
// Check for valid parameters
if(!pcbOutBuffer || *pcbOutBuffer < cbInBuffer || !pvOutBuffer || !pvInBuffer)
if(!pcbOutBuffer || *pcbOutBuffer < cbInBuffer || !pbOutBuffer || !pbInBuffer)
{
SetLastError(ERROR_INVALID_PARAMETER);
return 0;
}
// Perform the compression
cbOutBuffer = *pcbOutBuffer;
Compress_PKLIB(pvOutBuffer, &cbOutBuffer, pvInBuffer, cbInBuffer, NULL, 0);
Compress_PKLIB(pbOutBuffer, &cbOutBuffer, pbInBuffer, cbInBuffer, NULL, 0);
// If the compression was unsuccessful, copy the data as-is
if(cbOutBuffer >= *pcbOutBuffer)
{
memcpy(pvOutBuffer, pvInBuffer, cbInBuffer);
memcpy(pbOutBuffer, pbInBuffer, cbInBuffer);
cbOutBuffer = *pcbOutBuffer;
}
@ -706,34 +708,33 @@ int WINAPI SCompImplode(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffe
/* */
/*****************************************************************************/
int WINAPI SCompExplode(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, int cbInBuffer)
int WINAPI SCompExplode(char * pbOutBuffer, int * pcbOutBuffer, char * pbInBuffer, int cbInBuffer)
{
int cbOutBuffer;
int cbOutBuffer = *pcbOutBuffer;
// Check for valid parameters
if(!pcbOutBuffer || *pcbOutBuffer < cbInBuffer || !pvOutBuffer || !pvInBuffer)
if(!pcbOutBuffer || *pcbOutBuffer < cbInBuffer || !pbOutBuffer || !pbInBuffer)
{
SetLastError(ERROR_INVALID_PARAMETER);
return 0;
}
// If the input length is the same as output length, do nothing.
cbOutBuffer = *pcbOutBuffer;
if(cbInBuffer == cbOutBuffer)
{
// If the buffers are equal, don't copy anything.
if(pvInBuffer == pvOutBuffer)
if(pbInBuffer == pbOutBuffer)
return 1;
memcpy(pvOutBuffer, pvInBuffer, cbInBuffer);
memcpy(pbOutBuffer, pbInBuffer, cbInBuffer);
return 1;
}
// Perform decompression
if(!Decompress_PKLIB(pvOutBuffer, &cbOutBuffer, pvInBuffer, cbInBuffer))
if(!Decompress_PKLIB(pbOutBuffer, &cbOutBuffer, pbInBuffer, cbInBuffer))
{
SetLastError(ERROR_FILE_CORRUPT);
return 0;
return false;
}
*pcbOutBuffer = cbOutBuffer;
@ -757,23 +758,29 @@ int WINAPI SCompExplode(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffe
static TCompressTable cmp_table[] =
{
{MPQ_COMPRESSION_SPARSE, Compress_SPARSE}, // Sparse compression
{MPQ_COMPRESSION_ADPCM_MONO, Compress_ADPCM_mono}, // IMA ADPCM mono compression
{MPQ_COMPRESSION_ADPCM_STEREO, Compress_ADPCM_stereo}, // IMA ADPCM stereo compression
{MPQ_COMPRESSION_HUFFMANN, Compress_huff}, // Huffmann compression
{MPQ_COMPRESSION_ZLIB, Compress_ZLIB}, // Compression with the "zlib" library
{MPQ_COMPRESSION_PKWARE, Compress_PKLIB}, // Compression with Pkware DCL
{MPQ_COMPRESSION_BZIP2, Compress_BZIP2} // Compression Bzip2 library
{MPQ_COMPRESSION_SPARSE, Compress_SPARSE}, // Sparse compression
{MPQ_COMPRESSION_ADPCM_MONO, Compress_ADPCM_mono}, // IMA ADPCM mono compression
{MPQ_COMPRESSION_ADPCM_STEREO, Compress_ADPCM_stereo}, // IMA ADPCM stereo compression
{MPQ_COMPRESSION_HUFFMANN, Compress_huff}, // Huffmann compression
{MPQ_COMPRESSION_ZLIB, Compress_ZLIB}, // Compression with the "zlib" library
{MPQ_COMPRESSION_PKWARE, Compress_PKLIB}, // Compression with Pkware DCL
{MPQ_COMPRESSION_BZIP2, Compress_BZIP2} // Compression Bzip2 library
};
int WINAPI SCompCompress(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, int cbInBuffer, unsigned uCompressionMask, int nCmpType, int nCmpLevel)
int WINAPI SCompCompress(
char * pbOutBuffer,
int * pcbOutBuffer,
char * pbInBuffer,
int cbInBuffer,
unsigned uCompressionMask,
int nCmpType,
int nCmpLevel)
{
COMPRESS CompressFuncArray[0x10]; // Array of compression functions, applied sequentially
unsigned char CompressByte[0x10]; // CompressByte for each method in the CompressFuncArray array
unsigned char * pbWorkBuffer = NULL; // Temporary storage for decompressed data
unsigned char * pbOutBuffer = (unsigned char *)pvOutBuffer;
unsigned char * pbOutput = (unsigned char *)pvOutBuffer;// Current output buffer
unsigned char * pbInput = (unsigned char *)pvInBuffer; // Current input buffer
COMPRESS CompressFuncArray[0x10]; // Array of compression functions, applied sequentially
unsigned char CompressByte[0x10]; // CompressByte for each method in the CompressFuncArray array
char * pbWorkBuffer = NULL; // Temporary storage for decompressed data
char * pbOutput = pbOutBuffer; // Current output buffer
char * pbInput = pbInBuffer; // Current input buffer
int nCompressCount = 0;
int nCompressIndex = 0;
int nAtLeastOneCompressionDone = 0;
@ -782,7 +789,7 @@ int WINAPI SCompCompress(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuff
int nResult = 1;
// Check for valid parameters
if(!pcbOutBuffer || *pcbOutBuffer < cbInBuffer || !pvOutBuffer || !pvInBuffer)
if(!pcbOutBuffer || *pcbOutBuffer < cbInBuffer || !pbOutBuffer || !pbInBuffer)
{
SetLastError(ERROR_INVALID_PARAMETER);
return 0;
@ -831,7 +838,7 @@ int WINAPI SCompCompress(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuff
// If we need to do more than 1 compression, allocate intermediate buffer
if(nCompressCount > 1)
{
pbWorkBuffer = STORM_ALLOC(unsigned char, *pcbOutBuffer);
pbWorkBuffer = STORM_ALLOC(char, *pcbOutBuffer);
if(pbWorkBuffer == NULL)
{
SetLastError(ERROR_NOT_ENOUGH_MEMORY);
@ -877,12 +884,12 @@ int WINAPI SCompCompress(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuff
// If at least one compression succeeded, put the compression
// mask to the begin of the output buffer
if(nAtLeastOneCompressionDone)
*pbOutBuffer = (unsigned char)uCompressionMask;
*pbOutBuffer = (char)uCompressionMask;
*pcbOutBuffer = cbOutBuffer + nAtLeastOneCompressionDone;
}
else
{
memcpy(pvOutBuffer, pvInBuffer, cbInBuffer);
memcpy(pbOutBuffer, pbInBuffer, cbInBuffer);
*pcbOutBuffer = cbInBuffer;
}
@ -912,13 +919,15 @@ static TDecompressTable dcmp_table[] =
{MPQ_COMPRESSION_SPARSE, Decompress_SPARSE} // Sparse decompression
};
int WINAPI SCompDecompress(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, int cbInBuffer)
int WINAPI SCompDecompress(
char * pbOutBuffer,
int * pcbOutBuffer,
char * pbInBuffer,
int cbInBuffer)
{
unsigned char * pbWorkBuffer = NULL;
unsigned char * pbOutBuffer = (unsigned char *)pvOutBuffer;
unsigned char * pbInBuffer = (unsigned char *)pvInBuffer;
unsigned char * pbOutput = (unsigned char *)pvOutBuffer;
unsigned char * pbInput;
char * pbWorkBuffer = NULL; // Temporary storage for decompressed data
char * pbOutput = pbOutBuffer; // Where to store decompressed data
char * pbInput; // Where to store decompressed data
unsigned uCompressionMask; // Decompressions applied to the data
unsigned uCompressionCopy; // Decompressions applied to the data
int cbOutBuffer = *pcbOutBuffer; // Current size of the output buffer
@ -935,8 +944,8 @@ int WINAPI SCompDecompress(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBu
if(cbOutBuffer == cbInBuffer)
{
// If the buffers are equal, don't copy anything.
if(pvInBuffer != pvOutBuffer)
memcpy(pvOutBuffer, pvInBuffer, cbInBuffer);
if(pbInBuffer != pbOutBuffer)
memcpy(pbOutBuffer, pbInBuffer, cbInBuffer);
return 1;
}
@ -972,7 +981,7 @@ int WINAPI SCompDecompress(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBu
// If there is more than one compression, we have to allocate extra buffer
if(nCompressCount > 1)
{
pbWorkBuffer = STORM_ALLOC(unsigned char, cbOutBuffer);
pbWorkBuffer = STORM_ALLOC(char, cbOutBuffer);
if(pbWorkBuffer == NULL)
{
SetLastError(ERROR_NOT_ENOUGH_MEMORY);
@ -992,7 +1001,7 @@ int WINAPI SCompDecompress(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBu
// Get the correct output buffer
pbOutput = (nCompressIndex & 1) ? pbWorkBuffer : pbOutBuffer;
nCompressIndex--;
// Perform the decompression
cbOutBuffer = *pcbOutBuffer;
nResult = dcmp_table[i].Decompress(pbOutput, &cbOutBuffer, pbInput, cbInLength);
@ -1018,12 +1027,15 @@ int WINAPI SCompDecompress(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBu
return nResult;
}
int WINAPI SCompDecompress2(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, int cbInBuffer)
int WINAPI SCompDecompress2(
char * pbOutBuffer,
int * pcbOutBuffer,
char * pbInBuffer,
int cbInBuffer)
{
DECOMPRESS pfnDecompress1 = NULL;
DECOMPRESS pfnDecompress2 = NULL;
unsigned char * pbWorkBuffer = (unsigned char *)pvOutBuffer;
unsigned char * pbInBuffer = (unsigned char *)pvInBuffer;
char * pbWorkBuffer = pbOutBuffer;
int cbWorkBuffer = *pcbOutBuffer;
int nResult;
char CompressionMethod;
@ -1035,8 +1047,8 @@ int WINAPI SCompDecompress2(void * pvOutBuffer, int * pcbOutBuffer, void * pvInB
// If the outputbuffer is as big as input buffer, just copy the block
if(*pcbOutBuffer == cbInBuffer)
{
if(pvOutBuffer != pvInBuffer)
memcpy(pvOutBuffer, pvInBuffer, cbInBuffer);
if(pbOutBuffer != pbInBuffer)
memcpy(pbOutBuffer, pbInBuffer, cbInBuffer);
return 1;
}
@ -1047,35 +1059,35 @@ int WINAPI SCompDecompress2(void * pvOutBuffer, int * pcbOutBuffer, void * pvInB
// We only recognize a fixed set of compression methods
switch((unsigned char)CompressionMethod)
{
case MPQ_COMPRESSION_ZLIB:
pfnDecompress1 = Decompress_ZLIB;
break;
case MPQ_COMPRESSION_ZLIB:
pfnDecompress1 = Decompress_ZLIB;
break;
case MPQ_COMPRESSION_PKWARE:
pfnDecompress1 = Decompress_PKLIB;
break;
case MPQ_COMPRESSION_PKWARE:
pfnDecompress1 = Decompress_PKLIB;
break;
case MPQ_COMPRESSION_BZIP2:
pfnDecompress1 = Decompress_BZIP2;
break;
case MPQ_COMPRESSION_BZIP2:
pfnDecompress1 = Decompress_BZIP2;
break;
case MPQ_COMPRESSION_LZMA:
pfnDecompress1 = Decompress_LZMA;
break;
case MPQ_COMPRESSION_LZMA:
pfnDecompress1 = Decompress_LZMA;
break;
case MPQ_COMPRESSION_SPARSE:
pfnDecompress1 = Decompress_SPARSE;
break;
case MPQ_COMPRESSION_SPARSE:
pfnDecompress1 = Decompress_SPARSE;
break;
case (MPQ_COMPRESSION_SPARSE | MPQ_COMPRESSION_ZLIB):
pfnDecompress1 = Decompress_ZLIB;
pfnDecompress2 = Decompress_SPARSE;
break;
case (MPQ_COMPRESSION_SPARSE | MPQ_COMPRESSION_ZLIB):
pfnDecompress1 = Decompress_ZLIB;
pfnDecompress2 = Decompress_SPARSE;
break;
case (MPQ_COMPRESSION_SPARSE | MPQ_COMPRESSION_BZIP2):
pfnDecompress1 = Decompress_BZIP2;
pfnDecompress2 = Decompress_SPARSE;
break;
case (MPQ_COMPRESSION_SPARSE | MPQ_COMPRESSION_BZIP2):
pfnDecompress1 = Decompress_BZIP2;
pfnDecompress2 = Decompress_SPARSE;
break;
//
// Note: Any combination including MPQ_COMPRESSION_ADPCM_MONO,
@ -1083,25 +1095,15 @@ int WINAPI SCompDecompress2(void * pvOutBuffer, int * pcbOutBuffer, void * pvInB
// is not supported by newer MPQs.
//
case (MPQ_COMPRESSION_ADPCM_MONO | MPQ_COMPRESSION_HUFFMANN):
pfnDecompress1 = Decompress_huff;
pfnDecompress2 = Decompress_ADPCM_mono;
break;
case (MPQ_COMPRESSION_ADPCM_STEREO | MPQ_COMPRESSION_HUFFMANN):
pfnDecompress1 = Decompress_huff;
pfnDecompress2 = Decompress_ADPCM_stereo;
break;
default:
SetLastError(ERROR_FILE_CORRUPT);
return 0;
default:
SetLastError(ERROR_FILE_CORRUPT);
return 0;
}
// If we have to use two decompressions, allocate temporary buffer
if(pfnDecompress2 != NULL)
{
pbWorkBuffer = STORM_ALLOC(unsigned char, *pcbOutBuffer);
pbWorkBuffer = STORM_ALLOC(char, *pcbOutBuffer);
if(pbWorkBuffer == NULL)
{
SetLastError(ERROR_NOT_ENOUGH_MEMORY);
@ -1117,29 +1119,17 @@ int WINAPI SCompDecompress2(void * pvOutBuffer, int * pcbOutBuffer, void * pvInB
{
cbInBuffer = cbWorkBuffer;
cbWorkBuffer = *pcbOutBuffer;
nResult = pfnDecompress2(pvOutBuffer, &cbWorkBuffer, pbWorkBuffer, cbInBuffer);
nResult = pfnDecompress2(pbOutBuffer, &cbWorkBuffer, pbWorkBuffer, cbInBuffer);
}
// Supply the output buffer size
*pcbOutBuffer = cbWorkBuffer;
// Free temporary buffer
if(pbWorkBuffer != pvOutBuffer)
if(pbWorkBuffer != pbOutBuffer)
STORM_FREE(pbWorkBuffer);
if(nResult == 0)
SetLastError(ERROR_FILE_CORRUPT);
return nResult;
}
/*****************************************************************************/
/* */
/* File decompression for MPK archives */
/* */
/*****************************************************************************/
int SCompDecompressMpk(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, int cbInBuffer)
{
return Decompress_LZMA_MPK(pvOutBuffer, pcbOutBuffer, pvInBuffer, cbInBuffer);
}

File diff suppressed because it is too large Load diff

View file

@ -24,444 +24,346 @@ typedef struct _MPQ_ATTRIBUTES_HEADER
// Followed by an array of file times
// Followed by an array of MD5
// Followed by an array of patch bits
// Note: The MD5 in (attributes), if present, is a hash of the entire file.
// In case the file is an incremental patch, it contains MD5 of the file
// after being patched.
} MPQ_ATTRIBUTES_HEADER, *PMPQ_ATTRIBUTES_HEADER;
//-----------------------------------------------------------------------------
// Local functions
static DWORD GetSizeOfAttributesFile(DWORD dwAttrFlags, DWORD dwBlockTableSize)
{
DWORD cbAttrFile = sizeof(MPQ_ATTRIBUTES_HEADER);
// Calculate size of the (attributes) file
if(dwAttrFlags & MPQ_ATTRIBUTE_CRC32)
cbAttrFile += dwBlockTableSize * sizeof(DWORD);
if(dwAttrFlags & MPQ_ATTRIBUTE_FILETIME)
cbAttrFile += dwBlockTableSize * sizeof(ULONGLONG);
if(dwAttrFlags & MPQ_ATTRIBUTE_MD5)
cbAttrFile += dwBlockTableSize * MD5_DIGEST_SIZE;
// The bit array has been created without the last bit belonging to (attributes)
// When the number of files is a multiplier of 8 plus one, then the size of (attributes)
// if 1 byte less than expected.
// Example: wow-update-13164.MPQ: BlockTableSize = 0x62E1, but there's only 0xC5C bytes
if(dwAttrFlags & MPQ_ATTRIBUTE_PATCH_BIT)
cbAttrFile += (dwBlockTableSize + 6) / 8;
return cbAttrFile;
}
static DWORD CheckSizeOfAttributesFile(DWORD cbAttrFile, DWORD dwAttrFlags, DWORD dwBlockTableSize)
{
DWORD cbHeaderSize = sizeof(MPQ_ATTRIBUTES_HEADER);
DWORD cbChecksumSize1 = 0;
DWORD cbChecksumSize2 = 0;
DWORD cbFileTimeSize1 = 0;
DWORD cbFileTimeSize2 = 0;
DWORD cbFileHashSize1 = 0;
DWORD cbFileHashSize2 = 0;
DWORD cbPatchBitSize1 = 0;
DWORD cbPatchBitSize2 = 0;
DWORD cbPatchBitSize3 = 0;
//
// Various variants with the patch bit
//
// interface.MPQ.part from WoW build 10958 has
// the MPQ_ATTRIBUTE_PATCH_BIT set, but there's an array of DWORDs instead.
// The array is filled with zeros, so we don't know what it should contain
//
// Zenith.SC2MAP has the MPQ_ATTRIBUTE_PATCH_BIT set, but the bit array is missing
//
// Elimination Tournament 2.w3x's (attributes) have one entry less
//
// There may be two variants: Either the (attributes) file has full
// number of entries, or has one entry less
//
// Get the expected size of CRC32 array
if(dwAttrFlags & MPQ_ATTRIBUTE_CRC32)
{
cbChecksumSize1 += dwBlockTableSize * sizeof(DWORD);
cbChecksumSize2 += cbChecksumSize1 - sizeof(DWORD);
}
// Get the expected size of FILETIME array
if(dwAttrFlags & MPQ_ATTRIBUTE_FILETIME)
{
cbFileTimeSize1 += dwBlockTableSize * sizeof(ULONGLONG);
cbFileTimeSize2 += cbFileTimeSize1 - sizeof(ULONGLONG);
}
// Get the expected size of MD5 array
if(dwAttrFlags & MPQ_ATTRIBUTE_MD5)
{
cbFileHashSize1 += dwBlockTableSize * MD5_DIGEST_SIZE;
cbFileHashSize2 += cbFileHashSize1 - MD5_DIGEST_SIZE;
}
// Get the expected size of patch bit array
if(dwAttrFlags & MPQ_ATTRIBUTE_PATCH_BIT)
{
cbPatchBitSize1 =
cbPatchBitSize2 = ((dwBlockTableSize + 6) / 8);
cbPatchBitSize3 = dwBlockTableSize * sizeof(DWORD);
}
// Check if the (attributes) file entry count is equal to our file table size
if(cbAttrFile == (cbHeaderSize + cbChecksumSize1 + cbFileTimeSize1 + cbFileHashSize1 + cbPatchBitSize1))
return dwBlockTableSize;
// Check if the (attributes) file entry count is equal to our file table size minus one
if(cbAttrFile == (cbHeaderSize + cbChecksumSize2 + cbFileTimeSize2 + cbFileHashSize2 + cbPatchBitSize2))
return dwBlockTableSize - 1;
// Zenith.SC2MAP has the MPQ_ATTRIBUTE_PATCH_BIT set, but the bit array is missing
if(cbAttrFile == (cbHeaderSize + cbChecksumSize1 + cbFileTimeSize1 + cbFileHashSize1))
return dwBlockTableSize;
// interface.MPQ.part (WoW build 10958) has the MPQ_ATTRIBUTE_PATCH_BIT set
// but there's an array of DWORDs (filled with zeros) instead of array of bits
if(cbAttrFile == (cbHeaderSize + cbChecksumSize1 + cbFileTimeSize1 + cbFileHashSize1 + cbPatchBitSize3))
return dwBlockTableSize;
#ifdef __STORMLIB_TEST__
// Invalid size of the (attributes) file
// Note that many MPQs, especially Warcraft III maps have the size of (attributes) invalid.
// We only perform this check if this is the STORMLIB testprogram itself
// assert(false);
#endif
return 0;
}
static int LoadAttributesFile(TMPQArchive * ha, LPBYTE pbAttrFile, DWORD cbAttrFile)
{
LPBYTE pbAttrFileEnd = pbAttrFile + cbAttrFile;
LPBYTE pbAttrPtr = pbAttrFile;
DWORD dwAttributesEntries = 0;
DWORD i;
// Load and verify the header
if((pbAttrPtr + sizeof(MPQ_ATTRIBUTES_HEADER)) <= pbAttrFileEnd)
{
PMPQ_ATTRIBUTES_HEADER pAttrHeader = (PMPQ_ATTRIBUTES_HEADER)pbAttrPtr;
// Verify the header version
BSWAP_ARRAY32_UNSIGNED(pAttrHeader, sizeof(MPQ_ATTRIBUTES_HEADER));
if(pAttrHeader->dwVersion != MPQ_ATTRIBUTES_V1)
return ERROR_BAD_FORMAT;
// Verify the flags
if(pAttrHeader->dwFlags & ~MPQ_ATTRIBUTE_ALL)
return ERROR_BAD_FORMAT;
// Verify whether file size of (attributes) is expected
dwAttributesEntries = CheckSizeOfAttributesFile(cbAttrFile, pAttrHeader->dwFlags, ha->pHeader->dwBlockTableSize);
if(dwAttributesEntries == 0)
return ERROR_BAD_FORMAT;
ha->dwAttrFlags = pAttrHeader->dwFlags;
pbAttrPtr = (LPBYTE)(pAttrHeader + 1);
}
// Load the CRC32 (if present)
if(ha->dwAttrFlags & MPQ_ATTRIBUTE_CRC32)
{
LPDWORD ArrayCRC32 = (LPDWORD)pbAttrPtr;
DWORD cbArraySize = dwAttributesEntries * sizeof(DWORD);
// Verify if there's enough data
if((pbAttrPtr + cbArraySize) > pbAttrFileEnd)
return ERROR_FILE_CORRUPT;
BSWAP_ARRAY32_UNSIGNED(ArrayCRC32, cbCRC32Size);
for(i = 0; i < dwAttributesEntries; i++)
ha->pFileTable[i].dwCrc32 = ArrayCRC32[i];
pbAttrPtr += cbArraySize;
}
// Load the FILETIME (if present)
if(ha->dwAttrFlags & MPQ_ATTRIBUTE_FILETIME)
{
ULONGLONG * ArrayFileTime = (ULONGLONG *)pbAttrPtr;
DWORD cbArraySize = dwAttributesEntries * sizeof(ULONGLONG);
// Verify if there's enough data
if((pbAttrPtr + cbArraySize) > pbAttrFileEnd)
return ERROR_FILE_CORRUPT;
BSWAP_ARRAY64_UNSIGNED(ArrayFileTime, cbFileTimeSize);
for(i = 0; i < dwAttributesEntries; i++)
ha->pFileTable[i].FileTime = ArrayFileTime[i];
pbAttrPtr += cbArraySize;
}
// Load the MD5 (if present)
if(ha->dwAttrFlags & MPQ_ATTRIBUTE_MD5)
{
LPBYTE ArrayMd5 = pbAttrPtr;
DWORD cbArraySize = dwAttributesEntries * MD5_DIGEST_SIZE;
// Verify if there's enough data
if((pbAttrPtr + cbArraySize) > pbAttrFileEnd)
return ERROR_FILE_CORRUPT;
for(i = 0; i < dwAttributesEntries; i++)
{
memcpy(ha->pFileTable[i].md5, ArrayMd5, MD5_DIGEST_SIZE);
ArrayMd5 += MD5_DIGEST_SIZE;
}
pbAttrPtr += cbArraySize;
}
// Read the patch bit for each file (if present)
if(ha->dwAttrFlags & MPQ_ATTRIBUTE_PATCH_BIT)
{
LPBYTE pbBitArray = pbAttrPtr;
DWORD cbArraySize = (dwAttributesEntries + 7) / 8;
DWORD dwByteIndex = 0;
DWORD dwBitMask = 0x80;
// Verify if there's enough data
if((pbAttrPtr + cbArraySize) == pbAttrFileEnd)
{
for(i = 0; i < dwAttributesEntries; i++)
{
ha->pFileTable[i].dwFlags |= (pbBitArray[dwByteIndex] & dwBitMask) ? MPQ_FILE_PATCH_FILE : 0;
dwByteIndex += (dwBitMask & 0x01);
dwBitMask = (dwBitMask << 0x07) | (dwBitMask >> 0x01);
}
}
}
return ERROR_SUCCESS;
}
static LPBYTE CreateAttributesFile(TMPQArchive * ha, DWORD * pcbAttrFile)
{
PMPQ_ATTRIBUTES_HEADER pAttrHeader;
TFileEntry * pFileTableEnd = ha->pFileTable + ha->pHeader->dwBlockTableSize;
TFileEntry * pFileEntry;
LPBYTE pbAttrFile;
LPBYTE pbAttrPtr;
size_t cbAttrFile;
// Check if we need patch bits in the (attributes) file
for(pFileEntry = ha->pFileTable; pFileEntry < pFileTableEnd; pFileEntry++)
{
if(pFileEntry->dwFlags & MPQ_FILE_PATCH_FILE)
{
ha->dwAttrFlags |= MPQ_ATTRIBUTE_PATCH_BIT;
break;
}
}
// Allocate the buffer for holding the entire (attributes)
// Allocate 1 byte more (See GetSizeOfAttributesFile for more info)
cbAttrFile = GetSizeOfAttributesFile(ha->dwAttrFlags, ha->pHeader->dwBlockTableSize);
pbAttrFile = pbAttrPtr = STORM_ALLOC(BYTE, cbAttrFile + 1);
if(pbAttrFile != NULL)
{
// Make sure it's all zeroed
memset(pbAttrFile, 0, cbAttrFile + 1);
// Write the header of the (attributes) file
pAttrHeader = (PMPQ_ATTRIBUTES_HEADER)pbAttrPtr;
pAttrHeader->dwVersion = BSWAP_INT32_UNSIGNED(100);
pAttrHeader->dwFlags = BSWAP_INT32_UNSIGNED((ha->dwAttrFlags & MPQ_ATTRIBUTE_ALL));
pbAttrPtr = (LPBYTE)(pAttrHeader + 1);
// Write the array of CRC32, if present
if(ha->dwAttrFlags & MPQ_ATTRIBUTE_CRC32)
{
LPDWORD pArrayCRC32 = (LPDWORD)pbAttrPtr;
// Copy from file table
for(pFileEntry = ha->pFileTable; pFileEntry < pFileTableEnd; pFileEntry++)
*pArrayCRC32++ = BSWAP_INT32_UNSIGNED(pFileEntry->dwCrc32);
// Update pointer
pbAttrPtr = (LPBYTE)pArrayCRC32;
}
// Write the array of file time
if(ha->dwAttrFlags & MPQ_ATTRIBUTE_FILETIME)
{
ULONGLONG * pArrayFileTime = (ULONGLONG *)pbAttrPtr;
// Copy from file table
for(pFileEntry = ha->pFileTable; pFileEntry < pFileTableEnd; pFileEntry++)
*pArrayFileTime++ = BSWAP_INT64_UNSIGNED(pFileEntry->FileTime);
// Update pointer
pbAttrPtr = (LPBYTE)pArrayFileTime;
}
// Write the array of MD5s
if(ha->dwAttrFlags & MPQ_ATTRIBUTE_MD5)
{
LPBYTE pbArrayMD5 = pbAttrPtr;
// Copy from file table
for(pFileEntry = ha->pFileTable; pFileEntry < pFileTableEnd; pFileEntry++)
{
memcpy(pbArrayMD5, pFileEntry->md5, MD5_DIGEST_SIZE);
pbArrayMD5 += MD5_DIGEST_SIZE;
}
// Update pointer
pbAttrPtr = pbArrayMD5;
}
// Write the array of patch bits
if(ha->dwAttrFlags & MPQ_ATTRIBUTE_PATCH_BIT)
{
LPBYTE pbBitArray = pbAttrPtr;
DWORD dwByteIndex = 0;
BYTE dwBitMask = 0x80;
// Copy from file table
for(pFileEntry = ha->pFileTable; pFileEntry < pFileTableEnd; pFileEntry++)
{
// Set the bit, if needed
if(pFileEntry->dwFlags & MPQ_FILE_PATCH_FILE)
pbBitArray[dwByteIndex] |= dwBitMask;
// Update bit index and bit mask
dwByteIndex += (dwBitMask & 0x01);
dwBitMask = (dwBitMask << 0x07) | (dwBitMask >> 0x01);
}
// Move past the bit array
pbAttrPtr += (ha->pHeader->dwBlockTableSize + 6) / 8;
}
// Now we expect that current position matches the estimated size
// Note that if there is 1 extra bit above the byte size,
// the table is actually 1 byte shorter in Blizzard MPQs. See GetSizeOfAttributesFile
assert((size_t)(pbAttrPtr - pbAttrFile) == cbAttrFile);
}
// Give away the attributes file
if(pcbAttrFile != NULL)
*pcbAttrFile = (DWORD)cbAttrFile;
return pbAttrFile;
}
//-----------------------------------------------------------------------------
// Public functions (internal use by StormLib)
int SAttrLoadAttributes(TMPQArchive * ha)
{
MPQ_ATTRIBUTES_HEADER AttrHeader;
HANDLE hFile = NULL;
LPBYTE pbAttrFile;
DWORD dwBlockTableSize = ha->pHeader->dwBlockTableSize;
DWORD dwArraySize;
DWORD dwBytesRead;
DWORD cbAttrFile = 0;
int nError = ERROR_FILE_CORRUPT;
DWORD i;
int nError = ERROR_SUCCESS;
// File table must be initialized
assert(ha->pFileTable != NULL);
assert((ha->dwFlags & MPQ_FLAG_BLOCK_TABLE_CUT) == 0);
// Don't load the attributes file from malformed Warcraft III maps
if(ha->dwFlags & MPQ_FLAG_MALFORMED)
return ERROR_FILE_CORRUPT;
// Attempt to open the "(attributes)" file.
// If it's not there, then the archive doesn't support attributes
if(SFileOpenFileEx((HANDLE)ha, ATTRIBUTES_NAME, SFILE_OPEN_ANY_LOCALE, &hFile))
{
// Retrieve and check size of the (attributes) file
cbAttrFile = SFileGetFileSize(hFile, NULL);
// Integer overflow check
if((cbAttrFile + 1) > cbAttrFile)
// Load the content of the attributes file
SFileReadFile(hFile, &AttrHeader, sizeof(MPQ_ATTRIBUTES_HEADER), &dwBytesRead, NULL);
if(dwBytesRead != sizeof(MPQ_ATTRIBUTES_HEADER))
nError = ERROR_FILE_CORRUPT;
// Verify the header of the (attributes) file
if(nError == ERROR_SUCCESS)
{
// Size of the (attributes) might be 1 byte less than expected
// See GetSizeOfAttributesFile for more info
pbAttrFile = STORM_ALLOC(BYTE, cbAttrFile + 1);
if(pbAttrFile != NULL)
AttrHeader.dwVersion = BSWAP_INT32_UNSIGNED(AttrHeader.dwVersion);
AttrHeader.dwFlags = BSWAP_INT32_UNSIGNED(AttrHeader.dwFlags);
ha->dwAttrFlags = AttrHeader.dwFlags;
if(dwBytesRead != sizeof(MPQ_ATTRIBUTES_HEADER))
nError = ERROR_FILE_CORRUPT;
}
// Verify format of the attributes
if(nError == ERROR_SUCCESS)
{
if(AttrHeader.dwVersion > MPQ_ATTRIBUTES_V1)
nError = ERROR_BAD_FORMAT;
}
// Load the CRC32 (if any)
if(nError == ERROR_SUCCESS && (AttrHeader.dwFlags & MPQ_ATTRIBUTE_CRC32))
{
LPDWORD pArrayCRC32 = STORM_ALLOC(DWORD, dwBlockTableSize);
if(pArrayCRC32 != NULL)
{
// Set the last byte to 0 in case the size should be 1 byte greater
pbAttrFile[cbAttrFile] = 0;
dwArraySize = dwBlockTableSize * sizeof(DWORD);
SFileReadFile(hFile, pArrayCRC32, dwArraySize, &dwBytesRead, NULL);
if(dwBytesRead == dwArraySize)
{
for(i = 0; i < dwBlockTableSize; i++)
ha->pFileTable[i].dwCrc32 = BSWAP_INT32_UNSIGNED(pArrayCRC32[i]);
}
else
nError = ERROR_FILE_CORRUPT;
// Load the entire file to memory
SFileReadFile(hFile, pbAttrFile, cbAttrFile, &dwBytesRead, NULL);
if(dwBytesRead == cbAttrFile)
nError = LoadAttributesFile(ha, pbAttrFile, cbAttrFile);
STORM_FREE(pArrayCRC32);
}
else
nError = ERROR_NOT_ENOUGH_MEMORY;
}
// Free the buffer
STORM_FREE(pbAttrFile);
// Read the array of file times
if(nError == ERROR_SUCCESS && (AttrHeader.dwFlags & MPQ_ATTRIBUTE_FILETIME))
{
ULONGLONG * pArrayFileTime = STORM_ALLOC(ULONGLONG, dwBlockTableSize);
if(pArrayFileTime != NULL)
{
dwArraySize = dwBlockTableSize * sizeof(ULONGLONG);
SFileReadFile(hFile, pArrayFileTime, dwArraySize, &dwBytesRead, NULL);
if(dwBytesRead == dwArraySize)
{
for(i = 0; i < dwBlockTableSize; i++)
ha->pFileTable[i].FileTime = BSWAP_INT64_UNSIGNED(pArrayFileTime[i]);
}
else
nError = ERROR_FILE_CORRUPT;
STORM_FREE(pArrayFileTime);
}
else
nError = ERROR_NOT_ENOUGH_MEMORY;
}
// Read the MD5 (if any)
// Note: MD5 array can be incomplete, if it's the last array in the (attributes)
if(nError == ERROR_SUCCESS && (AttrHeader.dwFlags & MPQ_ATTRIBUTE_MD5))
{
unsigned char * pArrayMD5 = STORM_ALLOC(unsigned char, (dwBlockTableSize * MD5_DIGEST_SIZE));
unsigned char * md5;
if(pArrayMD5 != NULL)
{
dwArraySize = dwBlockTableSize * MD5_DIGEST_SIZE;
SFileReadFile(hFile, pArrayMD5, dwArraySize, &dwBytesRead, NULL);
if(dwBytesRead == dwArraySize)
{
md5 = pArrayMD5;
for(i = 0; i < dwBlockTableSize; i++)
{
memcpy(ha->pFileTable[i].md5, md5, MD5_DIGEST_SIZE);
md5 += MD5_DIGEST_SIZE;
}
}
else
nError = ERROR_FILE_CORRUPT;
STORM_FREE(pArrayMD5);
}
else
nError = ERROR_NOT_ENOUGH_MEMORY;
}
// Read the patch bit for each file
if(nError == ERROR_SUCCESS && (AttrHeader.dwFlags & MPQ_ATTRIBUTE_PATCH_BIT))
{
LPBYTE pbBitArray;
DWORD dwByteSize = ((dwBlockTableSize - 1) / 8) + 1;
pbBitArray = STORM_ALLOC(BYTE, dwByteSize);
if(pbBitArray != NULL)
{
SFileReadFile(hFile, pbBitArray, dwByteSize, &dwBytesRead, NULL);
if(dwBytesRead == dwByteSize)
{
for(i = 0; i < dwBlockTableSize; i++)
{
DWORD dwByteIndex = i / 8;
DWORD dwBitMask = 0x80 >> (i & 7);
// Is the appropriate bit set?
if(pbBitArray[dwByteIndex] & dwBitMask)
{
// At the moment, we assume that the patch bit is present
// in both file table and (attributes)
assert((ha->pFileTable[i].dwFlags & MPQ_FILE_PATCH_FILE) != 0);
ha->pFileTable[i].dwFlags |= MPQ_FILE_PATCH_FILE;
}
}
}
else
nError = ERROR_FILE_CORRUPT;
STORM_FREE(pbBitArray);
}
}
// Close the attributes file
//
// Note: Version 7.00 of StormLib saved the (attributes) incorrectly.
// Sometimes, number of entries in the (attributes) was 1 item less
// than block table size.
// If we encounter such table, we will zero all three arrays
//
if(nError != ERROR_SUCCESS)
ha->dwAttrFlags = 0;
// Cleanup & exit
SFileCloseFile(hFile);
}
return nError;
}
// Saves the (attributes) to the MPQ
int SAttrFileSaveToMpq(TMPQArchive * ha)
{
MPQ_ATTRIBUTES_HEADER AttrHeader;
TFileEntry * pFileEntry;
TMPQFile * hf = NULL;
LPBYTE pbAttrFile;
DWORD cbAttrFile = 0;
DWORD dwFinalBlockTableSize = ha->dwFileTableSize;
DWORD dwFileSize = 0;
DWORD dwToWrite;
DWORD i;
int nError = ERROR_SUCCESS;
// Only save the attributes if we should do so
if(ha->dwFileFlags2 != 0)
// Now we have to check if we need patch bits in the (attributes)
if(nError == ERROR_SUCCESS)
{
// At this point, we expect to have at least one reserved entry in the file table
assert(ha->dwFlags & MPQ_FLAG_ATTRIBUTES_NEW);
assert(ha->dwReservedFiles > 0);
// Create the raw data that is to be written to (attributes)
// Note: Blizzard MPQs have entries for (listfile) and (attributes),
// but they are filled empty
pbAttrFile = CreateAttributesFile(ha, &cbAttrFile);
if(pbAttrFile != NULL)
for(i = 0; i < ha->dwFileTableSize; i++)
{
// Determine the real flags for (attributes)
if(ha->dwFileFlags2 == MPQ_FILE_DEFAULT_INTERNAL)
ha->dwFileFlags2 = GetDefaultSpecialFileFlags(cbAttrFile, ha->pHeader->wFormatVersion);
// Create the attributes file in the MPQ
nError = SFileAddFile_Init(ha, ATTRIBUTES_NAME,
0,
cbAttrFile,
LANG_NEUTRAL,
ha->dwFileFlags2 | MPQ_FILE_REPLACEEXISTING,
&hf);
// Write the attributes file raw data to it
if(nError == ERROR_SUCCESS)
if(ha->pFileTable[i].dwFlags & MPQ_FILE_PATCH_FILE)
{
// Write the content of the attributes file to the MPQ
nError = SFileAddFile_Write(hf, pbAttrFile, cbAttrFile, MPQ_COMPRESSION_ZLIB);
SFileAddFile_Finish(hf);
ha->dwAttrFlags |= MPQ_ATTRIBUTE_PATCH_BIT;
break;
}
// Clear the number of reserved files
ha->dwFlags &= ~(MPQ_FLAG_ATTRIBUTES_NEW | MPQ_FLAG_ATTRIBUTES_NONE);
ha->dwReservedFiles--;
// Free the attributes buffer
STORM_FREE(pbAttrFile);
}
else
{
// If the (attributes) file would be empty, its OK
nError = (cbAttrFile == 0) ? ERROR_SUCCESS : ERROR_NOT_ENOUGH_MEMORY;
}
}
// If the (attributes) is not in the file table yet,
// we have to increase the final block table size
pFileEntry = GetFileEntryExact(ha, ATTRIBUTES_NAME, LANG_NEUTRAL);
if(pFileEntry != NULL)
{
// If "(attributes)" file exists, and it's set to 0, then remove it
if(ha->dwAttrFlags == 0)
{
FreeFileEntry(ha, pFileEntry);
return ERROR_SUCCESS;
}
}
else
{
// If we don't want to create file atributes, do nothing
if(ha->dwAttrFlags == 0)
return ERROR_SUCCESS;
// Check where the file entry is going to be allocated.
// If at the end of the file table, we have to increment
// the expected size of the (attributes) file.
pFileEntry = FindFreeFileEntry(ha);
if(pFileEntry == ha->pFileTable + ha->dwFileTableSize)
dwFinalBlockTableSize++;
}
// Calculate the size of the attributes file
if(nError == ERROR_SUCCESS)
{
dwFileSize = sizeof(MPQ_ATTRIBUTES_HEADER); // Header
if(ha->dwAttrFlags & MPQ_ATTRIBUTE_CRC32)
dwFileSize += dwFinalBlockTableSize * sizeof(DWORD);
if(ha->dwAttrFlags & MPQ_ATTRIBUTE_FILETIME)
dwFileSize += dwFinalBlockTableSize * sizeof(ULONGLONG);
if(ha->dwAttrFlags & MPQ_ATTRIBUTE_MD5)
dwFileSize += dwFinalBlockTableSize * MD5_DIGEST_SIZE;
if(ha->dwAttrFlags & MPQ_ATTRIBUTE_PATCH_BIT)
dwFileSize += ((dwFinalBlockTableSize - 1)) / 8 + 1;
}
// Determine the flags for (attributes)
if(ha->dwFileFlags2 == 0)
ha->dwFileFlags2 = GetDefaultSpecialFileFlags(ha, dwFileSize);
// Create the attributes file in the MPQ
nError = SFileAddFile_Init(ha, ATTRIBUTES_NAME,
0,
dwFileSize,
LANG_NEUTRAL,
ha->dwFileFlags2 | MPQ_FILE_REPLACEEXISTING,
&hf);
// Write all parts of the (attributes) file
if(nError == ERROR_SUCCESS)
{
assert(ha->dwFileTableSize == dwFinalBlockTableSize);
// Note that we don't know what the new bit (0x08) means.
AttrHeader.dwVersion = BSWAP_INT32_UNSIGNED(100);
AttrHeader.dwFlags = BSWAP_INT32_UNSIGNED((ha->dwAttrFlags & MPQ_ATTRIBUTE_ALL));
dwToWrite = sizeof(MPQ_ATTRIBUTES_HEADER);
nError = SFileAddFile_Write(hf, &AttrHeader, dwToWrite, MPQ_COMPRESSION_ZLIB);
}
// Write the array of CRC32
if(nError == ERROR_SUCCESS && (ha->dwAttrFlags & MPQ_ATTRIBUTE_CRC32))
{
LPDWORD pArrayCRC32 = STORM_ALLOC(DWORD, dwFinalBlockTableSize);
if(pArrayCRC32 != NULL)
{
// Copy from file table
for(i = 0; i < ha->dwFileTableSize; i++)
pArrayCRC32[i] = BSWAP_INT32_UNSIGNED(ha->pFileTable[i].dwCrc32);
dwToWrite = ha->dwFileTableSize * sizeof(DWORD);
nError = SFileAddFile_Write(hf, pArrayCRC32, dwToWrite, MPQ_COMPRESSION_ZLIB);
STORM_FREE(pArrayCRC32);
}
}
// Write the array of file time
if(nError == ERROR_SUCCESS && (ha->dwAttrFlags & MPQ_ATTRIBUTE_FILETIME))
{
ULONGLONG * pArrayFileTime = STORM_ALLOC(ULONGLONG, ha->dwFileTableSize);
if(pArrayFileTime != NULL)
{
// Copy from file table
for(i = 0; i < ha->dwFileTableSize; i++)
pArrayFileTime[i] = BSWAP_INT64_UNSIGNED(ha->pFileTable[i].FileTime);
dwToWrite = ha->dwFileTableSize * sizeof(ULONGLONG);
nError = SFileAddFile_Write(hf, pArrayFileTime, dwToWrite, MPQ_COMPRESSION_ZLIB);
STORM_FREE(pArrayFileTime);
}
}
// Write the array of MD5s
if(nError == ERROR_SUCCESS && (ha->dwAttrFlags & MPQ_ATTRIBUTE_MD5))
{
char * pArrayMD5 = STORM_ALLOC(char, ha->dwFileTableSize * MD5_DIGEST_SIZE);
if(pArrayMD5 != NULL)
{
// Copy from file table
for(i = 0; i < ha->dwFileTableSize; i++)
memcpy(&pArrayMD5[i * MD5_DIGEST_SIZE], ha->pFileTable[i].md5, MD5_DIGEST_SIZE);
dwToWrite = ha->dwFileTableSize * MD5_DIGEST_SIZE;
nError = SFileAddFile_Write(hf, pArrayMD5, dwToWrite, MPQ_COMPRESSION_ZLIB);
STORM_FREE(pArrayMD5);
}
}
// Write the array of patch bits
if(nError == ERROR_SUCCESS && (ha->dwAttrFlags & MPQ_ATTRIBUTE_PATCH_BIT))
{
LPBYTE pbBitArray;
DWORD dwByteSize = ((ha->dwFileTableSize - 1) / 8) + 1;
pbBitArray = STORM_ALLOC(BYTE, dwByteSize);
if(pbBitArray != NULL)
{
memset(pbBitArray, 0, dwByteSize);
for(i = 0; i < ha->dwFileTableSize; i++)
{
DWORD dwByteIndex = i / 8;
DWORD dwBitMask = 0x80 >> (i & 7);
if(ha->pFileTable[i].dwFlags & MPQ_FILE_PATCH_FILE)
pbBitArray[dwByteIndex] |= dwBitMask;
}
nError = SFileAddFile_Write(hf, pbBitArray, dwByteSize, MPQ_COMPRESSION_ZLIB);
STORM_FREE(pbBitArray);
}
}
// Finalize the file in the archive
if(hf != NULL)
{
SFileAddFile_Finish(hf);
}
if(nError == ERROR_SUCCESS)
ha->dwFlags &= ~MPQ_FLAG_INV_ATTRIBUTES;
return nError;
}
@ -473,7 +375,7 @@ DWORD WINAPI SFileGetAttributes(HANDLE hMpq)
TMPQArchive * ha = (TMPQArchive *)hMpq;
// Verify the parameters
if(!IsValidMpqHandle(hMpq))
if(!IsValidMpqHandle(ha))
{
SetLastError(ERROR_INVALID_PARAMETER);
return SFILE_INVALID_ATTRIBUTES;
@ -487,7 +389,7 @@ bool WINAPI SFileSetAttributes(HANDLE hMpq, DWORD dwFlags)
TMPQArchive * ha = (TMPQArchive *)hMpq;
// Verify the parameters
if(!IsValidMpqHandle(hMpq))
if(!IsValidMpqHandle(ha))
{
SetLastError(ERROR_INVALID_PARAMETER);
return false;
@ -532,12 +434,12 @@ bool WINAPI SFileUpdateFileAttributes(HANDLE hMpq, const char * szFileName)
}
// Attempt to open the file
if(!SFileOpenFileEx(hMpq, szFileName, SFILE_OPEN_BASE_FILE, &hFile))
if(!SFileOpenFileEx(hMpq, szFileName, SFILE_OPEN_FROM_MPQ, &hFile))
return false;
// Get the file size
hf = (TMPQFile *)hFile;
dwTotalBytes = hf->pFileEntry->dwFileSize;
SFileGetFileInfo(hFile, SFILE_INFO_FILE_SIZE, &dwTotalBytes, sizeof(DWORD), NULL);
// Initialize the CRC32 and MD5 contexts
md5_init(&md5_state);

View file

@ -7,36 +7,70 @@
/* -------- ---- --- ------- */
/* 14.04.03 1.00 Lad Splitted from SFileCreateArchiveEx.cpp */
/* 19.11.03 1.01 Dan Big endian handling */
/* 21.04.13 1.02 Dea Compact callback now part of TMPQArchive */
/*****************************************************************************/
#define __STORMLIB_SELF__
#include "StormLib.h"
#include "StormCommon.h"
/*****************************************************************************/
/* Local variables */
/*****************************************************************************/
static SFILE_COMPACT_CALLBACK CompactCB = NULL;
static ULONGLONG CompactBytesProcessed = 0;
static ULONGLONG CompactTotalBytes = 0;
static void * pvUserData = NULL;
/*****************************************************************************/
/* Local functions */
/*****************************************************************************/
static int CheckIfAllFilesKnown(TMPQArchive * ha)
static int CheckIfAllFilesKnown(TMPQArchive * ha, const char * szListFile, LPDWORD pFileKeys)
{
TFileEntry * pFileTableEnd = ha->pFileTable + ha->dwFileTableSize;
TFileEntry * pFileTableEnd;
TFileEntry * pFileEntry;
DWORD dwBlockIndex = 0;
int nError = ERROR_SUCCESS;
// Add the listfile to the MPQ
if(nError == ERROR_SUCCESS && szListFile != NULL)
{
// Notify the user
if(CompactCB != NULL)
CompactCB(pvUserData, CCB_CHECKING_FILES, CompactBytesProcessed, CompactTotalBytes);
nError = SFileAddListFile((HANDLE)ha, szListFile);
}
// Verify the file table
if(nError == ERROR_SUCCESS)
{
pFileTableEnd = ha->pFileTable + ha->dwFileTableSize;
for(pFileEntry = ha->pFileTable; pFileEntry < pFileTableEnd; pFileEntry++, dwBlockIndex++)
{
// If there is an existing entry in the file table, check its name
if(pFileEntry->dwFlags & MPQ_FILE_EXISTS)
{
// The name must be valid and must not be a pseudo-name
if(pFileEntry->szFileName == NULL || IsPseudoFileName(pFileEntry->szFileName, NULL))
if(pFileEntry->szFileName != NULL && !IsPseudoFileName(pFileEntry->szFileName, NULL))
{
nError = ERROR_UNKNOWN_FILE_NAMES;
DWORD dwFileKey = 0;
// Resolve the file key. Use plain file name for it
if(pFileEntry->dwFlags & MPQ_FILE_ENCRYPTED)
{
dwFileKey = DecryptFileKey(pFileEntry->szFileName,
pFileEntry->ByteOffset,
pFileEntry->dwFileSize,
pFileEntry->dwFlags);
}
// Give the key to the caller
if(pFileKeys != NULL)
pFileKeys[dwBlockIndex] = dwFileKey;
}
else
{
nError = ERROR_CAN_NOT_COMPLETE;
break;
}
}
@ -46,59 +80,11 @@ static int CheckIfAllFilesKnown(TMPQArchive * ha)
return nError;
}
static int CheckIfAllKeysKnown(TMPQArchive * ha, const TCHAR * szListFile, LPDWORD pFileKeys)
{
TFileEntry * pFileTableEnd = ha->pFileTable + ha->dwFileTableSize;
TFileEntry * pFileEntry;
DWORD dwBlockIndex = 0;
int nError = ERROR_SUCCESS;
// Add the listfile to the MPQ
if(szListFile != NULL)
{
// Notify the user
if(ha->pfnCompactCB != NULL)
ha->pfnCompactCB(ha->pvCompactUserData, CCB_CHECKING_FILES, ha->CompactBytesProcessed, ha->CompactTotalBytes);
nError = SFileAddListFile((HANDLE)ha, szListFile);
}
// Verify the file table
if(nError == ERROR_SUCCESS)
{
for(pFileEntry = ha->pFileTable; pFileEntry < pFileTableEnd; pFileEntry++, dwBlockIndex++)
{
// If the file exists and it's encrypted
if(pFileEntry->dwFlags & MPQ_FILE_EXISTS)
{
// If we know the name, we decrypt the file key from the file name
if(pFileEntry->szFileName != NULL && !IsPseudoFileName(pFileEntry->szFileName, NULL))
{
// Give the key to the caller
pFileKeys[dwBlockIndex] = DecryptFileKey(pFileEntry->szFileName,
pFileEntry->ByteOffset,
pFileEntry->dwFileSize,
pFileEntry->dwFlags);
continue;
}
// We don't know the encryption key of this file,
// thus we cannot compact the file
nError = ERROR_UNKNOWN_FILE_NAMES;
break;
}
}
}
return nError;
}
static int CopyNonMpqData(
TMPQArchive * ha,
TFileStream * pSrcStream,
TFileStream * pTrgStream,
ULONGLONG & ByteOffset,
ULONGLONG & ByteCount)
TFileStream * pSrcStream,
TFileStream * pTrgStream,
ULONGLONG & ByteOffset,
ULONGLONG & ByteCount)
{
ULONGLONG DataSize = ByteCount;
DWORD dwToRead;
@ -128,10 +114,10 @@ static int CopyNonMpqData(
}
// Update the progress
if(ha->pfnCompactCB != NULL)
if(CompactCB != NULL)
{
ha->CompactBytesProcessed += dwToRead;
ha->pfnCompactCB(ha->pvCompactUserData, CCB_COPYING_NON_MPQ_DATA, ha->CompactBytesProcessed, ha->CompactTotalBytes);
CompactBytesProcessed += dwToRead;
CompactCB(pvUserData, CCB_COPYING_NON_MPQ_DATA, CompactBytesProcessed, CompactTotalBytes);
}
// Decrement the number of data to be copied
@ -139,18 +125,18 @@ static int CopyNonMpqData(
DataSize -= dwToRead;
}
return nError;
return ERROR_SUCCESS;
}
// Copies all file sectors into another archive.
static int CopyMpqFileSectors(
TMPQArchive * ha,
TMPQFile * hf,
TFileStream * pNewStream,
ULONGLONG MpqFilePos) // MPQ file position in the new archive
TMPQArchive * ha,
TMPQFile * hf,
TFileStream * pNewStream)
{
TFileEntry * pFileEntry = hf->pFileEntry;
ULONGLONG RawFilePos; // Used for calculating sector offset in the old MPQ archive
ULONGLONG MpqFilePos; // MPQ file position in the new archive
DWORD dwBytesToCopy = pFileEntry->dwCmpSize;
DWORD dwPatchSize = 0; // Size of patch header
DWORD dwFileKey1 = 0; // File key used for decryption
@ -158,7 +144,11 @@ static int CopyMpqFileSectors(
DWORD dwCmpSize = 0; // Compressed file size, including patch header
int nError = ERROR_SUCCESS;
// Resolve decryption keys. Note that the file key given
// Remember the position in the destination file
FileStream_GetPos(pNewStream, &MpqFilePos);
MpqFilePos -= ha->MpqPos;
// Resolve decryption keys. Note that the file key given
// in the TMPQFile structure also includes the key adjustment
if(nError == ERROR_SUCCESS && (pFileEntry->dwFlags & MPQ_FILE_ENCRYPTED))
{
@ -184,11 +174,11 @@ static int CopyMpqFileSectors(
// If we have to save sector offset table, do it.
if(nError == ERROR_SUCCESS && hf->SectorOffsets != NULL)
{
DWORD * SectorOffsetsCopy = STORM_ALLOC(DWORD, hf->SectorOffsets[0] / sizeof(DWORD));
DWORD * SectorOffsetsCopy = (DWORD *)STORM_ALLOC(BYTE, hf->SectorOffsets[0]);
DWORD dwSectorOffsLen = hf->SectorOffsets[0];
assert((pFileEntry->dwFlags & MPQ_FILE_SINGLE_UNIT) == 0);
assert(pFileEntry->dwFlags & MPQ_FILE_COMPRESS_MASK);
assert(pFileEntry->dwFlags & MPQ_FILE_COMPRESSED);
if(SectorOffsetsCopy == NULL)
nError = ERROR_NOT_ENOUGH_MEMORY;
@ -209,10 +199,10 @@ static int CopyMpqFileSectors(
}
// Update compact progress
if(ha->pfnCompactCB != NULL)
if(CompactCB != NULL)
{
ha->CompactBytesProcessed += dwSectorOffsLen;
ha->pfnCompactCB(ha->pvCompactUserData, CCB_COMPACTING_FILES, ha->CompactBytesProcessed, ha->CompactTotalBytes);
CompactBytesProcessed += dwSectorOffsLen;
CompactCB(pvUserData, CCB_COMPACTING_FILES, CompactBytesProcessed, CompactTotalBytes);
}
STORM_FREE(SectorOffsetsCopy);
@ -239,8 +229,8 @@ static int CopyMpqFileSectors(
dwRawDataInSector = dwBytesToCopy;
// Calculate the raw file offset of the file sector
RawFilePos = CalculateRawSectorOffset(hf, dwRawByteOffset);
CalculateRawSectorOffset(RawFilePos, hf, dwRawByteOffset);
// Read the file sector
if(!FileStream_Read(ha->pStream, &RawFilePos, hf->pbFileSector, dwRawDataInSector))
{
@ -249,7 +239,7 @@ static int CopyMpqFileSectors(
}
// If necessary, re-encrypt the sector
// Note: Recompression is not necessary here. Unlike encryption,
// Note: Recompression is not necessary here. Unlike encryption,
// the compression does not depend on the position of the file in MPQ.
if((pFileEntry->dwFlags & MPQ_FILE_ENCRYPTED) && dwFileKey1 != dwFileKey2)
{
@ -267,10 +257,10 @@ static int CopyMpqFileSectors(
}
// Update compact progress
if(ha->pfnCompactCB != NULL)
if(CompactCB != NULL)
{
ha->CompactBytesProcessed += dwRawDataInSector;
ha->pfnCompactCB(ha->pvCompactUserData, CCB_COMPACTING_FILES, ha->CompactBytesProcessed, ha->CompactTotalBytes);
CompactBytesProcessed += dwRawDataInSector;
CompactCB(pvUserData, CCB_COMPACTING_FILES, CompactBytesProcessed, CompactTotalBytes);
}
// Adjust byte counts
@ -295,10 +285,10 @@ static int CopyMpqFileSectors(
nError = GetLastError();
// Update compact progress
if(ha->pfnCompactCB != NULL)
if(CompactCB != NULL)
{
ha->CompactBytesProcessed += dwCrcLength;
ha->pfnCompactCB(ha->pvCompactUserData, CCB_COMPACTING_FILES, ha->CompactBytesProcessed, ha->CompactTotalBytes);
CompactBytesProcessed += dwCrcLength;
CompactCB(pvUserData, CCB_COMPACTING_FILES, CompactBytesProcessed, CompactTotalBytes);
}
// Size of the CRC block is also included in the compressed file size
@ -328,6 +318,7 @@ static int CopyMpqFileSectors(
// Include these extra data in the compressed size
dwCmpSize += dwBytesToCopy;
dwBytesToCopy = 0;
STORM_FREE(pbExtraData);
}
else
@ -337,30 +328,36 @@ static int CopyMpqFileSectors(
// Write the MD5's of the raw file data, if needed
if(nError == ERROR_SUCCESS && ha->pHeader->dwRawChunkSize != 0)
{
nError = WriteMpqDataMD5(pNewStream,
nError = WriteMpqDataMD5(pNewStream,
ha->MpqPos + MpqFilePos,
pFileEntry->dwCmpSize,
ha->pHeader->dwRawChunkSize);
}
// Verify the number of bytes written
// Update file position in the block table
if(nError == ERROR_SUCCESS)
{
// At this point, number of bytes written should be exactly
// the same like the compressed file size. If it isn't,
// there's something wrong (an unknown archive version, MPQ malformation, ...)
//
// there's something wrong (an unknown archive version, MPQ protection, ...)
//
// Note: Diablo savegames have very weird layout, and the file "hero"
// seems to have improper compressed size. Instead of real compressed size,
// the "dwCmpSize" member of the block table entry contains
// uncompressed size of file data + size of the sector table.
// If we compact the archive, Diablo will refuse to load the game
// Seems like some sort of protection to me.
//
// Note: Some patch files in WOW patches don't count the patch header
// into compressed size
//
if(!(dwCmpSize <= pFileEntry->dwCmpSize && pFileEntry->dwCmpSize <= dwCmpSize + dwPatchSize))
if(dwCmpSize <= pFileEntry->dwCmpSize && pFileEntry->dwCmpSize <= dwCmpSize + dwPatchSize)
{
// Note: DO NOT update the compressed size in the file entry, no matter how bad it is.
pFileEntry->ByteOffset = MpqFilePos;
}
else
{
nError = ERROR_FILE_CORRUPT;
assert(false);
@ -375,7 +372,6 @@ static int CopyMpqFiles(TMPQArchive * ha, LPDWORD pFileKeys, TFileStream * pNewS
TFileEntry * pFileTableEnd = ha->pFileTable + ha->dwFileTableSize;
TFileEntry * pFileEntry;
TMPQFile * hf = NULL;
ULONGLONG MpqFilePos;
int nError = ERROR_SUCCESS;
// Walk through all files and write them to the destination MPQ archive
@ -383,158 +379,94 @@ static int CopyMpqFiles(TMPQArchive * ha, LPDWORD pFileKeys, TFileStream * pNewS
{
// Copy all the file sectors
// Only do that when the file has nonzero size
if((pFileEntry->dwFlags & MPQ_FILE_EXISTS))
if((pFileEntry->dwFlags & MPQ_FILE_EXISTS) && pFileEntry->dwFileSize != 0)
{
// Query the position where the destination file will be
FileStream_GetPos(pNewStream, &MpqFilePos);
MpqFilePos = MpqFilePos - ha->MpqPos;
// Allocate structure for the MPQ file
hf = CreateMpqFile(ha);
if(hf == NULL)
return ERROR_NOT_ENOUGH_MEMORY;
// Perform file copy ONLY if the file has nonzero size
if(pFileEntry->dwFileSize != 0)
// Store file entry
hf->pFileEntry = pFileEntry;
// Set the raw file position
hf->MpqFilePos = pFileEntry->ByteOffset;
hf->RawFilePos = ha->MpqPos + hf->MpqFilePos;
// Set the file decryption key
hf->dwFileKey = pFileKeys[pFileEntry - ha->pFileTable];
hf->dwDataSize = pFileEntry->dwFileSize;
// If the file is a patch file, load the patch header
if(pFileEntry->dwFlags & MPQ_FILE_PATCH_FILE)
{
// Allocate structure for the MPQ file
hf = CreateFileHandle(ha, pFileEntry);
if(hf == NULL)
return ERROR_NOT_ENOUGH_MEMORY;
// Set the file decryption key
hf->dwFileKey = pFileKeys[pFileEntry - ha->pFileTable];
// If the file is a patch file, load the patch header
if(pFileEntry->dwFlags & MPQ_FILE_PATCH_FILE)
{
nError = AllocatePatchInfo(hf, true);
if(nError != ERROR_SUCCESS)
break;
}
// Allocate buffers for file sector and sector offset table
nError = AllocateSectorBuffer(hf);
nError = AllocatePatchInfo(hf, true);
if(nError != ERROR_SUCCESS)
break;
// Also allocate sector offset table and sector checksum table
nError = AllocateSectorOffsets(hf, true);
if(nError != ERROR_SUCCESS)
break;
// Also load sector checksums, if any
if(pFileEntry->dwFlags & MPQ_FILE_SECTOR_CRC)
{
nError = AllocateSectorChecksums(hf, false);
if(nError != ERROR_SUCCESS)
break;
}
// Copy all file sectors
nError = CopyMpqFileSectors(ha, hf, pNewStream, MpqFilePos);
if(nError != ERROR_SUCCESS)
break;
// Free buffers. This also sets "hf" to NULL.
FreeFileHandle(hf);
}
// Note: DO NOT update the compressed size in the file entry, no matter how bad it is.
pFileEntry->ByteOffset = MpqFilePos;
// Allocate buffers for file sector and sector offset table
nError = AllocateSectorBuffer(hf);
if(nError != ERROR_SUCCESS)
break;
// Also allocate sector offset table and sector checksum table
nError = AllocateSectorOffsets(hf, true);
if(nError != ERROR_SUCCESS)
break;
// Also load sector checksums, if any
if(pFileEntry->dwFlags & MPQ_FILE_SECTOR_CRC)
{
nError = AllocateSectorChecksums(hf, false);
if(nError != ERROR_SUCCESS)
break;
}
// Copy all file sectors
nError = CopyMpqFileSectors(ha, hf, pNewStream);
if(nError != ERROR_SUCCESS)
break;
// Free buffers. This also sets "hf" to NULL.
FreeMPQFile(hf);
}
}
// Cleanup and exit
if(hf != NULL)
FreeFileHandle(hf);
FreeMPQFile(hf);
return nError;
}
/*****************************************************************************/
/* Public functions */
/*****************************************************************************/
//-----------------------------------------------------------------------------
// Changing hash table size
DWORD WINAPI SFileGetMaxFileCount(HANDLE hMpq)
bool WINAPI SFileSetCompactCallback(HANDLE /* hMpq */, SFILE_COMPACT_CALLBACK aCompactCB, void * pvData)
{
TMPQArchive * ha = (TMPQArchive *)hMpq;
return ha->dwMaxFileCount;
}
bool WINAPI SFileSetMaxFileCount(HANDLE hMpq, DWORD dwMaxFileCount)
{
TMPQArchive * ha = (TMPQArchive *)hMpq;
DWORD dwNewHashTableSize = 0;
int nError = ERROR_SUCCESS;
// Test the valid parameters
if(!IsValidMpqHandle(hMpq))
nError = ERROR_INVALID_HANDLE;
if(ha->dwFlags & MPQ_FLAG_READ_ONLY)
nError = ERROR_ACCESS_DENIED;
if(dwMaxFileCount < ha->dwFileTableSize)
nError = ERROR_DISK_FULL;
// ALL file names must be known in order to be able to rebuild hash table
if(nError == ERROR_SUCCESS && ha->pHashTable != NULL)
{
nError = CheckIfAllFilesKnown(ha);
if(nError == ERROR_SUCCESS)
{
// Calculate the hash table size for the new file limit
dwNewHashTableSize = GetNearestPowerOfTwo(dwMaxFileCount);
// Rebuild both file tables
nError = RebuildFileTable(ha, dwNewHashTableSize);
}
}
// We always have to rebuild the (attributes) file due to file table change
if(nError == ERROR_SUCCESS)
{
// Invalidate (listfile) and (attributes)
InvalidateInternalFiles(ha);
// Rebuild the HET table, if we have any
if(ha->pHetTable != NULL)
nError = RebuildHetTable(ha);
}
// Return the error
if(nError != ERROR_SUCCESS)
SetLastError(nError);
return (nError == ERROR_SUCCESS);
CompactCB = aCompactCB;
pvUserData = pvData;
return true;
}
//-----------------------------------------------------------------------------
// Archive compacting
bool WINAPI SFileSetCompactCallback(HANDLE hMpq, SFILE_COMPACT_CALLBACK pfnCompactCB, void * pvUserData)
{
TMPQArchive * ha = (TMPQArchive *) hMpq;
if (!IsValidMpqHandle(hMpq))
{
SetLastError(ERROR_INVALID_HANDLE);
return false;
}
ha->pfnCompactCB = pfnCompactCB;
ha->pvCompactUserData = pvUserData;
return true;
}
bool WINAPI SFileCompactArchive(HANDLE hMpq, const TCHAR * szListFile, bool /* bReserved */)
bool WINAPI SFileCompactArchive(HANDLE hMpq, const char * szListFile, bool /* bReserved */)
{
TFileStream * pTempStream = NULL;
TMPQArchive * ha = (TMPQArchive *)hMpq;
ULONGLONG ByteOffset;
ULONGLONG ByteCount;
LPDWORD pFileKeys = NULL;
TCHAR szTempFile[MAX_PATH+1] = _T("");
TCHAR szTempFile[MAX_PATH] = _T("");
TCHAR * szTemp = NULL;
int nError = ERROR_SUCCESS;
// Test the valid parameters
if(!IsValidMpqHandle(hMpq))
if(!IsValidMpqHandle(ha))
nError = ERROR_INVALID_HANDLE;
if(ha->dwFlags & MPQ_FLAG_READ_ONLY)
nError = ERROR_ACCESS_DENIED;
@ -559,20 +491,21 @@ bool WINAPI SFileCompactArchive(HANDLE hMpq, const TCHAR * szListFile, bool /* b
if(nError == ERROR_SUCCESS)
{
// Initialize the progress variables for compact callback
FileStream_GetSize(ha->pStream, &(ha->CompactTotalBytes));
ha->CompactBytesProcessed = 0;
nError = CheckIfAllKeysKnown(ha, szListFile, pFileKeys);
FileStream_GetSize(ha->pStream, &CompactTotalBytes);
CompactBytesProcessed = 0;
nError = CheckIfAllFilesKnown(ha, szListFile, pFileKeys);
}
// Get the temporary file name and create it
if(nError == ERROR_SUCCESS)
{
// Create temporary file name. Prevent buffer overflow
StringCopy(szTempFile, _countof(szTempFile), FileStream_GetFileName(ha->pStream));
StringCat(szTempFile, _countof(szTempFile), _T(".tmp"));
_tcscpy(szTempFile, FileStream_GetFileName(ha->pStream));
if((szTemp = _tcsrchr(szTempFile, '.')) != NULL)
_tcscpy(szTemp + 1, _T("mp_"));
else
_tcscat(szTempFile, _T("_"));
// Create temporary file
pTempStream = FileStream_CreateFile(szTempFile, STREAM_PROVIDER_FLAT | BASE_PROVIDER_FILE);
pTempStream = FileStream_CreateFile(szTempFile, STREAM_PROVIDER_LINEAR | BASE_PROVIDER_FILE);
if(pTempStream == NULL)
nError = GetLastError();
}
@ -581,12 +514,12 @@ bool WINAPI SFileCompactArchive(HANDLE hMpq, const TCHAR * szListFile, bool /* b
if(nError == ERROR_SUCCESS && ha->UserDataPos != 0)
{
// Inform the application about the progress
if(ha->pfnCompactCB != NULL)
ha->pfnCompactCB(ha->pvCompactUserData, CCB_COPYING_NON_MPQ_DATA, ha->CompactBytesProcessed, ha->CompactTotalBytes);
if(CompactCB != NULL)
CompactCB(pvUserData, CCB_COPYING_NON_MPQ_DATA, CompactBytesProcessed, CompactTotalBytes);
ByteOffset = 0;
ByteCount = ha->UserDataPos;
nError = CopyNonMpqData(ha, ha->pStream, pTempStream, ByteOffset, ByteCount);
nError = CopyNonMpqData(ha->pStream, pTempStream, ByteOffset, ByteCount);
}
// Write the MPQ user data (if any)
@ -600,49 +533,61 @@ bool WINAPI SFileCompactArchive(HANDLE hMpq, const TCHAR * szListFile, bool /* b
assert(ha->pUserData != NULL);
assert(ha->pUserData->dwHeaderOffs == ByteCount);
nError = CopyNonMpqData(ha, ha->pStream, pTempStream, ByteOffset, ByteCount);
nError = CopyNonMpqData(ha->pStream, pTempStream, ByteOffset, ByteCount);
}
// Write the MPQ header
if(nError == ERROR_SUCCESS)
{
TMPQHeader SaveMpqHeader;
// Remember the header size before swapping
DWORD dwBytesToWrite = ha->pHeader->dwHeaderSize;
// Write the MPQ header to the file
memcpy(&SaveMpqHeader, ha->pHeader, ha->pHeader->dwHeaderSize);
BSWAP_TMPQHEADER(&SaveMpqHeader, MPQ_FORMAT_VERSION_1);
BSWAP_TMPQHEADER(&SaveMpqHeader, MPQ_FORMAT_VERSION_2);
BSWAP_TMPQHEADER(&SaveMpqHeader, MPQ_FORMAT_VERSION_3);
BSWAP_TMPQHEADER(&SaveMpqHeader, MPQ_FORMAT_VERSION_4);
if(!FileStream_Write(pTempStream, NULL, &SaveMpqHeader, ha->pHeader->dwHeaderSize))
BSWAP_TMPQHEADER(ha->pHeader);
if(!FileStream_Write(pTempStream, NULL, ha->pHeader, dwBytesToWrite))
nError = GetLastError();
BSWAP_TMPQHEADER(ha->pHeader);
// Update the progress
ha->CompactBytesProcessed += ha->pHeader->dwHeaderSize;
CompactBytesProcessed += ha->pHeader->dwHeaderSize;
}
// Now copy all files
if(nError == ERROR_SUCCESS)
{
nError = CopyMpqFiles(ha, pFileKeys, pTempStream);
ha->dwFlags |= MPQ_FLAG_CHANGED;
}
// If succeeded, switch the streams
if(nError == ERROR_SUCCESS)
{
ha->dwFlags |= MPQ_FLAG_CHANGED;
if(FileStream_Replace(ha->pStream, pTempStream))
if(FileStream_Switch(ha->pStream, pTempStream))
pTempStream = NULL;
else
nError = ERROR_CAN_NOT_COMPLETE;
}
// Final user notification
if(nError == ERROR_SUCCESS && ha->pfnCompactCB != NULL)
// If all succeeded, save the MPQ tables
if(nError == ERROR_SUCCESS)
{
ha->CompactBytesProcessed += (ha->pHeader->dwHashTableSize * sizeof(TMPQHash));
ha->CompactBytesProcessed += (ha->dwFileTableSize * sizeof(TMPQBlock));
ha->pfnCompactCB(ha->pvCompactUserData, CCB_CLOSING_ARCHIVE, ha->CompactBytesProcessed, ha->CompactTotalBytes);
//
// Note: We don't recalculate position of the MPQ tables at this point.
// SaveMPQTables does it automatically.
//
nError = SaveMPQTables(ha);
if(nError == ERROR_SUCCESS && CompactCB != NULL)
{
CompactBytesProcessed += (ha->pHeader->dwHashTableSize * sizeof(TMPQHash));
CompactBytesProcessed += (ha->pHeader->dwBlockTableSize * sizeof(TMPQBlock));
CompactCB(pvUserData, CCB_CLOSING_ARCHIVE, CompactBytesProcessed, CompactTotalBytes);
}
}
// Invalidate the compact callback
pvUserData = NULL;
CompactCB = NULL;
// Cleanup and return
if(pTempStream != NULL)
FileStream_Close(pTempStream);
@ -652,3 +597,169 @@ bool WINAPI SFileCompactArchive(HANDLE hMpq, const TCHAR * szListFile, bool /* b
SetLastError(nError);
return (nError == ERROR_SUCCESS);
}
//-----------------------------------------------------------------------------
// Changing hash table size
DWORD WINAPI SFileGetMaxFileCount(HANDLE hMpq)
{
TMPQArchive * ha = (TMPQArchive *)hMpq;
return ha->dwMaxFileCount;
}
bool WINAPI SFileSetMaxFileCount(HANDLE hMpq, DWORD dwMaxFileCount)
{
TMPQHetTable * pOldHetTable = NULL;
TMPQArchive * ha = (TMPQArchive *)hMpq;
TFileEntry * pOldFileTableEnd = ha->pFileTable + ha->dwFileTableSize;
TFileEntry * pOldFileTable = NULL;
TFileEntry * pOldFileEntry;
TFileEntry * pFileEntry;
TMPQHash * pOldHashTable = NULL;
DWORD dwOldHashTableSize = 0;
DWORD dwOldFileTableSize = 0;
int nError = ERROR_SUCCESS;
// Test the valid parameters
if(!IsValidMpqHandle(ha))
nError = ERROR_INVALID_HANDLE;
if(ha->dwFlags & MPQ_FLAG_READ_ONLY)
nError = ERROR_ACCESS_DENIED;
// The new limit must not be lower than the index of the last file entry in the table
if(nError == ERROR_SUCCESS && ha->dwFileTableSize > dwMaxFileCount)
nError = ERROR_DISK_FULL;
// ALL file names must be known in order to be able
// to rebuild hash table size
if(nError == ERROR_SUCCESS)
{
nError = CheckIfAllFilesKnown(ha, NULL, NULL);
}
// If the MPQ has a hash table, then we relocate the hash table
if(nError == ERROR_SUCCESS && ha->pHashTable != NULL)
{
// Save parameters for the current hash table
dwOldHashTableSize = ha->pHeader->dwHashTableSize;
pOldHashTable = ha->pHashTable;
// Allocate new hash table
ha->pHeader->dwHashTableSize = GetHashTableSizeForFileCount(dwMaxFileCount);
ha->pHashTable = STORM_ALLOC(TMPQHash, ha->pHeader->dwHashTableSize);
if(ha->pHashTable != NULL)
memset(ha->pHashTable, 0xFF, ha->pHeader->dwHashTableSize * sizeof(TMPQHash));
else
nError = ERROR_NOT_ENOUGH_MEMORY;
}
// If the MPQ has HET table, allocate new one as well
if(nError == ERROR_SUCCESS && ha->pHetTable != NULL)
{
// Save the original HET table
pOldHetTable = ha->pHetTable;
// Create new one
ha->pHetTable = CreateHetTable(dwMaxFileCount, 0x40, true);
if(ha->pHetTable == NULL)
nError = ERROR_NOT_ENOUGH_MEMORY;
}
// Now reallocate the file table
if(nError == ERROR_SUCCESS)
{
// Save the current file table
dwOldFileTableSize = ha->dwFileTableSize;
pOldFileTable = ha->pFileTable;
// Create new one
ha->pFileTable = STORM_ALLOC(TFileEntry, dwMaxFileCount);
if(ha->pFileTable != NULL)
memset(ha->pFileTable, 0, dwMaxFileCount * sizeof(TFileEntry));
else
nError = ERROR_NOT_ENOUGH_MEMORY;
}
// Now we have to build both classic hash table and HET table.
if(nError == ERROR_SUCCESS)
{
DWORD dwFileIndex = 0;
DWORD dwHashIndex = 0;
// Create new hash and HET entry for each file
pFileEntry = ha->pFileTable;
for(pOldFileEntry = pOldFileTable; pOldFileEntry < pOldFileTableEnd; pOldFileEntry++)
{
if(pOldFileEntry->dwFlags & MPQ_FILE_EXISTS)
{
// Copy the old file entry to the new one
memcpy(pFileEntry, pOldFileEntry, sizeof(TFileEntry));
assert(pFileEntry->szFileName != NULL);
// Create new entry in the hash table
if(ha->pHashTable != NULL)
{
dwHashIndex = AllocateHashEntry(ha, pFileEntry);
if(dwHashIndex == HASH_ENTRY_FREE)
{
nError = ERROR_CAN_NOT_COMPLETE;
break;
}
}
// Create new entry in the HET table, if needed
if(ha->pHetTable != NULL)
{
dwHashIndex = AllocateHetEntry(ha, pFileEntry);
if(dwHashIndex == HASH_ENTRY_FREE)
{
nError = ERROR_CAN_NOT_COMPLETE;
break;
}
}
// Move to the next file entry in the new table
pFileEntry++;
dwFileIndex++;
}
}
}
// Mark the archive as changed
// Note: We always have to rebuild the (attributes) file due to file table change
if(nError == ERROR_SUCCESS)
{
ha->dwMaxFileCount = dwMaxFileCount;
InvalidateInternalFiles(ha);
}
else
{
// Revert the hash table
if(ha->pHashTable != NULL && pOldHashTable != NULL)
{
STORM_FREE(ha->pHashTable);
ha->pHeader->dwHashTableSize = dwOldHashTableSize;
ha->pHashTable = pOldHashTable;
}
// Revert the HET table
if(ha->pHetTable != NULL && pOldHetTable != NULL)
{
FreeHetTable(ha->pHetTable);
ha->pHetTable = pOldHetTable;
}
// Revert the file table
if(pOldFileTable != NULL)
{
STORM_FREE(ha->pFileTable);
ha->pFileTable = pOldFileTable;
}
SetLastError(nError);
}
// Return the result
return (nError == ERROR_SUCCESS);
}

View file

@ -56,10 +56,7 @@ static int WriteNakedMPQHeader(TMPQArchive * ha)
Header.wSectorSize = pHeader->wSectorSize;
// Write it to the file
BSWAP_TMPQHEADER(&Header, MPQ_FORMAT_VERSION_1);
BSWAP_TMPQHEADER(&Header, MPQ_FORMAT_VERSION_2);
BSWAP_TMPQHEADER(&Header, MPQ_FORMAT_VERSION_3);
BSWAP_TMPQHEADER(&Header, MPQ_FORMAT_VERSION_4);
BSWAP_TMPQHEADER(&Header);
if(!FileStream_Write(ha->pStream, &ha->MpqPos, &Header, dwBytesToWrite))
nError = GetLastError();
@ -69,32 +66,19 @@ static int WriteNakedMPQHeader(TMPQArchive * ha)
//-----------------------------------------------------------------------------
// Creates a new MPQ archive.
bool WINAPI SFileCreateArchive(const TCHAR * szMpqName, DWORD dwCreateFlags, DWORD dwMaxFileCount, HANDLE * phMpq)
bool WINAPI SFileCreateArchive(const TCHAR * szMpqName, DWORD dwFlags, DWORD dwMaxFileCount, HANDLE * phMpq)
{
SFILE_CREATE_MPQ CreateInfo;
// Fill the create structure
memset(&CreateInfo, 0, sizeof(SFILE_CREATE_MPQ));
CreateInfo.cbSize = sizeof(SFILE_CREATE_MPQ);
CreateInfo.dwMpqVersion = (dwCreateFlags & MPQ_CREATE_ARCHIVE_VMASK) >> FLAGS_TO_FORMAT_SHIFT;
CreateInfo.dwStreamFlags = STREAM_PROVIDER_FLAT | BASE_PROVIDER_FILE;
CreateInfo.dwFileFlags1 = (dwCreateFlags & MPQ_CREATE_LISTFILE) ? MPQ_FILE_DEFAULT_INTERNAL : 0;
CreateInfo.dwFileFlags2 = (dwCreateFlags & MPQ_CREATE_ATTRIBUTES) ? MPQ_FILE_DEFAULT_INTERNAL : 0;
CreateInfo.dwFileFlags3 = (dwCreateFlags & MPQ_CREATE_SIGNATURE) ? MPQ_FILE_DEFAULT_INTERNAL : 0;
CreateInfo.dwAttrFlags = (dwCreateFlags & MPQ_CREATE_ATTRIBUTES) ? (MPQ_ATTRIBUTE_CRC32 | MPQ_ATTRIBUTE_FILETIME | MPQ_ATTRIBUTE_MD5) : 0;
CreateInfo.dwMpqVersion = (dwFlags & MPQ_CREATE_ARCHIVE_VMASK) >> FLAGS_TO_FORMAT_SHIFT;
CreateInfo.dwStreamFlags = STREAM_PROVIDER_LINEAR | BASE_PROVIDER_FILE;
CreateInfo.dwAttrFlags = (dwFlags & MPQ_CREATE_ATTRIBUTES) ? MPQ_ATTRIBUTE_ALL : 0;
CreateInfo.dwSectorSize = (CreateInfo.dwMpqVersion >= MPQ_FORMAT_VERSION_3) ? 0x4000 : 0x1000;
CreateInfo.dwRawChunkSize = (CreateInfo.dwMpqVersion >= MPQ_FORMAT_VERSION_4) ? 0x4000 : 0;
CreateInfo.dwMaxFileCount = dwMaxFileCount;
// Set the proper attribute parts
if((CreateInfo.dwMpqVersion >= MPQ_FORMAT_VERSION_3) && (dwCreateFlags & MPQ_CREATE_ATTRIBUTES))
CreateInfo.dwAttrFlags |= MPQ_ATTRIBUTE_PATCH_BIT;
// Backward compatibility: SFileCreateArchive always used to add (listfile)
// We would break loads of applications if we change that
CreateInfo.dwFileFlags1 = MPQ_FILE_DEFAULT_INTERNAL;
// Let the main function create the archive
return SFileCreateArchive2(szMpqName, &CreateInfo, phMpq);
}
@ -102,13 +86,11 @@ bool WINAPI SFileCreateArchive2(const TCHAR * szMpqName, PSFILE_CREATE_MPQ pCrea
{
TFileStream * pStream = NULL; // File stream
TMPQArchive * ha = NULL; // MPQ archive handle
TMPQHeader * pHeader;
ULONGLONG MpqPos = 0; // Position of MPQ header in the file
HANDLE hMpq = NULL;
DWORD dwBlockTableSize = 0; // Initial block table size
DWORD dwHashTableSize = 0;
DWORD dwReservedFiles = 0; // Number of reserved file entries
DWORD dwMpqFlags = 0;
DWORD dwMaxFileCount;
int nError = ERROR_SUCCESS;
// Check the parameters, if they are valid
@ -119,12 +101,13 @@ bool WINAPI SFileCreateArchive2(const TCHAR * szMpqName, PSFILE_CREATE_MPQ pCrea
}
// Verify if all variables in SFILE_CREATE_MPQ are correct
if((pCreateInfo->cbSize == 0 || pCreateInfo->cbSize > sizeof(SFILE_CREATE_MPQ)) ||
(pCreateInfo->dwMpqVersion > MPQ_FORMAT_VERSION_4) ||
(pCreateInfo->pvUserData != NULL || pCreateInfo->cbUserData != 0) ||
(pCreateInfo->dwAttrFlags & ~MPQ_ATTRIBUTE_ALL) ||
(pCreateInfo->dwSectorSize & (pCreateInfo->dwSectorSize - 1)) ||
(pCreateInfo->dwRawChunkSize & (pCreateInfo->dwRawChunkSize - 1)))
if((pCreateInfo->cbSize == 0 || pCreateInfo->cbSize > sizeof(SFILE_CREATE_MPQ)) ||
(pCreateInfo->dwMpqVersion > MPQ_FORMAT_VERSION_4) ||
(pCreateInfo->pvUserData != NULL || pCreateInfo->cbUserData != 0) ||
(pCreateInfo->dwAttrFlags & ~MPQ_ATTRIBUTE_ALL) ||
(pCreateInfo->dwSectorSize & (pCreateInfo->dwSectorSize - 1)) ||
(pCreateInfo->dwRawChunkSize & (pCreateInfo->dwRawChunkSize - 1)) ||
(pCreateInfo->dwMaxFileCount < 4))
{
SetLastError(ERROR_INVALID_PARAMETER);
return false;
@ -135,7 +118,7 @@ bool WINAPI SFileCreateArchive2(const TCHAR * szMpqName, PSFILE_CREATE_MPQ pCrea
// We verify if the file already exists and if it's a MPQ archive.
// If yes, we won't allow to overwrite it.
if(SFileOpenArchive(szMpqName, 0, STREAM_PROVIDER_FLAT | BASE_PROVIDER_FILE | MPQ_OPEN_NO_ATTRIBUTES | MPQ_OPEN_NO_LISTFILE, &hMpq))
if(SFileOpenArchive(szMpqName, 0, STREAM_PROVIDER_LINEAR | BASE_PROVIDER_FILE | MPQ_OPEN_NO_ATTRIBUTES | MPQ_OPEN_NO_LISTFILE, &hMpq))
{
SFileCloseArchive(hMpq);
SetLastError(ERROR_ALREADY_EXISTS);
@ -156,29 +139,15 @@ bool WINAPI SFileCreateArchive2(const TCHAR * szMpqName, PSFILE_CREATE_MPQ pCrea
return false;
}
// Increment the maximum amount of files to have space for (listfile)
if(pCreateInfo->dwMaxFileCount && pCreateInfo->dwFileFlags1)
{
dwMpqFlags |= MPQ_FLAG_LISTFILE_NEW;
dwReservedFiles++;
}
// Increment the maximum amount of files to have space for (attributes)
if(pCreateInfo->dwMaxFileCount && pCreateInfo->dwFileFlags2 && pCreateInfo->dwAttrFlags)
{
dwMpqFlags |= MPQ_FLAG_ATTRIBUTES_NEW;
dwReservedFiles++;
}
// Increment the maximum amount of files to have space for (signature)
if(pCreateInfo->dwMaxFileCount && pCreateInfo->dwFileFlags3)
{
dwMpqFlags |= MPQ_FLAG_SIGNATURE_NEW;
dwReservedFiles++;
}
// Increment the maximum amount of files to have space
// for listfile and attributes file
dwMaxFileCount = pCreateInfo->dwMaxFileCount;
if(pCreateInfo->dwAttrFlags != 0)
dwMaxFileCount++;
dwMaxFileCount++;
// If file count is not zero, initialize the hash table size
dwHashTableSize = GetNearestPowerOfTwo(pCreateInfo->dwMaxFileCount + dwReservedFiles);
dwHashTableSize = GetHashTableSizeForFileCount(dwMaxFileCount);
// Retrieve the file size and round it up to 0x200 bytes
FileStream_GetSize(pStream, &MpqPos);
@ -186,9 +155,9 @@ bool WINAPI SFileCreateArchive2(const TCHAR * szMpqName, PSFILE_CREATE_MPQ pCrea
if(!FileStream_SetSize(pStream, MpqPos))
nError = GetLastError();
#ifdef _DEBUG
#ifdef _DEBUG
// Debug code, used for testing StormLib
// dwBlockTableSize = dwHashTableSize * 2;
// dwBlockTableSize = dwHashTableSize * 2;
#endif
// Create the archive handle
@ -202,21 +171,26 @@ bool WINAPI SFileCreateArchive2(const TCHAR * szMpqName, PSFILE_CREATE_MPQ pCrea
if(nError == ERROR_SUCCESS)
{
memset(ha, 0, sizeof(TMPQArchive));
ha->pfnHashString = HashStringSlash;
ha->pStream = pStream;
ha->dwSectorSize = pCreateInfo->dwSectorSize;
ha->UserDataPos = MpqPos;
ha->MpqPos = MpqPos;
ha->pHeader = pHeader = (TMPQHeader *)ha->HeaderData;
ha->dwMaxFileCount = dwHashTableSize;
ha->pHeader = (TMPQHeader *)ha->HeaderData;
ha->dwMaxFileCount = dwMaxFileCount;
ha->dwFileTableSize = 0;
ha->dwReservedFiles = dwReservedFiles;
ha->dwFileFlags1 = pCreateInfo->dwFileFlags1;
ha->dwFileFlags2 = pCreateInfo->dwFileFlags2;
ha->dwFileFlags3 = pCreateInfo->dwFileFlags3 ? MPQ_FILE_EXISTS : 0;
ha->dwFlags = 0;
// Setup the attributes
ha->dwAttrFlags = pCreateInfo->dwAttrFlags;
ha->dwFlags = dwMpqFlags | MPQ_FLAG_CHANGED;
pStream = NULL;
}
// Fill the MPQ header
if(nError == ERROR_SUCCESS)
{
TMPQHeader * pHeader = ha->pHeader;
// Fill the MPQ header
memset(pHeader, 0, sizeof(ha->HeaderData));
@ -237,37 +211,44 @@ bool WINAPI SFileCreateArchive2(const TCHAR * szMpqName, PSFILE_CREATE_MPQ pCrea
// Write the naked MPQ header
nError = WriteNakedMPQHeader(ha);
// Remember that the (listfile) and (attributes) need to be saved
ha->dwFlags |= MPQ_FLAG_CHANGED | MPQ_FLAG_INV_LISTFILE | MPQ_FLAG_INV_ATTRIBUTES;
}
// Create initial HET table, if the caller required an MPQ format 3.0 or newer
if(nError == ERROR_SUCCESS && pCreateInfo->dwMpqVersion >= MPQ_FORMAT_VERSION_3 && pCreateInfo->dwMaxFileCount != 0)
if(nError == ERROR_SUCCESS && pCreateInfo->dwMpqVersion >= MPQ_FORMAT_VERSION_3)
{
ha->pHetTable = CreateHetTable(ha->dwFileTableSize, 0, 0x40, NULL);
ha->pHetTable = CreateHetTable(ha->dwMaxFileCount, 0x40, true);
if(ha->pHetTable == NULL)
nError = ERROR_NOT_ENOUGH_MEMORY;
}
// Create initial hash table
if(nError == ERROR_SUCCESS && dwHashTableSize != 0)
if(nError == ERROR_SUCCESS)
{
nError = CreateHashTable(ha, dwHashTableSize);
}
// Create initial file table
if(nError == ERROR_SUCCESS && ha->dwMaxFileCount != 0)
if(nError == ERROR_SUCCESS)
{
nError = CreateFileTable(ha, ha->dwMaxFileCount);
ha->pFileTable = STORM_ALLOC(TFileEntry, ha->dwMaxFileCount);
if(ha->pFileTable != NULL)
memset(ha->pFileTable, 0x00, sizeof(TFileEntry) * ha->dwMaxFileCount);
else
nError = ERROR_NOT_ENOUGH_MEMORY;
}
// Cleanup : If an error, delete all buffers and return
if(nError != ERROR_SUCCESS)
{
FileStream_Close(pStream);
FreeArchiveHandle(ha);
FreeMPQArchive(ha);
SetLastError(nError);
ha = NULL;
}
// Return the values
*phMpq = (HANDLE)ha;
return (nError == ERROR_SUCCESS);

View file

@ -28,29 +28,32 @@ bool WINAPI SFileExtractFile(HANDLE hMpq, const char * szToExtract, const TCHAR
// Create the local file
if(nError == ERROR_SUCCESS)
{
pLocalFile = FileStream_CreateFile(szExtracted, 0);
pLocalFile = FileStream_CreateFile(szExtracted, STREAM_PROVIDER_LINEAR | BASE_PROVIDER_FILE);
if(pLocalFile == NULL)
nError = GetLastError();
}
// Copy the file's content
while(nError == ERROR_SUCCESS)
if(nError == ERROR_SUCCESS)
{
char szBuffer[0x1000];
DWORD dwTransferred = 0;
DWORD dwTransferred;
// dwTransferred is only set to nonzero if something has been read.
// nError can be ERROR_SUCCESS or ERROR_HANDLE_EOF
if(!SFileReadFile(hMpqFile, szBuffer, sizeof(szBuffer), &dwTransferred, NULL))
nError = GetLastError();
if(nError == ERROR_HANDLE_EOF)
nError = ERROR_SUCCESS;
if(dwTransferred == 0)
break;
for(;;)
{
// dwTransferred is only set to nonzero if something has been read.
// nError can be ERROR_SUCCESS or ERROR_HANDLE_EOF
if(!SFileReadFile(hMpqFile, szBuffer, sizeof(szBuffer), &dwTransferred, NULL))
nError = GetLastError();
if(nError == ERROR_HANDLE_EOF)
nError = ERROR_SUCCESS;
if(dwTransferred == 0)
break;
// If something has been actually read, write it
if(!FileStream_Write(pLocalFile, NULL, szBuffer, dwTransferred))
nError = GetLastError();
// If something has been actually read, write it
if(!FileStream_Write(pLocalFile, NULL, szBuffer, dwTransferred))
nError = GetLastError();
}
}
// Close the files

View file

@ -12,9 +12,17 @@
#include "StormLib.h"
#include "StormCommon.h"
//-----------------------------------------------------------------------------
// Defines
#define LISTFILE_CACHE_SIZE 0x1000
//-----------------------------------------------------------------------------
// Private structure used for file search (search handle)
struct TMPQSearch;
typedef int (*MPQSEARCH)(TMPQSearch *, SFILE_FIND_DATA *);
// Used by searching in MPQ archives
struct TMPQSearch
{
@ -29,67 +37,97 @@ struct TMPQSearch
//-----------------------------------------------------------------------------
// Local functions
static TMPQSearch * IsValidSearchHandle(HANDLE hFind)
static bool IsValidSearchHandle(TMPQSearch * hs)
{
TMPQSearch * hs = (TMPQSearch *)hFind;
if(hs == NULL)
return false;
if(hs != NULL && IsValidMpqHandle(hs->ha))
return hs;
return NULL;
return IsValidMpqHandle(hs->ha);
}
bool CheckWildCard(const char * szString, const char * szWildCard)
{
const char * szWildCardPtr;
const char * szSubString;
int nSubStringLength;
int nMatchCount = 0;
// When the mask is empty, it never matches
if(szWildCard == NULL || *szWildCard == 0)
return false;
// If the wildcard contains just "*", then it always matches
if(szWildCard[0] == '*' && szWildCard[1] == 0)
return true;
// Do normal test
for(;;)
{
// If there is '?' in the wildcard, we skip one char
while(szWildCard[0] == '?')
while(*szWildCard == '?')
{
if(szString[0] == 0)
return false;
szWildCard++;
szString++;
}
// Handle '*'
szWildCardPtr = szWildCard;
if(szWildCardPtr[0] != 0)
// If there is '*', means zero or more chars. We have to
// find the sequence after '*'
if(*szWildCard == '*')
{
if(szWildCardPtr[0] == '*')
// More stars is equal to one star
while(*szWildCard == '*' || *szWildCard == '?')
szWildCard++;
// If we found end of the wildcard, it's a match
if(*szWildCard == 0)
return true;
// Determine the length of the substring in szWildCard
szSubString = szWildCard;
while(*szSubString != 0 && *szSubString != '?' && *szSubString != '*')
szSubString++;
nSubStringLength = (int)(szSubString - szWildCard);
nMatchCount = 0;
// Now we have to find a substring in szString,
// that matches the substring in szWildCard
while(*szString != 0)
{
szWildCardPtr++;
if(szWildCardPtr[0] == '*')
continue;
if(szWildCardPtr[0] == 0)
return true;
if(AsciiToUpperTable[szWildCardPtr[0]] == AsciiToUpperTable[szString[0]])
// Calculate match count
while(nMatchCount < nSubStringLength)
{
if(CheckWildCard(szString, szWildCardPtr))
return true;
if(toupper(szString[nMatchCount]) != toupper(szWildCard[nMatchCount]))
break;
if(szString[nMatchCount] == 0)
break;
nMatchCount++;
}
}
else
{
if(AsciiToUpperTable[szWildCardPtr[0]] != AsciiToUpperTable[szString[0]])
return false;
szWildCard = szWildCardPtr + 1;
}
// If the match count has reached substring length, we found a match
if(nMatchCount == nSubStringLength)
{
szWildCard += nMatchCount;
szString += nMatchCount;
break;
}
if(szString[0] == 0)
return false;
szString++;
// No match, move to the next char in szString
nMatchCount = 0;
szString++;
}
}
else
{
return (szString[0] == 0) ? true : false;
// If we came to the end of the string, compare it to the wildcard
if(toupper(*szString) != toupper(*szWildCard))
return false;
// If we arrived to the end of the string, it's a match
if(*szString == 0)
return true;
// Otherwise, continue in comparing
szWildCard++;
szString++;
}
}
}
@ -102,7 +140,7 @@ static DWORD GetSearchTableItems(TMPQArchive * ha)
while(ha != NULL)
{
// Append the number of files
dwMergeItems += (ha->pHetTable != NULL) ? ha->pHetTable->dwEntryCount
dwMergeItems += (ha->pHetTable != NULL) ? ha->pHetTable->dwMaxFileCount
: ha->pHeader->dwBlockTableSize;
// Move to the patched archive
ha = ha->haPatch;
@ -113,9 +151,9 @@ static DWORD GetSearchTableItems(TMPQArchive * ha)
}
static bool FileWasFoundBefore(
TMPQArchive * ha,
TMPQSearch * hs,
TFileEntry * pFileEntry)
TMPQArchive * ha,
TMPQSearch * hs,
TFileEntry * pFileEntry)
{
TFileEntry * pEntry;
char * szRealFileName = pFileEntry->szFileName;
@ -127,18 +165,18 @@ static bool FileWasFoundBefore(
{
// If we are in patch MPQ, we check if patch prefix matches
// and then trim the patch prefix
if(ha->pPatchPrefix != NULL)
if(ha->cchPatchPrefix != 0)
{
// If the patch prefix doesn't fit, we pretend that the file
// was there before and it will be skipped
if(_strnicmp(szRealFileName, ha->pPatchPrefix->szPatchPrefix, ha->pPatchPrefix->nLength))
if(_strnicmp(szRealFileName, ha->szPatchPrefix, ha->cchPatchPrefix))
return true;
szRealFileName += ha->pPatchPrefix->nLength;
szRealFileName += ha->cchPatchPrefix;
}
// Calculate the hash to the table
dwNameHash = ha->pfnHashString(szRealFileName, MPQ_HASH_NAME_A);
dwNameHash = HashString(szRealFileName, MPQ_HASH_NAME_A);
dwStartIndex = dwIndex = (dwNameHash % hs->dwSearchTableItems);
// The file might have been found before
@ -175,185 +213,114 @@ static bool FileWasFoundBefore(
static TFileEntry * FindPatchEntry(TMPQArchive * ha, TFileEntry * pFileEntry)
{
TFileEntry * pPatchEntry = pFileEntry;
TFileEntry * pPatchEntry = NULL;
TFileEntry * pTempEntry;
char szFileName[MAX_PATH+1];
char szFileName[MAX_PATH];
LCID lcLocale = pFileEntry->lcLocale;
// Can't find patch entry for a file that doesn't have name
if(pFileEntry->szFileName != NULL && pFileEntry->szFileName[0] != 0)
// Go while there are patches
while(ha->haPatch != NULL)
{
// Go while there are patches
while(ha->haPatch != NULL)
{
// Move to the patch archive
ha = ha->haPatch;
szFileName[0] = 0;
// Move to the patch archive
ha = ha->haPatch;
// Prepare the prefix for the file name
if(ha->pPatchPrefix && ha->pPatchPrefix->nLength)
StringCopy(szFileName, _countof(szFileName), ha->pPatchPrefix->szPatchPrefix);
StringCat(szFileName, _countof(szFileName), pFileEntry->szFileName);
// Prepare the prefix for the file name
strcpy(szFileName, ha->szPatchPrefix);
strcat(szFileName, pFileEntry->szFileName);
// Try to find the file there
pTempEntry = GetFileEntryExact(ha, szFileName, 0, NULL);
if(pTempEntry != NULL)
pPatchEntry = pTempEntry;
}
// Try to find the file there
pTempEntry = GetFileEntryExact(ha, szFileName, lcLocale);
if(pTempEntry != NULL)
pPatchEntry = pTempEntry;
}
// Return the found patch entry
return pPatchEntry;
}
static bool DoMPQSearch_FileEntry(
TMPQSearch * hs,
SFILE_FIND_DATA * lpFindFileData,
TMPQArchive * ha,
TMPQHash * pHashEntry,
TFileEntry * pFileEntry)
{
TFileEntry * pPatchEntry;
HANDLE hFile = NULL;
const char * szFileName;
size_t nPrefixLength = (ha->pPatchPrefix != NULL) ? ha->pPatchPrefix->nLength : 0;
DWORD dwBlockIndex;
char szNameBuff[MAX_PATH];
// Is it a file but not a patch file?
if((pFileEntry->dwFlags & hs->dwFlagMask) == MPQ_FILE_EXISTS)
{
// Now we have to check if this file was not enumerated before
if(!FileWasFoundBefore(ha, hs, pFileEntry))
{
// if(pFileEntry != NULL && !_stricmp(pFileEntry->szFileName, "TriggerLibs\\NativeLib.galaxy"))
// DebugBreak();
// Find a patch to this file
// Note: This either succeeds or returns pFileEntry
pPatchEntry = FindPatchEntry(ha, pFileEntry);
// Prepare the block index
dwBlockIndex = (DWORD)(pFileEntry - ha->pFileTable);
// Get the file name. If it's not known, we will create pseudo-name
szFileName = pFileEntry->szFileName;
if(szFileName == NULL)
{
// Open the file by its pseudo-name.
sprintf(szNameBuff, "File%08u.xxx", (unsigned int)dwBlockIndex);
if(SFileOpenFileEx((HANDLE)hs->ha, szNameBuff, SFILE_OPEN_BASE_FILE, &hFile))
{
SFileGetFileName(hFile, szNameBuff);
szFileName = szNameBuff;
SFileCloseFile(hFile);
}
}
// If the file name is still NULL, we cannot include the file to search results
if(szFileName != NULL)
{
// Check the file name against the wildcard
if(CheckWildCard(szFileName + nPrefixLength, hs->szSearchMask))
{
// Fill the found entry. hash entry and block index are taken from the base MPQ
lpFindFileData->dwHashIndex = HASH_ENTRY_FREE;
lpFindFileData->dwBlockIndex = dwBlockIndex;
lpFindFileData->dwFileSize = pPatchEntry->dwFileSize;
lpFindFileData->dwFileFlags = pPatchEntry->dwFlags;
lpFindFileData->dwCompSize = pPatchEntry->dwCmpSize;
lpFindFileData->lcLocale = 0; // pPatchEntry->lcLocale;
// Fill the filetime
lpFindFileData->dwFileTimeHi = (DWORD)(pPatchEntry->FileTime >> 32);
lpFindFileData->dwFileTimeLo = (DWORD)(pPatchEntry->FileTime);
// Fill-in the entries from hash table entry, if given
if(pHashEntry != NULL)
{
lpFindFileData->dwHashIndex = (DWORD)(pHashEntry - ha->pHashTable);
lpFindFileData->lcLocale = pHashEntry->lcLocale;
}
// Fill the file name and plain file name
StringCopy(lpFindFileData->cFileName, _countof(lpFindFileData->cFileName), szFileName + nPrefixLength);
lpFindFileData->szPlainName = (char *)GetPlainFileName(lpFindFileData->cFileName);
return true;
}
}
}
}
// Either not a valid item or was found before
return false;
}
static int DoMPQSearch_HashTable(TMPQSearch * hs, SFILE_FIND_DATA * lpFindFileData, TMPQArchive * ha)
{
TMPQHash * pHashTableEnd = ha->pHashTable + ha->pHeader->dwHashTableSize;
TMPQHash * pHash;
// Parse the file table
for(pHash = ha->pHashTable + hs->dwNextIndex; pHash < pHashTableEnd; pHash++)
{
// Increment the next index for subsequent search
hs->dwNextIndex++;
// Does this hash table entry point to a proper block table entry?
if(IsValidHashEntry(ha, pHash))
{
// Check if this file entry should be included in the search result
if(DoMPQSearch_FileEntry(hs, lpFindFileData, ha, pHash, ha->pFileTable + MPQ_BLOCK_INDEX(pHash)))
return ERROR_SUCCESS;
}
}
// No more files
return ERROR_NO_MORE_FILES;
}
static int DoMPQSearch_FileTable(TMPQSearch * hs, SFILE_FIND_DATA * lpFindFileData, TMPQArchive * ha)
{
TFileEntry * pFileTableEnd = ha->pFileTable + ha->dwFileTableSize;
TFileEntry * pFileEntry;
// Parse the file table
for(pFileEntry = ha->pFileTable + hs->dwNextIndex; pFileEntry < pFileTableEnd; pFileEntry++)
{
// Increment the next index for subsequent search
hs->dwNextIndex++;
// Check if this file entry should be included in the search result
if(DoMPQSearch_FileEntry(hs, lpFindFileData, ha, NULL, pFileEntry))
return ERROR_SUCCESS;
}
// No more files
return ERROR_NO_MORE_FILES;
}
// Performs one MPQ search
static int DoMPQSearch(TMPQSearch * hs, SFILE_FIND_DATA * lpFindFileData)
{
TMPQArchive * ha = hs->ha;
int nError;
TFileEntry * pFileTableEnd;
TFileEntry * pPatchEntry;
TFileEntry * pFileEntry;
const char * szFileName;
HANDLE hFile;
char szPseudoName[20];
DWORD dwBlockIndex;
size_t nPrefixLength;
// Start searching with base MPQ
while(ha != NULL)
{
// If the archive has hash table, we need to use hash table
// in order to catch hash table index and file locale.
// Note: If multiple hash table entries, point to the same block entry,
// we need, to report them all
nError = (ha->pHashTable != NULL) ? DoMPQSearch_HashTable(hs, lpFindFileData, ha)
: DoMPQSearch_FileTable(hs, lpFindFileData, ha);
if(nError == ERROR_SUCCESS)
return nError;
{
// Now parse the file entry table in order to get all files.
pFileTableEnd = ha->pFileTable + ha->dwFileTableSize;
pFileEntry = ha->pFileTable + hs->dwNextIndex;
// If there is no more patches in the chain, stop it.
// This also keeps hs->ha non-NULL, which is required
// for freeing the handle later
if(ha->haPatch == NULL)
break;
// Get the length of the patch prefix (0 if none)
nPrefixLength = strlen(ha->szPatchPrefix);
// Parse the file table
while(pFileEntry < pFileTableEnd)
{
// Increment the next index for subsequent search
hs->dwNextIndex++;
// Is it a file and not a patch file?
if((pFileEntry->dwFlags & hs->dwFlagMask) == MPQ_FILE_EXISTS)
{
// Now we have to check if this file was not enumerated before
if(!FileWasFoundBefore(ha, hs, pFileEntry))
{
// Find a patch to this file
pPatchEntry = FindPatchEntry(ha, pFileEntry);
if(pPatchEntry == NULL)
pPatchEntry = pFileEntry;
// Prepare the block index
dwBlockIndex = (DWORD)(pFileEntry - ha->pFileTable);
// Get the file name. If it's not known, we will create pseudo-name
szFileName = pFileEntry->szFileName;
if(szFileName == NULL)
{
// Open the file by its pseudo-name.
// This also generates the file name with a proper extension
sprintf(szPseudoName, "File%08u.xxx", dwBlockIndex);
if(SFileOpenFileEx((HANDLE)hs->ha, szPseudoName, SFILE_OPEN_FROM_MPQ, &hFile))
{
szFileName = (pFileEntry->szFileName != NULL) ? pFileEntry->szFileName : szPseudoName;
SFileCloseFile(hFile);
}
}
// Check the file name against the wildcard
if(CheckWildCard(szFileName + nPrefixLength, hs->szSearchMask))
{
// Fill the found entry
lpFindFileData->dwHashIndex = pPatchEntry->dwHashIndex;
lpFindFileData->dwBlockIndex = dwBlockIndex;
lpFindFileData->dwFileSize = pPatchEntry->dwFileSize;
lpFindFileData->dwFileFlags = pPatchEntry->dwFlags;
lpFindFileData->dwCompSize = pPatchEntry->dwCmpSize;
lpFindFileData->lcLocale = pPatchEntry->lcLocale;
// Fill the filetime
lpFindFileData->dwFileTimeHi = (DWORD)(pPatchEntry->FileTime >> 32);
lpFindFileData->dwFileTimeLo = (DWORD)(pPatchEntry->FileTime);
// Fill the file name and plain file name
strcpy(lpFindFileData->cFileName, szFileName + nPrefixLength);
lpFindFileData->szPlainName = (char *)GetPlainFileNameA(lpFindFileData->cFileName);
return ERROR_SUCCESS;
}
}
}
pFileEntry++;
}
// Move to the next patch in the patch chain
hs->ha = ha = ha->haPatch;
@ -378,7 +345,7 @@ static void FreeMPQSearch(TMPQSearch *& hs)
//-----------------------------------------------------------------------------
// Public functions
HANDLE WINAPI SFileFindFirstFile(HANDLE hMpq, const char * szMask, SFILE_FIND_DATA * lpFindFileData, const TCHAR * szListFile)
HANDLE WINAPI SFileFindFirstFile(HANDLE hMpq, const char * szMask, SFILE_FIND_DATA * lpFindFileData, const char * szListFile)
{
TMPQArchive * ha = (TMPQArchive *)hMpq;
TMPQSearch * hs = NULL;
@ -386,7 +353,7 @@ HANDLE WINAPI SFileFindFirstFile(HANDLE hMpq, const char * szMask, SFILE_FIND_DA
int nError = ERROR_SUCCESS;
// Check for the valid parameters
if(!IsValidMpqHandle(hMpq))
if(!IsValidMpqHandle(ha))
nError = ERROR_INVALID_HANDLE;
if(szMask == NULL || lpFindFileData == NULL)
nError = ERROR_INVALID_PARAMETER;
@ -439,18 +406,18 @@ HANDLE WINAPI SFileFindFirstFile(HANDLE hMpq, const char * szMask, SFILE_FIND_DA
FreeMPQSearch(hs);
SetLastError(nError);
}
// Return the result value
return (HANDLE)hs;
}
bool WINAPI SFileFindNextFile(HANDLE hFind, SFILE_FIND_DATA * lpFindFileData)
{
TMPQSearch * hs = IsValidSearchHandle(hFind);
TMPQSearch * hs = (TMPQSearch *)hFind;
int nError = ERROR_SUCCESS;
// Check the parameters
if(hs == NULL)
if(!IsValidSearchHandle(hs))
nError = ERROR_INVALID_HANDLE;
if(lpFindFileData == NULL)
nError = ERROR_INVALID_PARAMETER;
@ -465,10 +432,10 @@ bool WINAPI SFileFindNextFile(HANDLE hFind, SFILE_FIND_DATA * lpFindFileData)
bool WINAPI SFileFindClose(HANDLE hFind)
{
TMPQSearch * hs = IsValidSearchHandle(hFind);
TMPQSearch * hs = (TMPQSearch *)hFind;
// Check the parameters
if(hs == NULL)
if(!IsValidSearchHandle(hs))
{
SetLastError(ERROR_INVALID_HANDLE);
return false;

File diff suppressed because it is too large Load diff

View file

@ -17,55 +17,47 @@
#include "StormLib.h"
#include "StormCommon.h"
#define HEADER_SEARCH_BUFFER_SIZE 0x1000
/*****************************************************************************/
/* Local functions */
/*****************************************************************************/
static bool IsAviFile(DWORD * HeaderData)
static bool IsAviFile(void * pvFileBegin)
{
DWORD DwordValue0 = BSWAP_INT32_UNSIGNED(HeaderData[0]);
DWORD DwordValue2 = BSWAP_INT32_UNSIGNED(HeaderData[2]);
DWORD DwordValue3 = BSWAP_INT32_UNSIGNED(HeaderData[3]);
LPDWORD AviHeader = (DWORD *)pvFileBegin;
DWORD DwordValue0 = BSWAP_INT32_UNSIGNED(AviHeader[0]);
DWORD DwordValue2 = BSWAP_INT32_UNSIGNED(AviHeader[2]);
DWORD DwordValue3 = BSWAP_INT32_UNSIGNED(AviHeader[3]);
// Test for 'RIFF', 'AVI ' or 'LIST'
return (DwordValue0 == 0x46464952 && DwordValue2 == 0x20495641 && DwordValue3 == 0x5453494C);
}
static bool IsWarcraft3Map(DWORD * HeaderData)
static TFileBitmap * CreateFileBitmap(TMPQArchive * ha, TMPQBitmap * pMpqBitmap, bool bFileIsComplete)
{
DWORD DwordValue0 = BSWAP_INT32_UNSIGNED(HeaderData[0]);
DWORD DwordValue1 = BSWAP_INT32_UNSIGNED(HeaderData[1]);
TFileBitmap * pBitmap;
size_t nLength;
return (DwordValue0 == 0x57334D48 && DwordValue1 == 0x00000000);
}
// Calculate the length of the bitmap in blocks and in bytes
nLength = (size_t)(((ha->pHeader->ArchiveSize64 - 1) / pMpqBitmap->dwBlockSize) + 1);
nLength = (size_t)(((nLength - 1) / 8) + 1);
static TMPQUserData * IsValidMpqUserData(ULONGLONG ByteOffset, ULONGLONG FileSize, void * pvUserData)
{
TMPQUserData * pUserData;
// BSWAP the source data and copy them to our buffer
BSWAP_ARRAY32_UNSIGNED(&pvUserData, sizeof(TMPQUserData));
pUserData = (TMPQUserData *)pvUserData;
// Check the sizes
if(pUserData->cbUserDataHeader <= pUserData->cbUserDataSize && pUserData->cbUserDataSize <= pUserData->dwHeaderOffs)
// Allocate the file bitmap
pBitmap = (TFileBitmap *)STORM_ALLOC(BYTE, sizeof(TFileBitmap) + nLength);
if(pBitmap != NULL)
{
// Move to the position given by the userdata
ByteOffset += pUserData->dwHeaderOffs;
// Fill the structure
pBitmap->StartOffset = ha->MpqPos;
pBitmap->EndOffset = ha->MpqPos + ha->pHeader->ArchiveSize64;
pBitmap->IsComplete = bFileIsComplete ? 1 : 0;
pBitmap->BitmapSize = (DWORD)nLength;
pBitmap->BlockSize = pMpqBitmap->dwBlockSize;
pBitmap->Reserved = 0;
// The MPQ header should be within range of the file size
if((ByteOffset + MPQ_HEADER_SIZE_V1) < FileSize)
{
// Note: We should verify if there is the MPQ header.
// However, the header could be at any position below that
// that is multiplier of 0x200
return (TMPQUserData *)pvUserData;
}
// Copy the file bitmap
memcpy((pBitmap + 1), (pMpqBitmap + 1), nLength);
}
return NULL;
return pBitmap;
}
// This function gets the right positions of the hash table and the block table.
@ -93,7 +85,7 @@ static int VerifyMpqTablePositions(TMPQArchive * ha, ULONGLONG FileSize)
// Check the begin of hash table
if(pHeader->wHashTablePosHi || pHeader->dwHashTablePos)
{
ByteOffset = FileOffsetFromMpqOffset(ha, MAKE_OFFSET64(pHeader->wHashTablePosHi, pHeader->dwHashTablePos));
ByteOffset = ha->MpqPos + MAKE_OFFSET64(pHeader->wHashTablePosHi, pHeader->dwHashTablePos);
if(ByteOffset > FileSize)
return ERROR_BAD_FORMAT;
}
@ -101,7 +93,7 @@ static int VerifyMpqTablePositions(TMPQArchive * ha, ULONGLONG FileSize)
// Check the begin of block table
if(pHeader->wBlockTablePosHi || pHeader->dwBlockTablePos)
{
ByteOffset = FileOffsetFromMpqOffset(ha, MAKE_OFFSET64(pHeader->wBlockTablePosHi, pHeader->dwBlockTablePos));
ByteOffset = ha->MpqPos + MAKE_OFFSET64(pHeader->wBlockTablePosHi, pHeader->dwBlockTablePos);
if(ByteOffset > FileSize)
return ERROR_BAD_FORMAT;
}
@ -118,6 +110,7 @@ static int VerifyMpqTablePositions(TMPQArchive * ha, ULONGLONG FileSize)
return ERROR_SUCCESS;
}
/*****************************************************************************/
/* Public functions */
/*****************************************************************************/
@ -146,213 +139,137 @@ LCID WINAPI SFileSetLocale(LCID lcNewLocale)
// phMpq - Pointer to store open archive handle
bool WINAPI SFileOpenArchive(
const TCHAR * szMpqName,
DWORD dwPriority,
DWORD dwFlags,
HANDLE * phMpq)
const TCHAR * szMpqName,
DWORD dwPriority,
DWORD dwFlags,
HANDLE * phMpq)
{
TMPQUserData * pUserData;
TFileStream * pStream = NULL; // Open file stream
TMPQArchive * ha = NULL; // Archive handle
TFileEntry * pFileEntry;
ULONGLONG FileSize = 0; // Size of the file
LPBYTE pbHeaderBuffer = NULL; // Buffer for searching MPQ header
DWORD dwStreamFlags = (dwFlags & STREAM_FLAGS_MASK);
bool bIsWarcraft3Map = false;
int nError = ERROR_SUCCESS;
int nError = ERROR_SUCCESS;
// Verify the parameters
if(szMpqName == NULL || *szMpqName == 0 || phMpq == NULL)
{
SetLastError(ERROR_INVALID_PARAMETER);
return false;
}
nError = ERROR_INVALID_PARAMETER;
// One time initialization of MPQ cryptography
InitializeMpqCryptography();
// If not forcing MPQ v 1.0, also use file bitmap
dwStreamFlags |= (dwFlags & MPQ_OPEN_FORCE_MPQ_V1) ? 0 : STREAM_FLAG_USE_BITMAP;
dwPriority = dwPriority;
// Open the MPQ archive file
pStream = FileStream_OpenFile(szMpqName, dwStreamFlags);
if(pStream == NULL)
return false;
// Check the file size. There must be at least 0x20 bytes
if(nError == ERROR_SUCCESS)
{
FileStream_GetSize(pStream, &FileSize);
if(FileSize < MPQ_HEADER_SIZE_V1)
nError = ERROR_BAD_FORMAT;
// Initialize the stream
pStream = FileStream_OpenFile(szMpqName, (dwFlags & STREAM_OPTIONS_MASK));
if(pStream == NULL)
nError = GetLastError();
}
// Allocate the MPQhandle
if(nError == ERROR_SUCCESS)
{
FileStream_GetSize(pStream, &FileSize);
if((ha = STORM_ALLOC(TMPQArchive, 1)) == NULL)
nError = ERROR_NOT_ENOUGH_MEMORY;
}
// Allocate buffer for searching MPQ header
// Initialize handle structure and allocate structure for MPQ header
if(nError == ERROR_SUCCESS)
{
pbHeaderBuffer = STORM_ALLOC(BYTE, HEADER_SEARCH_BUFFER_SIZE);
if(pbHeaderBuffer == NULL)
nError = ERROR_NOT_ENOUGH_MEMORY;
}
// Find the position of MPQ header
if(nError == ERROR_SUCCESS)
{
ULONGLONG SearchOffset = 0;
ULONGLONG EndOfSearch = FileSize;
DWORD dwStrmFlags = 0;
DWORD dwHeaderSize;
DWORD dwHeaderID;
bool bSearchComplete = false;
memset(ha, 0, sizeof(TMPQArchive));
ha->pfnHashString = HashStringSlash;
ha->pStream = pStream;
pStream = NULL;
// Set the archive read only if the stream is read-only
FileStream_GetFlags(ha->pStream, &dwStrmFlags);
ha->dwFlags |= (dwStrmFlags & STREAM_FLAG_READ_ONLY) ? MPQ_FLAG_READ_ONLY : 0;
// Remember if the archive is open for write
if(FileStream_IsReadOnly(ha->pStream))
ha->dwFlags |= MPQ_FLAG_READ_ONLY;
// Also remember if we shall check sector CRCs when reading file
ha->dwFlags |= (dwFlags & MPQ_OPEN_CHECK_SECTOR_CRC) ? MPQ_FLAG_CHECK_SECTOR_CRC : 0;
if(dwFlags & MPQ_OPEN_CHECK_SECTOR_CRC)
ha->dwFlags |= MPQ_FLAG_CHECK_SECTOR_CRC;
}
// Also remember if this MPQ is a patch
ha->dwFlags |= (dwFlags & MPQ_OPEN_PATCH) ? MPQ_FLAG_PATCH : 0;
// Limit the header searching to about 130 MB of data
if(EndOfSearch > 0x08000000)
EndOfSearch = 0x08000000;
// Find the offset of MPQ header within the file
if(nError == ERROR_SUCCESS)
{
ULONGLONG SearchPos = 0;
DWORD dwHeaderID;
// Find the offset of MPQ header within the file
while(bSearchComplete == false && SearchOffset < EndOfSearch)
while(SearchPos < FileSize)
{
// Always read at least 0x1000 bytes for performance.
// This is what Storm.dll (2002) does.
DWORD dwBytesAvailable = HEADER_SEARCH_BUFFER_SIZE;
DWORD dwInBufferOffset = 0;
DWORD dwBytesAvailable = MPQ_HEADER_SIZE_V4;
// Cut the bytes available, if needed
if((FileSize - SearchOffset) < HEADER_SEARCH_BUFFER_SIZE)
dwBytesAvailable = (DWORD)(FileSize - SearchOffset);
if((FileSize - SearchPos) < MPQ_HEADER_SIZE_V4)
dwBytesAvailable = (DWORD)(FileSize - SearchPos);
// Read the eventual MPQ header
if(!FileStream_Read(ha->pStream, &SearchOffset, pbHeaderBuffer, dwBytesAvailable))
if(!FileStream_Read(ha->pStream, &SearchPos, ha->HeaderData, dwBytesAvailable))
{
nError = GetLastError();
break;
}
// There are AVI files from Warcraft III with 'MPQ' extension.
if(SearchOffset == 0)
if(SearchPos == 0 && IsAviFile(ha->HeaderData))
{
if(IsAviFile((DWORD *)pbHeaderBuffer))
{
nError = ERROR_AVI_FILE;
break;
}
bIsWarcraft3Map = IsWarcraft3Map((DWORD *)pbHeaderBuffer);
nError = ERROR_AVI_FILE;
break;
}
// Search the header buffer
while(dwInBufferOffset < dwBytesAvailable)
// If there is the MPQ user data signature, process it
dwHeaderID = BSWAP_INT32_UNSIGNED(*(LPDWORD)ha->HeaderData);
if(dwHeaderID == ID_MPQ_USERDATA && ha->pUserData == NULL)
{
// Copy the data from the potential header buffer to the MPQ header
memcpy(ha->HeaderData, pbHeaderBuffer + dwInBufferOffset, sizeof(ha->HeaderData));
// If there is the MPQ user data, process it
// Note that Warcraft III does not check for user data, which is abused by many map protectors
dwHeaderID = BSWAP_INT32_UNSIGNED(ha->HeaderData[0]);
if(bIsWarcraft3Map == false && (dwFlags & MPQ_OPEN_FORCE_MPQ_V1) == 0)
// Ignore the MPQ user data completely if the caller wants to open the MPQ as V1.0
if((dwFlags & MPQ_OPEN_FORCE_MPQ_V1) == 0)
{
if(ha->pUserData == NULL && dwHeaderID == ID_MPQ_USERDATA)
{
// Verify if this looks like a valid user data
pUserData = IsValidMpqUserData(SearchOffset, FileSize, ha->HeaderData);
if(pUserData != NULL)
{
// Fill the user data header
ha->UserDataPos = SearchOffset;
ha->pUserData = &ha->UserData;
memcpy(ha->pUserData, pUserData, sizeof(TMPQUserData));
// Fill the user data header
ha->pUserData = &ha->UserData;
memcpy(ha->pUserData, ha->HeaderData, sizeof(TMPQUserData));
BSWAP_TMPQUSERDATA(ha->pUserData);
// Continue searching from that position
SearchOffset += ha->pUserData->dwHeaderOffs;
break;
}
}
// Remember the position of the user data and continue search
ha->UserDataPos = SearchPos;
SearchPos += ha->pUserData->dwHeaderOffs;
continue;
}
// There must be MPQ header signature. Note that STORM.dll from Warcraft III actually
// tests the MPQ header size. It must be at least 0x20 bytes in order to load it
// Abused by Spazzler Map protector. Note that the size check is not present
// in Storm.dll v 1.00, so Diablo I code would load the MPQ anyway.
dwHeaderSize = BSWAP_INT32_UNSIGNED(ha->HeaderData[1]);
if(dwHeaderID == ID_MPQ && dwHeaderSize >= MPQ_HEADER_SIZE_V1)
{
// Now convert the header to version 4
nError = ConvertMpqHeaderToFormat4(ha, SearchOffset, FileSize, dwFlags, bIsWarcraft3Map);
bSearchComplete = true;
break;
}
// Check for MPK archives (Longwu Online - MPQ fork)
if(bIsWarcraft3Map == false && dwHeaderID == ID_MPK)
{
// Now convert the MPK header to MPQ Header version 4
nError = ConvertMpkHeaderToFormat4(ha, FileSize, dwFlags);
bSearchComplete = true;
break;
}
// If searching for the MPQ header is disabled, return an error
if(dwFlags & MPQ_OPEN_NO_HEADER_SEARCH)
{
nError = ERROR_NOT_SUPPORTED;
bSearchComplete = true;
break;
}
// Move the pointers
SearchOffset += 0x200;
dwInBufferOffset += 0x200;
}
// There must be MPQ header signature
if(dwHeaderID == ID_MPQ)
{
// Save the position where the MPQ header has been found
if(ha->pUserData == NULL)
ha->UserDataPos = SearchPos;
ha->pHeader = (TMPQHeader *)ha->HeaderData;
ha->MpqPos = SearchPos;
// Now convert the header to version 4
BSWAP_TMPQHEADER(ha->pHeader);
nError = ConvertMpqHeaderToFormat4(ha, FileSize, dwFlags);
break;
}
// Move to the next possible offset
SearchPos += 0x200;
}
// Did we identify one of the supported headers?
if(nError == ERROR_SUCCESS)
{
// Set the user data position to the MPQ header, if none
if(ha->pUserData == NULL)
ha->UserDataPos = SearchOffset;
// Set the position of the MPQ header
ha->pHeader = (TMPQHeader *)ha->HeaderData;
ha->MpqPos = SearchOffset;
ha->FileSize = FileSize;
// Sector size must be nonzero.
if(SearchOffset >= FileSize || ha->pHeader->wSectorSize == 0)
nError = ERROR_BAD_FORMAT;
}
// If we haven't found MPQ header in the file, it's an error
if(ha->pHeader == NULL)
nError = ERROR_BAD_FORMAT;
}
// Fix table positions according to format
if(nError == ERROR_SUCCESS)
{
// Dump the header
// DumpMpqHeader(ha->pHeader);
// DumpMpqHeader(ha->pHeader);
// W3x Map Protectors use the fact that War3's Storm.dll ignores the MPQ user data,
// and ignores the MPQ format version as well. The trick is to
// and probably ignores the MPQ format version as well. The trick is to
// fake MPQ format 2, with an improper hi-word position of hash table and block table
// We can overcome such protectors by forcing opening the archive as MPQ v 1.0
if(dwFlags & MPQ_OPEN_FORCE_MPQ_V1)
@ -363,25 +280,10 @@ bool WINAPI SFileOpenArchive(
ha->pUserData = NULL;
}
// Anti-overflow. If the hash table size in the header is
// higher than 0x10000000, it would overflow in 32-bit version
// Observed in the malformed Warcraft III maps
// Example map: MPQ_2016_v1_ProtectedMap_TableSizeOverflow.w3x
ha->pHeader->dwBlockTableSize = (ha->pHeader->dwBlockTableSize & BLOCK_INDEX_MASK);
ha->pHeader->dwHashTableSize = (ha->pHeader->dwHashTableSize & BLOCK_INDEX_MASK);
// Both MPQ_OPEN_NO_LISTFILE or MPQ_OPEN_NO_ATTRIBUTES trigger read only mode
if(dwFlags & (MPQ_OPEN_NO_LISTFILE | MPQ_OPEN_NO_ATTRIBUTES))
ha->dwFlags |= MPQ_FLAG_READ_ONLY;
// Check if the caller wants to force adding listfile
if(dwFlags & MPQ_OPEN_FORCE_LISTFILE)
ha->dwFlags |= MPQ_FLAG_LISTFILE_FORCE;
// Remember whether whis is a map for Warcraft III
if(bIsWarcraft3Map)
ha->dwFlags |= MPQ_FLAG_WAR3_MAP;
// Set the size of file sector
ha->dwSectorSize = (0x200 << ha->pHeader->wSectorSize);
@ -389,6 +291,24 @@ bool WINAPI SFileOpenArchive(
nError = VerifyMpqTablePositions(ha, FileSize);
}
// Check if the MPQ has data bitmap. If yes, we can verify if the MPQ is complete
if(nError == ERROR_SUCCESS && ha->pHeader->wFormatVersion >= MPQ_FORMAT_VERSION_4)
{
TFileBitmap * pBitmap;
bool bFileIsComplete = true;
LoadMpqDataBitmap(ha, FileSize, &bFileIsComplete);
if(ha->pBitmap != NULL && bFileIsComplete == false)
{
// Convert the MPQ bitmap to the file bitmap
pBitmap = CreateFileBitmap(ha, ha->pBitmap, bFileIsComplete);
// Set the data bitmap into the file stream for additional checks
FileStream_SetBitmap(ha->pStream, pBitmap);
ha->dwFlags |= MPQ_FLAG_READ_ONLY;
}
}
// Read the hash table. Ignore the result, as hash table is no longer required
// Read HET table. Ignore the result, as HET table is no longer required
if(nError == ERROR_SUCCESS)
@ -400,86 +320,93 @@ bool WINAPI SFileOpenArchive(
// the block table, BET table, hi-block table, (attributes) and (listfile).
if(nError == ERROR_SUCCESS)
{
nError = BuildFileTable(ha);
nError = BuildFileTable(ha, FileSize);
}
// Verify the file table, if no kind of protection was detected
if(nError == ERROR_SUCCESS && (ha->dwFlags & MPQ_FLAG_PROTECTED) == 0)
{
TFileEntry * pFileTableEnd = ha->pFileTable + ha->pHeader->dwBlockTableSize;
// ULONGLONG ArchiveSize = 0;
ULONGLONG RawFilePos;
// Parse all file entries
for(pFileEntry = ha->pFileTable; pFileEntry < pFileTableEnd; pFileEntry++)
{
// If that file entry is valid, check the file position
if(pFileEntry->dwFlags & MPQ_FILE_EXISTS)
{
// Get the 64-bit file position,
// relative to the begin of the file
RawFilePos = ha->MpqPos + pFileEntry->ByteOffset;
// Begin of the file must be within range
if(RawFilePos > FileSize)
{
nError = ERROR_FILE_CORRUPT;
break;
}
// End of the file must be within range
RawFilePos += pFileEntry->dwCmpSize;
if(RawFilePos > FileSize)
{
nError = ERROR_FILE_CORRUPT;
break;
}
// Also, we remember end of the file
// if(RawFilePos > ArchiveSize)
// ArchiveSize = RawFilePos;
}
}
}
// Load the internal listfile and include it to the file table
if(nError == ERROR_SUCCESS && (dwFlags & MPQ_OPEN_NO_LISTFILE) == 0)
{
// Quick check for (listfile)
// Save the flags for (listfile)
pFileEntry = GetFileEntryLocale(ha, LISTFILE_NAME, LANG_NEUTRAL);
if(pFileEntry != NULL)
{
// Ignore result of the operation. (listfile) is optional.
SFileAddListFile((HANDLE)ha, NULL);
ha->dwFileFlags1 = pFileEntry->dwFlags;
}
// Ignore result of the operation. (listfile) is optional.
SFileAddListFile((HANDLE)ha, NULL);
}
// Load the "(attributes)" file and merge it to the file table
if(nError == ERROR_SUCCESS && (dwFlags & MPQ_OPEN_NO_ATTRIBUTES) == 0 && (ha->dwFlags & MPQ_FLAG_BLOCK_TABLE_CUT) == 0)
if(nError == ERROR_SUCCESS && (dwFlags & MPQ_OPEN_NO_ATTRIBUTES) == 0)
{
// Quick check for (attributes)
// Save the flags for (attributes)
pFileEntry = GetFileEntryLocale(ha, ATTRIBUTES_NAME, LANG_NEUTRAL);
if(pFileEntry != NULL)
{
// Ignore result of the operation. (attributes) is optional.
SAttrLoadAttributes(ha);
ha->dwFileFlags2 = pFileEntry->dwFlags;
}
}
// Remember whether the archive has weak signature. Only for MPQs format 1.0.
if(nError == ERROR_SUCCESS)
{
// Quick check for (signature)
pFileEntry = GetFileEntryLocale(ha, SIGNATURE_NAME, LANG_NEUTRAL);
if(pFileEntry != NULL)
{
// Just remember that the archive is weak-signed
assert((pFileEntry->dwFlags & MPQ_FILE_EXISTS) != 0);
ha->dwFileFlags3 = pFileEntry->dwFlags;
}
// Finally, set the MPQ_FLAG_READ_ONLY if the MPQ was found malformed
ha->dwFlags |= (ha->dwFlags & MPQ_FLAG_MALFORMED) ? MPQ_FLAG_READ_ONLY : 0;
// Ignore result of the operation. (attributes) is optional.
SAttrLoadAttributes(ha);
}
// Cleanup and exit
if(nError != ERROR_SUCCESS)
{
FileStream_Close(pStream);
FreeArchiveHandle(ha);
FreeMPQArchive(ha);
SetLastError(nError);
ha = NULL;
}
// Free the header buffer
if(pbHeaderBuffer != NULL)
STORM_FREE(pbHeaderBuffer);
if(phMpq != NULL)
*phMpq = ha;
*phMpq = ha;
return (nError == ERROR_SUCCESS);
}
//-----------------------------------------------------------------------------
// bool WINAPI SFileSetDownloadCallback(HANDLE, SFILE_DOWNLOAD_CALLBACK, void *);
//
// Sets a callback that is called when content is downloaded from the master MPQ
//
// SFileGetArchiveBitmap
bool WINAPI SFileSetDownloadCallback(HANDLE hMpq, SFILE_DOWNLOAD_CALLBACK DownloadCB, void * pvUserData)
bool WINAPI SFileGetArchiveBitmap(HANDLE hMpq, TFileBitmap * pBitmap, DWORD Length, LPDWORD LengthNeeded)
{
TMPQArchive * ha = (TMPQArchive *)hMpq;
// Do nothing if 'hMpq' is bad parameter
if(!IsValidMpqHandle(hMpq))
{
SetLastError(ERROR_INVALID_HANDLE);
return false;
}
return FileStream_SetCallback(ha->pStream, DownloadCB, pvUserData);
return FileStream_GetBitmap(ha->pStream, pBitmap, Length, LengthNeeded);
}
//-----------------------------------------------------------------------------
@ -493,75 +420,39 @@ bool WINAPI SFileSetDownloadCallback(HANDLE hMpq, SFILE_DOWNLOAD_CALLBACK Downlo
bool WINAPI SFileFlushArchive(HANDLE hMpq)
{
TMPQArchive * ha;
TMPQArchive * ha = (TMPQArchive *)hMpq;
int nResultError = ERROR_SUCCESS;
int nError;
// Do nothing if 'hMpq' is bad parameter
if((ha = IsValidMpqHandle(hMpq)) == NULL)
if(!IsValidMpqHandle(ha))
{
SetLastError(ERROR_INVALID_HANDLE);
return false;
}
// Only if the MPQ was changed
// If the (listfile) has been invalidated, save it
if(ha->dwFlags & MPQ_FLAG_INV_LISTFILE)
{
nError = SListFileSaveToMpq(ha);
if(nError != ERROR_SUCCESS)
nResultError = nError;
}
// If the (attributes) has been invalidated, save it
if(ha->dwFlags & MPQ_FLAG_INV_ATTRIBUTES)
{
nError = SAttrFileSaveToMpq(ha);
if(nError != ERROR_SUCCESS)
nResultError = nError;
}
// Save HET table, BET table, hash table, block table, hi-block table
if(ha->dwFlags & MPQ_FLAG_CHANGED)
{
// Indicate that we are saving MPQ internal structures
ha->dwFlags |= MPQ_FLAG_SAVING_TABLES;
// Defragment the file table. This will allow us to put the internal files to the end
DefragmentFileTable(ha);
//
// Create each internal file
// Note that the (signature) file is usually before (listfile) in the file table
//
if(ha->dwFlags & MPQ_FLAG_SIGNATURE_NEW)
{
nError = SSignFileCreate(ha);
if(nError != ERROR_SUCCESS)
nResultError = nError;
}
if(ha->dwFlags & (MPQ_FLAG_LISTFILE_NEW | MPQ_FLAG_LISTFILE_FORCE))
{
nError = SListFileSaveToMpq(ha);
if(nError != ERROR_SUCCESS)
nResultError = nError;
}
if(ha->dwFlags & MPQ_FLAG_ATTRIBUTES_NEW)
{
nError = SAttrFileSaveToMpq(ha);
if(nError != ERROR_SUCCESS)
nResultError = nError;
}
// Save HET table, BET table, hash table, block table, hi-block table
if(ha->dwFlags & MPQ_FLAG_CHANGED)
{
// Rebuild the HET table
if(ha->pHetTable != NULL)
RebuildHetTable(ha);
// Save all MPQ tables first
nError = SaveMPQTables(ha);
if(nError != ERROR_SUCCESS)
nResultError = nError;
// If the archive has weak signature, we need to finish it
if(ha->dwFileFlags3 != 0)
{
nError = SSignFileFinish(ha);
if(nError != ERROR_SUCCESS)
nResultError = nError;
}
}
// We are no longer saving internal MPQ structures
ha->dwFlags &= ~MPQ_FLAG_SAVING_TABLES;
nError = SaveMPQTables(ha);
if(nError != ERROR_SUCCESS)
nResultError = nError;
}
// Return the error
@ -576,25 +467,14 @@ bool WINAPI SFileFlushArchive(HANDLE hMpq)
bool WINAPI SFileCloseArchive(HANDLE hMpq)
{
TMPQArchive * ha = IsValidMpqHandle(hMpq);
bool bResult = false;
// Only if the handle is valid
if(ha == NULL)
{
SetLastError(ERROR_INVALID_HANDLE);
return false;
}
// Invalidate the add file callback so it won't be called
// when saving (listfile) and (attributes)
ha->pfnAddFileCB = NULL;
ha->pvAddFileUserData = NULL;
TMPQArchive * ha = (TMPQArchive *)hMpq;
bool bResult;
// Flush all unsaved data to the storage
bResult = SFileFlushArchive(hMpq);
// Free all memory used by MPQ archive
FreeArchiveHandle(ha);
FreeMPQArchive(ha);
return bResult;
}

View file

@ -16,77 +16,33 @@
/* Local functions */
/*****************************************************************************/
static DWORD FindHashIndex(TMPQArchive * ha, DWORD dwFileIndex)
{
TMPQHash * pHashTableEnd;
TMPQHash * pHash;
DWORD dwFirstIndex = HASH_ENTRY_FREE;
// Should only be called if the archive has hash table
assert(ha->pHashTable != NULL);
// Multiple hash table entries can point to the file table entry.
// We need to search all of them
pHashTableEnd = ha->pHashTable + ha->pHeader->dwHashTableSize;
for(pHash = ha->pHashTable; pHash < pHashTableEnd; pHash++)
{
if(MPQ_BLOCK_INDEX(pHash) == dwFileIndex)
{
// Duplicate hash entry found
if(dwFirstIndex != HASH_ENTRY_FREE)
return HASH_ENTRY_FREE;
dwFirstIndex = (DWORD)(pHash - ha->pHashTable);
}
}
// Return the hash table entry index
return dwFirstIndex;
}
static const char * GetPatchFileName(TMPQArchive * ha, const char * szFileName, char * szBuffer)
{
TMPQNamePrefix * pPrefix;
// Are there patches in the current MPQ?
if(ha->dwFlags & MPQ_FLAG_PATCH)
{
// The patch prefix must be already known here
assert(ha->pPatchPrefix != NULL);
pPrefix = ha->pPatchPrefix;
// The patch name for "OldWorld\\XXX\\YYY" is "Base\\XXX\YYY"
// We need to remove the "OldWorld\\" prefix
if(!_strnicmp(szFileName, "OldWorld\\", 9))
szFileName += 9;
// Create the file name from the known patch entry
memcpy(szBuffer, pPrefix->szPatchPrefix, pPrefix->nLength);
strcpy(szBuffer + pPrefix->nLength, szFileName);
szFileName = szBuffer;
}
return szFileName;
}
static bool OpenLocalFile(const char * szFileName, HANDLE * PtrFile)
static bool OpenLocalFile(const char * szFileName, HANDLE * phFile)
{
TFileStream * pStream;
TMPQFile * hf = NULL;
// We have to convert the local file name to UNICODE, if needed
#ifdef _UNICODE
TCHAR szFileNameT[MAX_PATH];
int i;
// Convert the file name to UNICODE (if needed)
StringCopy(szFileNameT, _countof(szFileNameT), szFileName);
for(i = 0; szFileName[i] != 0; i++)
szFileNameT[i] = szFileName[i];
szFileNameT[i] = 0;
pStream = FileStream_OpenFile(szFileNameT, STREAM_PROVIDER_LINEAR | BASE_PROVIDER_FILE);
#else
pStream = FileStream_OpenFile(szFileName, STREAM_PROVIDER_LINEAR | BASE_PROVIDER_FILE);
#endif
// Open the file and create the TMPQFile structure
pStream = FileStream_OpenFile(szFileNameT, STREAM_FLAG_READ_ONLY);
if(pStream != NULL)
{
// Allocate and initialize file handle
hf = CreateFileHandle(NULL, NULL);
hf = CreateMpqFile(NULL);
if(hf != NULL)
{
hf->pStream = pStream;
*PtrFile = hf;
*phFile = hf;
return true;
}
else
@ -95,71 +51,91 @@ static bool OpenLocalFile(const char * szFileName, HANDLE * PtrFile)
SetLastError(ERROR_NOT_ENOUGH_MEMORY);
}
}
*PtrFile = NULL;
*phFile = NULL;
return false;
}
bool OpenPatchedFile(HANDLE hMpq, const char * szFileName, HANDLE * PtrFile)
bool OpenPatchedFile(HANDLE hMpq, const char * szFileName, DWORD dwReserved, HANDLE * phFile)
{
TMPQArchive * haBase = NULL;
TMPQArchive * ha = (TMPQArchive *)hMpq;
TFileEntry * pFileEntry;
TMPQFile * hfPatch; // Pointer to patch file
TMPQFile * hfBase = NULL; // Pointer to base open file
TMPQFile * hfLast = NULL; // The highest file in the chain that is not patch file
TMPQFile * hf = NULL;
HANDLE hPatchFile;
char szNameBuffer[MAX_PATH];
char szPatchFileName[MAX_PATH];
// First of all, find the latest archive where the file is in base version
// (i.e. where the original, unpatched version of the file exists)
// Keep this flag here for future updates
dwReserved = dwReserved;
// First of all, try to open the original version of the file in any of the patch chain
while(ha != NULL)
{
// If the file is there, then we remember the archive
pFileEntry = GetFileEntryExact(ha, GetPatchFileName(ha, szFileName, szNameBuffer), 0, NULL);
if(pFileEntry != NULL && (pFileEntry->dwFlags & MPQ_FILE_PATCH_FILE) == 0)
haBase = ha;
// Construct the name of the patch file
strcpy(szPatchFileName, ha->szPatchPrefix);
strcpy(&szPatchFileName[ha->cchPatchPrefix], szFileName);
if(SFileOpenFileEx((HANDLE)ha, szPatchFileName, SFILE_OPEN_FROM_MPQ, (HANDLE *)&hfBase))
{
// The file must be a base file, i.e. without MPQ_FILE_PATCH_FILE
if((hfBase->pFileEntry->dwFlags & MPQ_FILE_PATCH_FILE) == 0)
{
hf = hfLast = hfBase;
break;
}
// Move to the patch archive
SFileCloseFile((HANDLE)hfBase);
}
// Move to the next file in the patch chain
ha = ha->haPatch;
}
// If we couldn't find the base file in any of the patches, it doesn't exist
if((ha = haBase) == NULL)
// If we couldn't find the file in any of the patches, it doesn't exist
if(hf == NULL)
{
SetLastError(ERROR_FILE_NOT_FOUND);
return false;
}
// Now open the base file
if(SFileOpenFileEx((HANDLE)ha, GetPatchFileName(ha, szFileName, szNameBuffer), SFILE_OPEN_BASE_FILE, (HANDLE *)&hfBase))
// Now keep going in the patch chain and open every patch file that is there
for(ha = ha->haPatch; ha != NULL; ha = ha->haPatch)
{
// The file must be a base file, i.e. without MPQ_FILE_PATCH_FILE
assert((hfBase->pFileEntry->dwFlags & MPQ_FILE_PATCH_FILE) == 0);
hf = hfBase;
// Now open all patches and attach them on top of the base file
for(ha = ha->haPatch; ha != NULL; ha = ha->haPatch)
// Construct patch file name
strcpy(szPatchFileName, ha->szPatchPrefix);
strcpy(&szPatchFileName[ha->cchPatchPrefix], szFileName);
if(SFileOpenFileEx((HANDLE)ha, szPatchFileName, SFILE_OPEN_FROM_MPQ, &hPatchFile))
{
// Prepare the file name with a correct prefix
if(SFileOpenFileEx((HANDLE)ha, GetPatchFileName(ha, szFileName, szNameBuffer), SFILE_OPEN_BASE_FILE, &hPatchFile))
{
// Remember the new version
hfPatch = (TMPQFile *)hPatchFile;
// Remember the new version
hfPatch = (TMPQFile *)hPatchFile;
// We should not find patch file
assert((hfPatch->pFileEntry->dwFlags & MPQ_FILE_PATCH_FILE) != 0);
// If we encountered a full replacement of the file,
// we have to remember the highest full file
if((hfPatch->pFileEntry->dwFlags & MPQ_FILE_PATCH_FILE) == 0)
hfLast = hfPatch;
// Attach the patch to the base file
hf->hfPatch = hfPatch;
hf = hfPatch;
}
// Set current patch to base file and move on
hf->hfPatchFile = hfPatch;
hf = hfPatch;
}
}
// Now we need to free all files that are below the highest unpatched version
while(hfBase != hfLast)
{
TMPQFile * hfNext = hfBase->hfPatchFile;
// Free the file below
hfBase->hfPatchFile = NULL;
FreeMPQFile(hfBase);
// Move the base to the next file
hfBase = hfNext;
}
// Give the updated base MPQ
if(PtrFile != NULL)
*PtrFile = (HANDLE)hfBase;
return (hfBase != NULL);
if(phFile != NULL)
*phFile = (HANDLE)hfBase;
return true;
}
/*****************************************************************************/
@ -167,205 +143,81 @@ bool OpenPatchedFile(HANDLE hMpq, const char * szFileName, HANDLE * PtrFile)
/*****************************************************************************/
//-----------------------------------------------------------------------------
// SFileEnumLocales enums all locale versions within MPQ.
// SFileEnumLocales enums all locale versions within MPQ.
// Functions fills all available language identifiers on a file into the buffer
// pointed by plcLocales. There must be enough entries to copy the localed,
// otherwise the function returns ERROR_INSUFFICIENT_BUFFER.
int WINAPI SFileEnumLocales(
HANDLE hMpq,
const char * szFileName,
LCID * PtrLocales,
LPDWORD PtrMaxLocales,
DWORD dwSearchScope)
HANDLE hMpq,
const char * szFileName,
LCID * plcLocales,
LPDWORD pdwMaxLocales,
DWORD dwSearchScope)
{
TMPQArchive * ha = (TMPQArchive *)hMpq;
TFileEntry * pFileEntry;
TMPQHash * pFirstHash;
TMPQHash * pHash;
DWORD dwFileIndex = 0;
DWORD dwMaxLocales;
DWORD dwLocales = 0;
// Test the parameters
if(!IsValidMpqHandle(hMpq))
if(!IsValidMpqHandle(ha))
return ERROR_INVALID_HANDLE;
if(szFileName == NULL || *szFileName == 0)
return ERROR_INVALID_PARAMETER;
if(ha->pHashTable == NULL)
return ERROR_NOT_SUPPORTED;
if(PtrMaxLocales == NULL)
if(pdwMaxLocales == NULL)
return ERROR_INVALID_PARAMETER;
if(IsPseudoFileName(szFileName, &dwFileIndex))
return ERROR_INVALID_PARAMETER;
// Keep compiler happy
dwMaxLocales = PtrMaxLocales[0];
dwSearchScope = dwSearchScope;
// Parse all files with that name
pFirstHash = pHash = GetFirstHashEntry(ha, szFileName);
while(pHash != NULL)
// Parse hash table entries for all locales
if(!IsPseudoFileName(szFileName, &dwFileIndex))
{
// Put the locales to the buffer
if(PtrLocales != NULL && dwLocales < dwMaxLocales)
*PtrLocales++ = pHash->lcLocale;
dwLocales++;
// Get the next locale
pHash = GetNextHashEntry(ha, pFirstHash, pHash);
}
// Give the caller the number of locales and return
PtrMaxLocales[0] = dwLocales;
return (dwLocales <= dwMaxLocales) ? ERROR_SUCCESS : ERROR_INSUFFICIENT_BUFFER;
}
//-----------------------------------------------------------------------------
// SFileOpenFileEx
//
// hMpq - Handle of opened MPQ archive
// szFileName - Name of file to open
// dwSearchScope - Where to search
// PtrFile - Pointer to store opened file handle
bool WINAPI SFileOpenFileEx(HANDLE hMpq, const char * szFileName, DWORD dwSearchScope, HANDLE * PtrFile)
{
TMPQArchive * ha = IsValidMpqHandle(hMpq);
TFileEntry * pFileEntry = NULL;
TMPQFile * hf = NULL;
DWORD dwHashIndex = HASH_ENTRY_FREE;
DWORD dwFileIndex = 0;
bool bOpenByIndex = false;
int nError = ERROR_SUCCESS;
// Don't accept NULL pointer to file handle
if(szFileName == NULL || *szFileName == 0)
nError = ERROR_INVALID_PARAMETER;
// When opening a file from MPQ, the handle must be valid
if(dwSearchScope != SFILE_OPEN_LOCAL_FILE && ha == NULL)
nError = ERROR_INVALID_HANDLE;
// When not checking for existence, the pointer to file handle must be valid
if(dwSearchScope != SFILE_OPEN_CHECK_EXISTS && PtrFile == NULL)
nError = ERROR_INVALID_PARAMETER;
// Prepare the file opening
if(nError == ERROR_SUCCESS)
{
switch(dwSearchScope)
// Calculate the number of locales
pFirstHash = pHash = GetFirstHashEntry(ha, szFileName);
while(pHash != NULL)
{
case SFILE_OPEN_FROM_MPQ:
case SFILE_OPEN_BASE_FILE:
case SFILE_OPEN_CHECK_EXISTS:
// If this MPQ has no patches, open the file from this MPQ directly
if(ha->haPatch == NULL || dwSearchScope == SFILE_OPEN_BASE_FILE)
{
pFileEntry = GetFileEntryLocale2(ha, szFileName, lcFileLocale, &dwHashIndex);
}
// If this MPQ is a patched archive, open the file as patched
else
{
return OpenPatchedFile(hMpq, szFileName, PtrFile);
}
break;
case SFILE_OPEN_ANY_LOCALE:
// This open option is reserved for opening MPQ internal listfile.
// No argument validation. Tries to open file with neutral locale first,
// then any other available.
pFileEntry = GetFileEntryLocale2(ha, szFileName, 0, &dwHashIndex);
break;
case SFILE_OPEN_LOCAL_FILE:
// Open a local file
return OpenLocalFile(szFileName, PtrFile);
default:
// Don't accept any other value
nError = ERROR_INVALID_PARAMETER;
break;
}
}
// Check whether the file really exists in the MPQ
if(nError == ERROR_SUCCESS)
{
if(pFileEntry == NULL || (pFileEntry->dwFlags & MPQ_FILE_EXISTS) == 0)
{
// Check the pseudo-file name
if((bOpenByIndex = IsPseudoFileName(szFileName, &dwFileIndex)) == true)
{
// Get the file entry for the file
if(dwFileIndex < ha->dwFileTableSize)
{
pFileEntry = ha->pFileTable + dwFileIndex;
}
}
if(pFileEntry == NULL)
{
nError = ERROR_FILE_NOT_FOUND;
}
dwLocales++;
pHash = GetNextHashEntry(ha, pFirstHash, pHash);
}
// Ignore unknown loading flags (example: MPQ_2016_v1_WME4_4.w3x)
// if(pFileEntry != NULL && pFileEntry->dwFlags & ~MPQ_FILE_VALID_FLAGS)
// nError = ERROR_NOT_SUPPORTED;
}
// Test if there is enough space to copy the locales
if(*pdwMaxLocales < dwLocales)
{
*pdwMaxLocales = dwLocales;
return ERROR_INSUFFICIENT_BUFFER;
}
// Did the caller just wanted to know if the file exists?
if(nError == ERROR_SUCCESS && dwSearchScope != SFILE_OPEN_CHECK_EXISTS)
// Enum the locales
pFirstHash = pHash = GetFirstHashEntry(ha, szFileName);
while(pHash != NULL)
{
*plcLocales++ = pHash->lcLocale;
pHash = GetNextHashEntry(ha, pFirstHash, pHash);
}
}
else
{
// Allocate file handle
hf = CreateFileHandle(ha, pFileEntry);
if(hf != NULL)
// There must be space for 1 locale
if(*pdwMaxLocales < 1)
{
// Get the hash index for the file
if(ha->pHashTable != NULL && dwHashIndex == HASH_ENTRY_FREE)
dwHashIndex = FindHashIndex(ha, dwFileIndex);
if(dwHashIndex != HASH_ENTRY_FREE)
hf->pHashEntry = ha->pHashTable + dwHashIndex;
hf->dwHashIndex = dwHashIndex;
// If the MPQ has sector CRC enabled, enable if for the file
if(ha->dwFlags & MPQ_FLAG_CHECK_SECTOR_CRC)
hf->bCheckSectorCRCs = true;
// If we know the real file name, copy it to the file entry
if(bOpenByIndex == false)
{
// If there is no file name yet, allocate it
AllocateFileName(ha, pFileEntry, szFileName);
// If the file is encrypted, we should detect the file key
if(pFileEntry->dwFlags & MPQ_FILE_ENCRYPTED)
{
hf->dwFileKey = DecryptFileKey(szFileName,
pFileEntry->ByteOffset,
pFileEntry->dwFileSize,
pFileEntry->dwFlags);
}
}
}
else
{
nError = ERROR_NOT_ENOUGH_MEMORY;
*pdwMaxLocales = 1;
return ERROR_INSUFFICIENT_BUFFER;
}
// For nameless access, always return 1 locale
pFileEntry = GetFileEntryByIndex(ha, dwFileIndex);
pHash = ha->pHashTable + pFileEntry->dwHashIndex;
*plcLocales = pHash->lcLocale;
dwLocales = 1;
}
// Give the file entry
if(PtrFile != NULL)
PtrFile[0] = hf;
// Return error code
if(nError != ERROR_SUCCESS)
SetLastError(nError);
return (nError == ERROR_SUCCESS);
// Give the caller the total number of found locales
*pdwMaxLocales = dwLocales;
return ERROR_SUCCESS;
}
//-----------------------------------------------------------------------------
@ -376,7 +228,226 @@ bool WINAPI SFileOpenFileEx(HANDLE hMpq, const char * szFileName, DWORD dwSearch
bool WINAPI SFileHasFile(HANDLE hMpq, const char * szFileName)
{
return SFileOpenFileEx(hMpq, szFileName, SFILE_OPEN_CHECK_EXISTS, NULL);
TMPQArchive * ha = (TMPQArchive *)hMpq;
TFileEntry * pFileEntry;
DWORD dwFlagsToCheck = MPQ_FILE_EXISTS;
DWORD dwFileIndex = 0;
char szPatchFileName[MAX_PATH];
bool bIsPseudoName;
int nError = ERROR_SUCCESS;
if(!IsValidMpqHandle(ha))
nError = ERROR_INVALID_HANDLE;
if(szFileName == NULL || *szFileName == 0)
nError = ERROR_INVALID_PARAMETER;
// Prepare the file opening
if(nError == ERROR_SUCCESS)
{
// Different processing for pseudo-names
bIsPseudoName = IsPseudoFileName(szFileName, &dwFileIndex);
// Walk through the MPQ and all patches
while(ha != NULL)
{
// Verify presence of the file
pFileEntry = (bIsPseudoName == false) ? GetFileEntryLocale(ha, szFileName, lcFileLocale)
: GetFileEntryByIndex(ha, dwFileIndex);
// Verify the file flags
if(pFileEntry != NULL && (pFileEntry->dwFlags & dwFlagsToCheck) == MPQ_FILE_EXISTS)
return true;
// If this is patched archive, go to the patch
dwFlagsToCheck = MPQ_FILE_EXISTS | MPQ_FILE_PATCH_FILE;
ha = ha->haPatch;
// Prepare the patched file name
if(ha != NULL)
{
strcpy(szPatchFileName, ha->szPatchPrefix);
strcat(szPatchFileName, szFileName);
szFileName = szPatchFileName;
}
}
// Not found, sorry
nError = ERROR_FILE_NOT_FOUND;
}
// Cleanup
SetLastError(nError);
return false;
}
//-----------------------------------------------------------------------------
// SFileOpenFileEx
//
// hMpq - Handle of opened MPQ archive
// szFileName - Name of file to open
// dwSearchScope - Where to search
// phFile - Pointer to store opened file handle
bool WINAPI SFileOpenFileEx(HANDLE hMpq, const char * szFileName, DWORD dwSearchScope, HANDLE * phFile)
{
TMPQArchive * ha = (TMPQArchive *)hMpq;
TFileEntry * pFileEntry = NULL;
TMPQFile * hf = NULL;
DWORD dwFileIndex = 0;
bool bOpenByIndex = false;
int nError = ERROR_SUCCESS;
// Don't accept NULL pointer to file handle
if(phFile == NULL)
nError = ERROR_INVALID_PARAMETER;
// Prepare the file opening
if(nError == ERROR_SUCCESS)
{
switch(dwSearchScope)
{
case SFILE_OPEN_PATCHED_FILE:
// We want to open the updated version of the file
return OpenPatchedFile(hMpq, szFileName, 0, phFile);
case SFILE_OPEN_FROM_MPQ:
if(!IsValidMpqHandle(ha))
{
nError = ERROR_INVALID_HANDLE;
break;
}
if(szFileName == NULL || *szFileName == 0)
{
nError = ERROR_INVALID_PARAMETER;
break;
}
// First of all, check the name as-is
if(!IsPseudoFileName(szFileName, &dwFileIndex))
{
pFileEntry = GetFileEntryLocale(ha, szFileName, lcFileLocale);
if(pFileEntry == NULL)
nError = ERROR_FILE_NOT_FOUND;
}
else
{
bOpenByIndex = true;
pFileEntry = GetFileEntryByIndex(ha, dwFileIndex);
if(pFileEntry == NULL)
nError = ERROR_FILE_NOT_FOUND;
}
break;
case SFILE_OPEN_ANY_LOCALE:
// This open option is reserved for opening MPQ internal listfile.
// No argument validation. Tries to open file with neutral locale first,
// then any other available.
dwSearchScope = SFILE_OPEN_FROM_MPQ;
pFileEntry = GetFileEntryAny(ha, szFileName);
if(pFileEntry == NULL)
nError = ERROR_FILE_NOT_FOUND;
break;
case SFILE_OPEN_LOCAL_FILE:
if(szFileName == NULL || *szFileName == 0)
{
nError = ERROR_INVALID_PARAMETER;
break;
}
return OpenLocalFile(szFileName, phFile);
default:
// Don't accept any other value
nError = ERROR_INVALID_PARAMETER;
break;
}
// Quick return if something failed
if(nError != ERROR_SUCCESS)
{
SetLastError(nError);
return false;
}
}
// Test if the file was not already deleted.
if(nError == ERROR_SUCCESS)
{
if((pFileEntry->dwFlags & MPQ_FILE_EXISTS) == 0)
nError = ERROR_FILE_NOT_FOUND;
if(pFileEntry->dwFlags & ~MPQ_FILE_VALID_FLAGS)
nError = ERROR_NOT_SUPPORTED;
}
// Allocate file handle
if(nError == ERROR_SUCCESS)
{
if((hf = STORM_ALLOC(TMPQFile, 1)) == NULL)
nError = ERROR_NOT_ENOUGH_MEMORY;
}
// Initialize file handle
if(nError == ERROR_SUCCESS)
{
memset(hf, 0, sizeof(TMPQFile));
hf->pFileEntry = pFileEntry;
hf->dwMagic = ID_MPQ_FILE;
hf->ha = ha;
hf->MpqFilePos = pFileEntry->ByteOffset;
hf->RawFilePos = ha->MpqPos + hf->MpqFilePos;
hf->dwDataSize = pFileEntry->dwFileSize;
// If the MPQ has sector CRC enabled, enable if for the file
if(ha->dwFlags & MPQ_FLAG_CHECK_SECTOR_CRC)
hf->bCheckSectorCRCs = true;
// If we know the real file name, copy it to the file entry
if(bOpenByIndex == false)
{
// If there is no file name yet, allocate it
AllocateFileName(pFileEntry, szFileName);
// If the file is encrypted, we should detect the file key
if(pFileEntry->dwFlags & MPQ_FILE_ENCRYPTED)
{
hf->dwFileKey = DecryptFileKey(szFileName,
pFileEntry->ByteOffset,
pFileEntry->dwFileSize,
pFileEntry->dwFlags);
}
}
else
{
// Try to auto-detect the file name
if(!SFileGetFileName(hf, NULL))
nError = GetLastError();
}
}
// If the file is actually a patch file, we have to load the patch file header
if(nError == ERROR_SUCCESS && pFileEntry->dwFlags & MPQ_FILE_PATCH_FILE)
{
assert(hf->pPatchInfo == NULL);
nError = AllocatePatchInfo(hf, true);
}
// Cleanup
if(nError != ERROR_SUCCESS)
{
SetLastError(nError);
FreeMPQFile(hf);
}
*phFile = hf;
return (nError == ERROR_SUCCESS);
}
//-----------------------------------------------------------------------------
@ -385,14 +456,14 @@ bool WINAPI SFileHasFile(HANDLE hMpq, const char * szFileName)
bool WINAPI SFileCloseFile(HANDLE hFile)
{
TMPQFile * hf = (TMPQFile *)hFile;
if(!IsValidFileHandle(hFile))
if(!IsValidFileHandle(hf))
{
SetLastError(ERROR_INVALID_HANDLE);
return false;
}
// Free the structure
FreeFileHandle(hf);
FreeMPQFile(hf);
return true;
}

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -20,83 +20,89 @@
//-----------------------------------------------------------------------------
// Local defines
#define SIGNATURE_TYPE_NONE 0
#define SIGNATURE_TYPE_WEAK 1
#define SIGNATURE_TYPE_STRONG 2
#define MPQ_DIGEST_UNIT_SIZE 0x10000
typedef struct _MPQ_SIGNATURE_INFO
{
ULONGLONG BeginMpqData; // File offset where the hashing starts
ULONGLONG BeginExclude; // Begin of the excluded area (used for (signature) file)
ULONGLONG EndExclude; // End of the excluded area (used for (signature) file)
ULONGLONG EndMpqData; // File offset where the hashing ends
ULONGLONG EndOfFile; // Size of the entire file
BYTE Signature[MPQ_STRONG_SIGNATURE_SIZE + 0x10];
DWORD cbSignatureSize; // Length of the signature
int nSignatureType; // See SIGNATURE_TYPE_XXX
} MPQ_SIGNATURE_INFO, *PMPQ_SIGNATURE_INFO;
//-----------------------------------------------------------------------------
// Known Blizzard public keys
// Created by Jean-Francois Roy using OpenSSL
static const char * szBlizzardWeakPrivateKey =
"-----BEGIN PRIVATE KEY-----"
"MIIBOQIBAAJBAJJidwS/uILMBSO5DLGsBFknIXWWjQJe2kfdfEk3G/j66w4KkhZ1"
"V61Rt4zLaMVCYpDun7FLwRjkMDSepO1q2DcCAwEAAQJANtiztVDMJh2hE1hjPDKy"
"UmEJ9U/aN3gomuKOjbQbQ/bWWcM/WfhSVHmPqtqh/bQI2UXFr0rnXngeteZHLr/b"
"8QIhAMuWriSKGMACw18/rVVfUrThs915odKBH1Alr3vMVVzZAiEAuBHPSQkgwcb6"
"L4MWaiKuOzq08mSyNqPeN8oSy18q848CIHeMn+3s+eOmu7su1UYQl6yH7OrdBd1q"
"3UxfFNEJiAbhAiAqxdCyOxHGlbM7aS3DOg3cq5ayoN2cvtV7h1R4t8OmVwIgF+5z"
"/6vkzBUsZhd8Nwyis+MeQYH0rpFpMKdTlqmPF2Q="
"-----END PRIVATE KEY-----";
static const char * szBlizzardWeakPublicKey =
"-----BEGIN PUBLIC KEY-----"
"MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAJJidwS/uILMBSO5DLGsBFknIXWWjQJe"
"2kfdfEk3G/j66w4KkhZ1V61Rt4zLaMVCYpDun7FLwRjkMDSepO1q2DcCAwEAAQ=="
"-----END PUBLIC KEY-----";
"-----BEGIN PUBLIC KEY-----"
"MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAJJidwS/uILMBSO5DLGsBFknIXWWjQJe"
"2kfdfEk3G/j66w4KkhZ1V61Rt4zLaMVCYpDun7FLwRjkMDSepO1q2DcCAwEAAQ=="
"-----END PUBLIC KEY-----";
static const char * szBlizzardStrongPublicKey =
"-----BEGIN PUBLIC KEY-----"
"MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAsQZ+ziT2h8h+J/iMQpgd"
"tH1HaJzOBE3agjU4yMPcrixaPOZoA4t8bwfey7qczfWywocYo3pleytFF+IuD4HD"
"Fl9OXN1SFyupSgMx1EGZlgbFAomnbq9MQJyMqQtMhRAjFgg4TndS7YNb+JMSAEKp"
"kXNqY28n/EVBHD5TsMuVCL579gIenbr61dI92DDEdy790IzIG0VKWLh/KOTcTJfm"
"Ds/7HQTkGouVW+WUsfekuqNQo7ND9DBnhLjLjptxeFE2AZqYcA1ao3S9LN3GL1tW"
"lVXFIX9c7fWqaVTQlZ2oNsI/ARVApOK3grNgqvwH6YoVYVXjNJEo5sQJsPsdV/hk"
"dwIDAQAB"
"-----END PUBLIC KEY-----";
"-----BEGIN PUBLIC KEY-----"
"MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAsQZ+ziT2h8h+J/iMQpgd"
"tH1HaJzOBE3agjU4yMPcrixaPOZoA4t8bwfey7qczfWywocYo3pleytFF+IuD4HD"
"Fl9OXN1SFyupSgMx1EGZlgbFAomnbq9MQJyMqQtMhRAjFgg4TndS7YNb+JMSAEKp"
"kXNqY28n/EVBHD5TsMuVCL579gIenbr61dI92DDEdy790IzIG0VKWLh/KOTcTJfm"
"Ds/7HQTkGouVW+WUsfekuqNQo7ND9DBnhLjLjptxeFE2AZqYcA1ao3S9LN3GL1tW"
"lVXFIX9c7fWqaVTQlZ2oNsI/ARVApOK3grNgqvwH6YoVYVXjNJEo5sQJsPsdV/hk"
"dwIDAQAB"
"-----END PUBLIC KEY-----";
static const char * szWarcraft3MapPublicKey =
"-----BEGIN PUBLIC KEY-----"
"MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA1BwklUUQ3UvjizOBRoF5"
"yyOVc7KD+oGOQH5i6eUk1yfs0luCC70kNucNrfqhmviywVtahRse1JtXCPrx2bd3"
"iN8Dx91fbkxjYIOGTsjYoHKTp0BbaFkJih776fcHgnFSb+7mJcDuJVvJOXxEH6w0"
"1vo6VtujCqj1arqbyoal+xtAaczF3us5cOEp45sR1zAWTn1+7omN7VWV4QqJPaDS"
"gBSESc0l1grO0i1VUSumayk7yBKIkb+LBvcG6WnYZHCi7VdLmaxER5m8oZfER66b"
"heHoiSQIZf9PAY6Guw2DT5BTc54j/AaLQAKf2qcRSgQLVo5kQaddF3rCpsXoB/74"
"6QIDAQAB"
"-----END PUBLIC KEY-----";
"-----BEGIN PUBLIC KEY-----"
"MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA1BwklUUQ3UvjizOBRoF5"
"yyOVc7KD+oGOQH5i6eUk1yfs0luCC70kNucNrfqhmviywVtahRse1JtXCPrx2bd3"
"iN8Dx91fbkxjYIOGTsjYoHKTp0BbaFkJih776fcHgnFSb+7mJcDuJVvJOXxEH6w0"
"1vo6VtujCqj1arqbyoal+xtAaczF3us5cOEp45sR1zAWTn1+7omN7VWV4QqJPaDS"
"gBSESc0l1grO0i1VUSumayk7yBKIkb+LBvcG6WnYZHCi7VdLmaxER5m8oZfER66b"
"heHoiSQIZf9PAY6Guw2DT5BTc54j/AaLQAKf2qcRSgQLVo5kQaddF3rCpsXoB/74"
"6QIDAQAB"
"-----END PUBLIC KEY-----";
static const char * szWowPatchPublicKey =
"-----BEGIN PUBLIC KEY-----"
"MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAwOsMV0LagAWPEtEQM6b9"
"6FHFkUyGbbyda2/Dfc9dyl21E9QvX+Yw7qKRMAKPzA2TlQQLZKvXpnKXF/YIK5xa"
"5uwg9CEHCEAYolLG4xn0FUOE0E/0PuuytI0p0ICe6rk00PifZzTr8na2wI/l/GnQ"
"bvnIVF1ck6cslATpQJ5JJVMXzoFlUABS19WESw4MXuJAS3AbMhxNWdEhVv7eO51c"
"yGjRLy9QjogZODZTY0fSEksgBqQxNCoYVJYI/sF5K2flDsGqrIp0OdJ6teJlzg1Y"
"UjYnb6bKjlidXoHEXI2TgA/mD6O3XFIt08I9s3crOCTgICq7cgX35qrZiIVWZdRv"
"TwIDAQAB"
"-----END PUBLIC KEY-----";
"-----BEGIN PUBLIC KEY-----"
"MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAwOsMV0LagAWPEtEQM6b9"
"6FHFkUyGbbyda2/Dfc9dyl21E9QvX+Yw7qKRMAKPzA2TlQQLZKvXpnKXF/YIK5xa"
"5uwg9CEHCEAYolLG4xn0FUOE0E/0PuuytI0p0ICe6rk00PifZzTr8na2wI/l/GnQ"
"bvnIVF1ck6cslATpQJ5JJVMXzoFlUABS19WESw4MXuJAS3AbMhxNWdEhVv7eO51c"
"yGjRLy9QjogZODZTY0fSEksgBqQxNCoYVJYI/sF5K2flDsGqrIp0OdJ6teJlzg1Y"
"UjYnb6bKjlidXoHEXI2TgA/mD6O3XFIt08I9s3crOCTgICq7cgX35qrZiIVWZdRv"
"TwIDAQAB"
"-----END PUBLIC KEY-----";
static const char * szWowSurveyPublicKey =
"-----BEGIN PUBLIC KEY-----"
"MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAnIt1DR6nRyyKsy2qahHe"
"MKLtacatn/KxieHcwH87wLBxKy+jZ0gycTmJ7SaTdBAEMDs/V5IPIXEtoqYnid2c"
"63TmfGDU92oc3Ph1PWUZ2PWxBhT06HYxRdbrgHw9/I29pNPi/607x+lzPORITOgU"
"BR6MR8au8HsQP4bn4vkJNgnSgojh48/XQOB/cAln7As1neP61NmVimoLR4Bwi3zt"
"zfgrZaUpyeNCUrOYJmH09YIjbBySTtXOUidoPHjFrMsCWpr6xs8xbETbs7MJFL6a"
"vcUfTT67qfIZ9RsuKfnXJTIrV0kwDSjjuNXiPTmWAehSsiHIsrUXX5RNcwsSjClr"
"nQIDAQAB"
"-----END PUBLIC KEY-----";
"-----BEGIN PUBLIC KEY-----"
"MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAnIt1DR6nRyyKsy2qahHe"
"MKLtacatn/KxieHcwH87wLBxKy+jZ0gycTmJ7SaTdBAEMDs/V5IPIXEtoqYnid2c"
"63TmfGDU92oc3Ph1PWUZ2PWxBhT06HYxRdbrgHw9/I29pNPi/607x+lzPORITOgU"
"BR6MR8au8HsQP4bn4vkJNgnSgojh48/XQOB/cAln7As1neP61NmVimoLR4Bwi3zt"
"zfgrZaUpyeNCUrOYJmH09YIjbBySTtXOUidoPHjFrMsCWpr6xs8xbETbs7MJFL6a"
"vcUfTT67qfIZ9RsuKfnXJTIrV0kwDSjjuNXiPTmWAehSsiHIsrUXX5RNcwsSjClr"
"nQIDAQAB"
"-----END PUBLIC KEY-----";
static const char * szStarcraft2MapPublicKey =
"-----BEGIN PUBLIC KEY-----"
"MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAmk4GT8zb+ICC25a17KZB"
"q/ygKGJ2VSO6IT5PGHJlm1KfnHBA4B6SH3xMlJ4c6eG2k7QevZv+FOhjsAHubyWq"
"2VKqWbrIFKv2ILc2RfMn8J9EDVRxvcxh6slRrVL69D0w1tfVGjMiKq2Fym5yGoRT"
"E7CRgDqbAbXP9LBsCNWHiJLwfxMGzHbk8pIl9oia5pvM7ofZamSHchxlpy6xa4GJ"
"7xKN01YCNvklTL1D7uol3wkwcHc7vrF8QwuJizuA5bSg4poEGtH62BZOYi+UL/z0"
"31YK+k9CbQyM0X0pJoJoYz1TK+Y5J7vBnXCZtfcTYQ/ZzN6UcxTa57dJaiOlCh9z"
"nQIDAQAB"
"-----END PUBLIC KEY-----";
"-----BEGIN PUBLIC KEY-----"
"MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAmk4GT8zb+ICC25a17KZB"
"q/ygKGJ2VSO6IT5PGHJlm1KfnHBA4B6SH3xMlJ4c6eG2k7QevZv+FOhjsAHubyWq"
"2VKqWbrIFKv2ILc2RfMn8J9EDVRxvcxh6slRrVL69D0w1tfVGjMiKq2Fym5yGoRT"
"E7CRgDqbAbXP9LBsCNWHiJLwfxMGzHbk8pIl9oia5pvM7ofZamSHchxlpy6xa4GJ"
"7xKN01YCNvklTL1D7uol3wkwcHc7vrF8QwuJizuA5bSg4poEGtH62BZOYi+UL/z0"
"31YK+k9CbQyM0X0pJoJoYz1TK+Y5J7vBnXCZtfcTYQ/ZzN6UcxTa57dJaiOlCh9z"
"nQIDAQAB"
"-----END PUBLIC KEY-----";
//-----------------------------------------------------------------------------
// Local functions
@ -113,6 +119,13 @@ static void memrev(unsigned char *buf, size_t count)
}
}
static bool is_valid_md5(void * pvMd5)
{
LPDWORD Md5 = (LPDWORD)pvMd5;
return (Md5[0] | Md5[1] | Md5[2] | Md5[3]) ? true : false;
}
static bool decode_base64_key(const char * szKeyBase64, rsa_key * key)
{
unsigned char decoded_key[0x200];
@ -129,7 +142,7 @@ static bool decode_base64_key(const char * szKeyBase64, rsa_key * key)
// decode the base64 string
length = (unsigned long)(szBase64End - szBase64Begin);
if(base64_decode(szBase64Begin, length, decoded_key, &decoded_length) != CRYPT_OK)
if(base64_decode((unsigned char *)szBase64Begin, length, decoded_key, &decoded_length) != CRYPT_OK)
return false;
// Create RSA key
@ -140,10 +153,10 @@ static bool decode_base64_key(const char * szKeyBase64, rsa_key * key)
}
static void GetPlainAnsiFileName(
const TCHAR * szFileName,
char * szPlainName)
const TCHAR * szFileName,
char * szPlainName)
{
const TCHAR * szPlainNameT = GetPlainFileName(szFileName);
const TCHAR * szPlainNameT = GetPlainFileNameT(szFileName);
// Convert the plain name to ANSI
while(*szPlainNameT != 0)
@ -153,8 +166,8 @@ static void GetPlainAnsiFileName(
// Calculate begin and end of the MPQ archive
static void CalculateArchiveRange(
TMPQArchive * ha,
PMPQ_SIGNATURE_INFO pSI)
TMPQArchive * ha,
PMPQ_SIGNATURE_INFO pSI)
{
ULONGLONG TempPos = 0;
char szMapHeader[0x200];
@ -173,17 +186,71 @@ static void CalculateArchiveRange(
}
}
// Get the MPQ data end. This is stored in the MPQ header
// Get the MPQ data end. This is stored in our MPQ header,
// and it's been already prepared by SFileOpenArchive,
pSI->EndMpqData = ha->MpqPos + ha->pHeader->ArchiveSize64;
// Get the size of the entire file
FileStream_GetSize(ha->pStream, &pSI->EndOfFile);
}
static bool QueryMpqSignatureInfo(
TMPQArchive * ha,
PMPQ_SIGNATURE_INFO pSI)
{
ULONGLONG ExtraBytes;
TMPQFile * hf;
HANDLE hFile;
DWORD dwFileSize;
// Calculate the range of the MPQ
CalculateArchiveRange(ha, pSI);
// If there is "(signature)" file in the MPQ, it has a weak signature
if(SFileOpenFileEx((HANDLE)ha, SIGNATURE_NAME, SFILE_OPEN_FROM_MPQ, &hFile))
{
// Get the content of the signature
SFileReadFile(hFile, pSI->Signature, sizeof(pSI->Signature), &pSI->cbSignatureSize, NULL);
// Verify the size of the signature
hf = (TMPQFile *)hFile;
// We have to exclude the signature file from the digest
pSI->BeginExclude = ha->MpqPos + hf->pFileEntry->ByteOffset;
pSI->EndExclude = pSI->BeginExclude + hf->pFileEntry->dwCmpSize;
dwFileSize = hf->dwDataSize;
// Close the file
SFileCloseFile(hFile);
pSI->nSignatureType = SIGNATURE_TYPE_WEAK;
return (dwFileSize == (MPQ_WEAK_SIGNATURE_SIZE + 8)) ? true : false;
}
// If there is extra bytes beyond the end of the archive,
// it's the strong signature
ExtraBytes = pSI->EndOfFile - pSI->EndMpqData;
if(ExtraBytes >= (MPQ_STRONG_SIGNATURE_SIZE + 4))
{
// Read the strong signature
if(!FileStream_Read(ha->pStream, &pSI->EndMpqData, pSI->Signature, (MPQ_STRONG_SIGNATURE_SIZE + 4)))
return false;
// Check the signature header "NGIS"
if(pSI->Signature[0] != 'N' || pSI->Signature[1] != 'G' || pSI->Signature[2] != 'I' || pSI->Signature[3] != 'S')
return false;
pSI->nSignatureType = SIGNATURE_TYPE_STRONG;
return true;
}
// Succeeded, but no known signature found
return true;
}
static bool CalculateMpqHashMd5(
TMPQArchive * ha,
PMPQ_SIGNATURE_INFO pSI,
LPBYTE pMd5Digest)
TMPQArchive * ha,
PMPQ_SIGNATURE_INFO pSI,
LPBYTE pMd5Digest)
{
hash_state md5_state;
ULONGLONG BeginBuffer;
@ -216,7 +283,7 @@ static bool CalculateMpqHashMd5(
if(dwToRead == 0)
break;
// Read the next chunk
// Read the next chunk
if(!FileStream_Read(ha->pStream, &BeginBuffer, pbDigestBuffer, dwToRead))
{
STORM_FREE(pbDigestBuffer);
@ -257,18 +324,17 @@ static bool CalculateMpqHashMd5(
}
static void AddTailToSha1(
hash_state * psha1_state,
const char * szTail)
hash_state * psha1_state,
const char * szTail)
{
unsigned char * pbTail = (unsigned char *)szTail;
unsigned char szUpperCase[0x200];
unsigned long nLength = 0;
// Convert the tail to uppercase
// Note that we don't need to terminate the string with zero
while(*pbTail != 0)
while(*szTail != 0)
{
szUpperCase[nLength++] = AsciiToUpperTable[*pbTail++];
szUpperCase[nLength++] = (unsigned char)toupper(*szTail++);
}
// Append the tail to the SHA1
@ -276,11 +342,11 @@ static void AddTailToSha1(
}
static bool CalculateMpqHashSha1(
TMPQArchive * ha,
PMPQ_SIGNATURE_INFO pSI,
unsigned char * sha1_tail0,
unsigned char * sha1_tail1,
unsigned char * sha1_tail2)
TMPQArchive * ha,
PMPQ_SIGNATURE_INFO pSI,
unsigned char * sha1_tail0,
unsigned char * sha1_tail1,
unsigned char * sha1_tail2)
{
ULONGLONG BeginBuffer;
hash_state sha1_state_temp;
@ -312,7 +378,7 @@ static bool CalculateMpqHashSha1(
if(dwToRead == 0)
break;
// Read the next chunk
// Read the next chunk
if(!FileStream_Read(ha->pStream, &BeginBuffer, pbDigestBuffer, dwToRead))
{
STORM_FREE(pbDigestBuffer);
@ -345,9 +411,9 @@ static bool CalculateMpqHashSha1(
}
static int VerifyRawMpqData(
TMPQArchive * ha,
ULONGLONG ByteOffset,
DWORD dwDataSize)
TMPQArchive * ha,
ULONGLONG ByteOffset,
DWORD dwDataSize)
{
ULONGLONG DataOffset = ha->MpqPos + ByteOffset;
LPBYTE pbDataChunk;
@ -433,8 +499,8 @@ static int VerifyRawMpqData(
}
static DWORD VerifyWeakSignature(
TMPQArchive * ha,
PMPQ_SIGNATURE_INFO pSI)
TMPQArchive * ha,
PMPQ_SIGNATURE_INFO pSI)
{
BYTE RevSignature[MPQ_WEAK_SIGNATURE_SIZE];
BYTE Md5Digest[MD5_DIGEST_SIZE];
@ -442,10 +508,6 @@ static DWORD VerifyWeakSignature(
int hash_idx = find_hash("md5");
int result = 0;
// The signature might be zeroed out. In that case, we ignore it
if(!IsValidSignature(pSI->Signature))
return ERROR_WEAK_SIGNATURE_OK;
// Calculate hash of the entire archive, skipping the (signature) file
if(!CalculateMpqHashMd5(ha, pSI, Md5Digest))
return ERROR_VERIFY_FAILED;
@ -457,7 +519,7 @@ static DWORD VerifyWeakSignature(
// Verify the signature
memcpy(RevSignature, &pSI->Signature[8], MPQ_WEAK_SIGNATURE_SIZE);
memrev(RevSignature, MPQ_WEAK_SIGNATURE_SIZE);
rsa_verify_hash_ex(RevSignature, MPQ_WEAK_SIGNATURE_SIZE, Md5Digest, sizeof(Md5Digest), LTC_PKCS_1_V1_5, hash_idx, 0, &result, &key);
rsa_verify_hash_ex(RevSignature, MPQ_WEAK_SIGNATURE_SIZE, Md5Digest, sizeof(Md5Digest), LTC_LTC_PKCS_1_V1_5, hash_idx, 0, &result, &key);
rsa_free(&key);
// Return the result
@ -465,9 +527,9 @@ static DWORD VerifyWeakSignature(
}
static DWORD VerifyStrongSignatureWithKey(
unsigned char * reversed_signature,
unsigned char * padded_digest,
const char * szPublicKey)
unsigned char * reversed_signature,
unsigned char * padded_digest,
const char * szPublicKey)
{
rsa_key key;
int result = 0;
@ -482,15 +544,15 @@ static DWORD VerifyStrongSignatureWithKey(
// Verify the signature
if(rsa_verify_simple(reversed_signature, MPQ_STRONG_SIGNATURE_SIZE, padded_digest, MPQ_STRONG_SIGNATURE_SIZE, &result, &key) != CRYPT_OK)
return ERROR_VERIFY_FAILED;
// Free the key and return result
rsa_free(&key);
return result ? ERROR_STRONG_SIGNATURE_OK : ERROR_STRONG_SIGNATURE_ERROR;
}
static DWORD VerifyStrongSignature(
TMPQArchive * ha,
PMPQ_SIGNATURE_INFO pSI)
TMPQArchive * ha,
PMPQ_SIGNATURE_INFO pSI)
{
unsigned char reversed_signature[MPQ_STRONG_SIGNATURE_SIZE];
unsigned char Sha1Digest_tail0[SHA1_DIGEST_SIZE];
@ -552,11 +614,11 @@ static DWORD VerifyStrongSignature(
}
static DWORD VerifyFile(
HANDLE hMpq,
const char * szFileName,
LPDWORD pdwCrc32,
char * pMD5,
DWORD dwFlags)
HANDLE hMpq,
const char * szFileName,
LPDWORD pdwCrc32,
char * pMD5,
DWORD dwFlags)
{
hash_state md5_state;
unsigned char * pFileMd5;
@ -566,16 +628,14 @@ static DWORD VerifyFile(
BYTE Buffer[0x1000];
HANDLE hFile = NULL;
DWORD dwVerifyResult = 0;
DWORD dwSearchScope = SFILE_OPEN_FROM_MPQ;
DWORD dwTotalBytes = 0;
DWORD dwBytesRead;
DWORD dwCrc32 = 0;
//
// Note: When the MPQ is patched, it will
// automatically check the patched version of the file
//
// Make sure the md5 is initialized
memset(md5, 0, sizeof(md5));
// Fix the open type for patched archives
if(SFileIsPatchedArchive(hMpq))
dwSearchScope = SFILE_OPEN_PATCHED_FILE;
// If we have to verify raw data MD5, do it before file open
if(dwFlags & SFILE_VERIFY_RAW_MD5)
@ -607,7 +667,7 @@ static DWORD VerifyFile(
}
// Attempt to open the file
if(SFileOpenFileEx(hMpq, szFileName, SFILE_OPEN_FROM_MPQ, &hFile))
if(SFileOpenFileEx(hMpq, szFileName, dwSearchScope, &hFile))
{
// Get the file size
hf = (TMPQFile *)hFile;
@ -625,8 +685,6 @@ static DWORD VerifyFile(
// Go through entire file and update both CRC32 and MD5
for(;;)
{
DWORD dwBytesRead = 0;
// Read data from file
SFileReadFile(hFile, Buffer, sizeof(Buffer), &dwBytesRead, NULL);
if(dwBytesRead == 0)
@ -639,7 +697,7 @@ static DWORD VerifyFile(
// Update CRC32 value
if(dwFlags & SFILE_VERIFY_FILE_CRC)
dwCrc32 = crc32(dwCrc32, Buffer, dwBytesRead);
// Update MD5 value
if(dwFlags & SFILE_VERIFY_FILE_MD5)
md5_process(&md5_state, Buffer, dwBytesRead);
@ -661,7 +719,7 @@ static DWORD VerifyFile(
if(dwTotalBytes == 0)
{
// Check CRC32 and MD5 only if there is no patches
if(hf->hfPatch == NULL)
if(hf->hfPatchFile == NULL)
{
// Check if the CRC32 matches.
if(dwFlags & SFILE_VERIFY_FILE_CRC)
@ -683,7 +741,7 @@ static DWORD VerifyFile(
md5_done(&md5_state, md5);
// Only check the MD5 if it is valid
if(IsValidMD5(pFileMd5))
if(is_valid_md5(pFileMd5))
{
dwVerifyResult |= VERIFY_FILE_HAS_MD5;
if(memcmp(md5, pFileMd5, MD5_DIGEST_SIZE))
@ -714,155 +772,11 @@ static DWORD VerifyFile(
if(pdwCrc32 != NULL)
*pdwCrc32 = dwCrc32;
if(pMD5 != NULL)
memcpy(pMD5, md5, MD5_DIGEST_SIZE);
memcpy(pMD5, md5, MD5_DIGEST_SIZE);
return dwVerifyResult;
}
// Used in SFileGetFileInfo
bool QueryMpqSignatureInfo(
TMPQArchive * ha,
PMPQ_SIGNATURE_INFO pSI)
{
TFileEntry * pFileEntry;
ULONGLONG ExtraBytes;
DWORD dwFileSize;
// Make sure it's all zeroed
memset(pSI, 0, sizeof(MPQ_SIGNATURE_INFO));
// Calculate the range of the MPQ
CalculateArchiveRange(ha, pSI);
// If there is "(signature)" file in the MPQ, it has a weak signature
pFileEntry = GetFileEntryLocale(ha, SIGNATURE_NAME, LANG_NEUTRAL);
if(pFileEntry != NULL)
{
// Calculate the begin and end of the signature file itself
pSI->BeginExclude = ha->MpqPos + pFileEntry->ByteOffset;
pSI->EndExclude = pSI->BeginExclude + pFileEntry->dwCmpSize;
dwFileSize = (DWORD)(pSI->EndExclude - pSI->BeginExclude);
// Does the signature have proper size?
if(dwFileSize == MPQ_SIGNATURE_FILE_SIZE)
{
// Read the weak signature
if(!FileStream_Read(ha->pStream, &pSI->BeginExclude, pSI->Signature, dwFileSize))
return false;
pSI->SignatureTypes |= SIGNATURE_TYPE_WEAK;
pSI->cbSignatureSize = dwFileSize;
return true;
}
}
// If there is extra bytes beyond the end of the archive,
// it's the strong signature
ExtraBytes = pSI->EndOfFile - pSI->EndMpqData;
if(ExtraBytes >= (MPQ_STRONG_SIGNATURE_SIZE + 4))
{
// Read the strong signature
if(!FileStream_Read(ha->pStream, &pSI->EndMpqData, pSI->Signature, (MPQ_STRONG_SIGNATURE_SIZE + 4)))
return false;
// Check the signature header "NGIS"
if(pSI->Signature[0] != 'N' || pSI->Signature[1] != 'G' || pSI->Signature[2] != 'I' || pSI->Signature[3] != 'S')
return false;
pSI->SignatureTypes |= SIGNATURE_TYPE_STRONG;
return true;
}
// Succeeded, but no known signature found
return true;
}
//-----------------------------------------------------------------------------
// Support for weak signature
int SSignFileCreate(TMPQArchive * ha)
{
TMPQFile * hf = NULL;
BYTE EmptySignature[MPQ_SIGNATURE_FILE_SIZE];
int nError = ERROR_SUCCESS;
// Only save the signature if we should do so
if(ha->dwFileFlags3 != 0)
{
// The (signature) file must be non-encrypted and non-compressed
assert(ha->dwFlags & MPQ_FLAG_SIGNATURE_NEW);
assert(ha->dwFileFlags3 == MPQ_FILE_EXISTS);
assert(ha->dwReservedFiles > 0);
// Create the (signature) file file in the MPQ
// Note that the file must not be compressed or encrypted
nError = SFileAddFile_Init(ha, SIGNATURE_NAME,
0,
sizeof(EmptySignature),
LANG_NEUTRAL,
ha->dwFileFlags3 | MPQ_FILE_REPLACEEXISTING,
&hf);
// Write the empty signature file to the archive
if(nError == ERROR_SUCCESS)
{
// Write the empty zeroed file to the MPQ
memset(EmptySignature, 0, sizeof(EmptySignature));
nError = SFileAddFile_Write(hf, EmptySignature, (DWORD)sizeof(EmptySignature), 0);
SFileAddFile_Finish(hf);
// Clear the invalid mark
ha->dwFlags &= ~(MPQ_FLAG_SIGNATURE_NEW | MPQ_FLAG_SIGNATURE_NONE);
ha->dwReservedFiles--;
}
}
return nError;
}
int SSignFileFinish(TMPQArchive * ha)
{
MPQ_SIGNATURE_INFO si;
unsigned long signature_len = MPQ_WEAK_SIGNATURE_SIZE;
BYTE WeakSignature[MPQ_SIGNATURE_FILE_SIZE];
BYTE Md5Digest[MD5_DIGEST_SIZE];
rsa_key key;
int hash_idx = find_hash("md5");
// Sanity checks
assert((ha->dwFlags & MPQ_FLAG_CHANGED) == 0);
assert(ha->dwFileFlags3 == MPQ_FILE_EXISTS);
// Query the weak signature info
memset(&si, 0, sizeof(MPQ_SIGNATURE_INFO));
if(!QueryMpqSignatureInfo(ha, &si))
return ERROR_FILE_CORRUPT;
// There must be exactly one signature
if(si.SignatureTypes != SIGNATURE_TYPE_WEAK)
return ERROR_FILE_CORRUPT;
// Calculate MD5 of the entire archive
if(!CalculateMpqHashMd5(ha, &si, Md5Digest))
return ERROR_VERIFY_FAILED;
// Decode the private key
if(!decode_base64_key(szBlizzardWeakPrivateKey, &key))
return ERROR_VERIFY_FAILED;
// Sign the hash
memset(WeakSignature, 0, sizeof(WeakSignature));
rsa_sign_hash_ex(Md5Digest, sizeof(Md5Digest), WeakSignature + 8, &signature_len, LTC_PKCS_1_V1_5, 0, 0, hash_idx, 0, &key);
memrev(WeakSignature + 8, MPQ_WEAK_SIGNATURE_SIZE);
rsa_free(&key);
// Write the signature to the MPQ. Don't use SFile* functions, but write the hash directly
if(!FileStream_Write(ha->pStream, &si.BeginExclude, WeakSignature, MPQ_SIGNATURE_FILE_SIZE))
return GetLastError();
return ERROR_SUCCESS;
}
//-----------------------------------------------------------------------------
// Public (exported) functions
@ -910,7 +824,7 @@ int WINAPI SFileVerifyRawData(HANDLE hMpq, DWORD dwWhatToVerify, const char * sz
TMPQHeader * pHeader;
// Verify input parameters
if(!IsValidMpqHandle(hMpq))
if(!IsValidMpqHandle(ha))
return ERROR_INVALID_PARAMETER;
pHeader = ha->pHeader;
@ -921,54 +835,54 @@ int WINAPI SFileVerifyRawData(HANDLE hMpq, DWORD dwWhatToVerify, const char * sz
// If we have to verify MPQ header, do it
switch(dwWhatToVerify)
{
case SFILE_VERIFY_MPQ_HEADER:
// Only if the header is of version 4 or newer
if(pHeader->dwHeaderSize >= (MPQ_HEADER_SIZE_V4 - MD5_DIGEST_SIZE))
return VerifyRawMpqData(ha, 0, MPQ_HEADER_SIZE_V4 - MD5_DIGEST_SIZE);
return ERROR_SUCCESS;
case SFILE_VERIFY_MPQ_HEADER:
case SFILE_VERIFY_HET_TABLE:
// Only if the header is of version 4 or newer
if(pHeader->dwHeaderSize >= (MPQ_HEADER_SIZE_V4 - MD5_DIGEST_SIZE))
return VerifyRawMpqData(ha, 0, MPQ_HEADER_SIZE_V4 - MD5_DIGEST_SIZE);
return ERROR_SUCCESS;
// Only if we have HET table
if(pHeader->HetTablePos64 && pHeader->HetTableSize64)
return VerifyRawMpqData(ha, pHeader->HetTablePos64, (DWORD)pHeader->HetTableSize64);
return ERROR_SUCCESS;
case SFILE_VERIFY_HET_TABLE:
case SFILE_VERIFY_BET_TABLE:
// Only if we have HET table
if(pHeader->HetTablePos64 && pHeader->HetTableSize64)
return VerifyRawMpqData(ha, pHeader->HetTablePos64, (DWORD)pHeader->HetTableSize64);
return ERROR_SUCCESS;
// Only if we have BET table
if(pHeader->BetTablePos64 && pHeader->BetTableSize64)
return VerifyRawMpqData(ha, pHeader->BetTablePos64, (DWORD)pHeader->BetTableSize64);
return ERROR_SUCCESS;
case SFILE_VERIFY_BET_TABLE:
case SFILE_VERIFY_HASH_TABLE:
// Only if we have BET table
if(pHeader->BetTablePos64 && pHeader->BetTableSize64)
return VerifyRawMpqData(ha, pHeader->BetTablePos64, (DWORD)pHeader->BetTableSize64);
return ERROR_SUCCESS;
// Hash table is not protected by MD5
return ERROR_SUCCESS;
case SFILE_VERIFY_HASH_TABLE:
case SFILE_VERIFY_BLOCK_TABLE:
// Hash table is not protected by MD5
return ERROR_SUCCESS;
// Block table is not protected by MD5
return ERROR_SUCCESS;
case SFILE_VERIFY_BLOCK_TABLE:
case SFILE_VERIFY_HIBLOCK_TABLE:
// Block table is not protected by MD5
return ERROR_SUCCESS;
// It is unknown if the hi-block table is protected my MD5 or not.
return ERROR_SUCCESS;
case SFILE_VERIFY_HIBLOCK_TABLE:
case SFILE_VERIFY_FILE:
// It is unknown if the hi-block table is protected my MD5 or not.
return ERROR_SUCCESS;
// Verify parameters
if(szFileName == NULL || *szFileName == 0)
return ERROR_INVALID_PARAMETER;
case SFILE_VERIFY_FILE:
// Get the offset of a file
pFileEntry = GetFileEntryLocale(ha, szFileName, lcFileLocale);
if(pFileEntry == NULL)
return ERROR_FILE_NOT_FOUND;
// Verify parameters
if(szFileName == NULL || *szFileName == 0)
return ERROR_INVALID_PARAMETER;
return VerifyRawMpqData(ha, pFileEntry->ByteOffset, pFileEntry->dwCmpSize);
// Get the offset of a file
pFileEntry = GetFileEntryLocale(ha, szFileName, lcFileLocale);
if(pFileEntry == NULL)
return ERROR_FILE_NOT_FOUND;
return VerifyRawMpqData(ha, pFileEntry->ByteOffset, pFileEntry->dwCmpSize);
}
return ERROR_INVALID_PARAMETER;
@ -982,73 +896,26 @@ DWORD WINAPI SFileVerifyArchive(HANDLE hMpq)
TMPQArchive * ha = (TMPQArchive *)hMpq;
// Verify input parameters
if(!IsValidMpqHandle(hMpq))
if(!IsValidMpqHandle(ha))
return ERROR_VERIFY_FAILED;
// If the archive was modified, we need to flush it
if(ha->dwFlags & MPQ_FLAG_CHANGED)
SFileFlushArchive(hMpq);
// Get the MPQ signature and signature type
memset(&si, 0, sizeof(MPQ_SIGNATURE_INFO));
if(!QueryMpqSignatureInfo(ha, &si))
return ERROR_VERIFY_FAILED;
// If there is no signature
if(si.SignatureTypes == 0)
// Verify the signature
switch(si.nSignatureType)
{
case SIGNATURE_TYPE_NONE:
return ERROR_NO_SIGNATURE;
// We haven't seen a MPQ with both signatures
assert(si.SignatureTypes == SIGNATURE_TYPE_WEAK || si.SignatureTypes == SIGNATURE_TYPE_STRONG);
// Verify the strong signature, if present
if(si.SignatureTypes & SIGNATURE_TYPE_STRONG)
return VerifyStrongSignature(ha, &si);
// Verify the weak signature, if present
if(si.SignatureTypes & SIGNATURE_TYPE_WEAK)
case SIGNATURE_TYPE_WEAK:
return VerifyWeakSignature(ha, &si);
return ERROR_NO_SIGNATURE;
case SIGNATURE_TYPE_STRONG:
return VerifyStrongSignature(ha, &si);
}
return ERROR_VERIFY_FAILED;
}
// Verifies the archive against the signature
bool WINAPI SFileSignArchive(HANDLE hMpq, DWORD dwSignatureType)
{
TMPQArchive * ha;
// Verify the archive handle
ha = IsValidMpqHandle(hMpq);
if(ha == NULL)
{
SetLastError(ERROR_INVALID_PARAMETER);
return false;
}
// We only support weak signature, and only for MPQs version 1.0
if(dwSignatureType != SIGNATURE_TYPE_WEAK)
{
SetLastError(ERROR_INVALID_PARAMETER);
return false;
}
// The archive must not be malformed and must not be read-only
if(ha->dwFlags & (MPQ_FLAG_READ_ONLY | MPQ_FLAG_MALFORMED))
{
SetLastError(ERROR_ACCESS_DENIED);
return false;
}
// If the signature is not there yet
if(ha->dwFileFlags3 == 0)
{
// Turn the signature on. The signature will
// be applied when the archive is closed
ha->dwFlags |= MPQ_FLAG_SIGNATURE_NEW | MPQ_FLAG_CHANGED;
ha->dwFileFlags3 = MPQ_FILE_EXISTS;
ha->dwReservedFiles++;
}
return true;
}

View file

@ -35,25 +35,23 @@
// Include functions from zlib
#ifndef __SYS_ZLIB
#include "zlib/zlib.h"
#include "zlib/zlib.h"
#else
#include <zlib.h>
#include <zlib.h>
#endif
// Include functions from bzlib
#ifndef __SYS_BZLIB
#include "bzip2/bzlib.h"
#include "bzip2/bzlib.h"
#else
#include <bzlib.h>
#include <bzlib.h>
#endif
//-----------------------------------------------------------------------------
// Cryptography support
// Headers from LibTomCrypt
#include "tomcrypt.h"
#include "rsa/rsa_verify_simple.h"
#include "libtomcrypt/src/headers/tomcrypt.h"
// For HashStringJenkins
#include "jenkins/lookup.h"
@ -63,88 +61,56 @@
#define ID_MPQ_FILE 0x46494c45 // Used internally for checking TMPQFile ('FILE')
#define MPQ_WEAK_SIGNATURE_SIZE 64
#define MPQ_STRONG_SIGNATURE_SIZE 256
// Prevent problems with CRT "min" and "max" functions,
// as they are not defined on all platforms
#define STORMLIB_MIN(a, b) ((a < b) ? a : b)
#define STORMLIB_MAX(a, b) ((a > b) ? a : b)
#define STORMLIB_UNUSED(p) ((void)(p))
// Macro for building 64-bit file offset from two 32-bit
#define MAKE_OFFSET64(hi, lo) (((ULONGLONG)hi << 32) | (ULONGLONG)lo)
//-----------------------------------------------------------------------------
// MPQ signature information
// Size of each signature type
#define MPQ_WEAK_SIGNATURE_SIZE 64
#define MPQ_STRONG_SIGNATURE_SIZE 256
#define MPQ_STRONG_SIGNATURE_ID 0x5349474E // ID of the strong signature ("NGIS")
#define MPQ_SIGNATURE_FILE_SIZE (MPQ_WEAK_SIGNATURE_SIZE + 8)
// MPQ signature info
typedef struct _MPQ_SIGNATURE_INFO
{
ULONGLONG BeginMpqData; // File offset where the hashing starts
ULONGLONG BeginExclude; // Begin of the excluded area (used for (signature) file)
ULONGLONG EndExclude; // End of the excluded area (used for (signature) file)
ULONGLONG EndMpqData; // File offset where the hashing ends
ULONGLONG EndOfFile; // Size of the entire file
BYTE Signature[MPQ_STRONG_SIGNATURE_SIZE + 0x10];
DWORD cbSignatureSize; // Length of the signature
DWORD SignatureTypes; // See SIGNATURE_TYPE_XXX
} MPQ_SIGNATURE_INFO, *PMPQ_SIGNATURE_INFO;
#define MAKE_OFFSET64(hi, lo) (((ULONGLONG)hi << 32) | lo)
//-----------------------------------------------------------------------------
// Memory management
//
// We use our own macros for allocating/freeing memory. If you want
// to redefine them, please keep the following rules:
// to redefine them, please keep the following rules
//
// - The memory allocation must return NULL if not enough memory
// (i.e not to throw exception)
// - The allocating function does not need to fill the allocated buffer with zeros
// - Memory freeing function doesn't have to test the pointer to NULL
// - It is not necessary to fill the allocated buffer with zeros
// - Memory freeing function doesn't have to test the pointer to NULL.
//
//#if defined(_MSC_VER) && defined(_DEBUG)
//
//#define STORM_ALLOC(type, nitems) (type *)HeapAlloc(GetProcessHeap(), 0, ((nitems) * sizeof(type)))
//#define STORM_REALLOC(type, ptr, nitems) (type *)HeapReAlloc(GetProcessHeap(), 0, ptr, ((nitems) * sizeof(type)))
//#define STORM_FREE(ptr) HeapFree(GetProcessHeap(), 0, ptr)
//
//#else
#if defined(_MSC_VER) && defined(_DEBUG)
__inline void * DebugMalloc(char * /* szFile */, int /* nLine */, size_t nSize)
{
// return new BYTE[nSize];
return HeapAlloc(GetProcessHeap(), 0, nSize);
}
#define STORM_ALLOC(type, nitems) (type *)malloc((nitems) * sizeof(type))
#define STORM_REALLOC(type, ptr, nitems) (type *)realloc(ptr, ((nitems) * sizeof(type)))
#define STORM_FREE(ptr) free(ptr)
__inline void DebugFree(void * ptr)
{
// delete [] ptr;
HeapFree(GetProcessHeap(), 0, ptr);
}
//#endif
#define STORM_ALLOC(type, nitems) (type *)DebugMalloc(__FILE__, __LINE__, (nitems) * sizeof(type))
#define STORM_FREE(ptr) DebugFree(ptr)
#else
#define STORM_ALLOC(type, nitems) (type *)malloc((nitems) * sizeof(type))
#define STORM_FREE(ptr) free(ptr)
#endif
//-----------------------------------------------------------------------------
// StormLib internal global variables
extern LCID lcFileLocale; // Preferred file locale
//-----------------------------------------------------------------------------
// Conversion to uppercase/lowercase (and "/" to "\")
extern unsigned char AsciiToLowerTable[256];
extern unsigned char AsciiToUpperTable[256];
//-----------------------------------------------------------------------------
// Safe string functions
void StringCopy(char * szTarget, size_t cchTarget, const char * szSource);
void StringCat(char * szTarget, size_t cchTargetMax, const char * szSource);
#ifdef _UNICODE
void StringCopy(TCHAR * szTarget, size_t cchTarget, const char * szSource);
void StringCopy(char * szTarget, size_t cchTarget, const TCHAR * szSource);
void StringCopy(TCHAR * szTarget, size_t cchTarget, const TCHAR * szSource);
void StringCat(TCHAR * szTarget, size_t cchTargetMax, const TCHAR * szSource);
#endif
//-----------------------------------------------------------------------------
// Encryption and decryption functions
@ -152,200 +118,134 @@ void StringCat(TCHAR * szTarget, size_t cchTargetMax, const TCHAR * szSource);
#define MPQ_HASH_NAME_A 0x100
#define MPQ_HASH_NAME_B 0x200
#define MPQ_HASH_FILE_KEY 0x300
#define MPQ_HASH_KEY2_MIX 0x400
DWORD HashString(const char * szFileName, DWORD dwHashType);
DWORD HashStringSlash(const char * szFileName, DWORD dwHashType);
DWORD HashStringLower(const char * szFileName, DWORD dwHashType);
void InitializeMpqCryptography();
DWORD GetNearestPowerOfTwo(DWORD dwFileCount);
DWORD GetHashTableSizeForFileCount(DWORD dwFileCount);
bool IsPseudoFileName(const char * szFileName, LPDWORD pdwFileIndex);
ULONGLONG HashStringJenkins(const char * szFileName);
DWORD GetDefaultSpecialFileFlags(DWORD dwFileSize, USHORT wFormatVersion);
int ConvertMpqHeaderToFormat4(TMPQArchive * ha, ULONGLONG FileSize, DWORD dwFlags);
void EncryptMpqBlock(void * pvDataBlock, DWORD dwLength, DWORD dwKey);
void DecryptMpqBlock(void * pvDataBlock, DWORD dwLength, DWORD dwKey);
DWORD GetDefaultSpecialFileFlags(TMPQArchive * ha, DWORD dwFileSize);
DWORD DetectFileKeyBySectorSize(LPDWORD EncryptedData, DWORD dwSectorSize, DWORD dwSectorOffsLen);
DWORD DetectFileKeyByContent(void * pvEncryptedData, DWORD dwSectorSize, DWORD dwFileSize);
void EncryptMpqBlock(void * pvFileBlock, DWORD dwLength, DWORD dwKey);
void DecryptMpqBlock(void * pvFileBlock, DWORD dwLength, DWORD dwKey);
DWORD DetectFileKeyBySectorSize(LPDWORD SectorOffsets, DWORD decrypted);
DWORD DetectFileKeyByContent(void * pvFileContent, DWORD dwFileSize);
DWORD DecryptFileKey(const char * szFileName, ULONGLONG MpqPos, DWORD dwFileSize, DWORD dwFlags);
bool IsValidMD5(LPBYTE pbMd5);
bool IsValidSignature(LPBYTE pbSignature);
bool VerifyDataBlockHash(void * pvDataBlock, DWORD cbDataBlock, LPBYTE expected_md5);
void CalculateDataBlockHash(void * pvDataBlock, DWORD cbDataBlock, LPBYTE md5_hash);
//-----------------------------------------------------------------------------
// Handle validation functions
TMPQArchive * IsValidMpqHandle(HANDLE hMpq);
TMPQFile * IsValidFileHandle(HANDLE hFile);
bool IsValidMpqHandle(TMPQArchive * ha);
bool IsValidFileHandle(TMPQFile * hf);
//-----------------------------------------------------------------------------
// Support for MPQ file tables
// Hash table and block table manipulation
ULONGLONG FileOffsetFromMpqOffset(TMPQArchive * ha, ULONGLONG MpqOffset);
ULONGLONG CalculateRawSectorOffset(TMPQFile * hf, DWORD dwSectorOffset);
int ConvertMpqHeaderToFormat4(TMPQArchive * ha, ULONGLONG MpqOffset, ULONGLONG FileSize, DWORD dwFlags, bool bIsWarcraft3Map);
bool IsValidHashEntry(TMPQArchive * ha, TMPQHash * pHash);
TMPQHash * FindFreeHashEntry(TMPQArchive * ha, DWORD dwStartIndex, DWORD dwName1, DWORD dwName2, LCID lcLocale);
TMPQHash * GetFirstHashEntry(TMPQArchive * ha, const char * szFileName);
TMPQHash * GetNextHashEntry(TMPQArchive * ha, TMPQHash * pFirstHash, TMPQHash * pPrevHash);
TMPQHash * AllocateHashEntry(TMPQArchive * ha, TFileEntry * pFileEntry, LCID lcLocale);
DWORD AllocateHashEntry(TMPQArchive * ha, TFileEntry * pFileEntry);
DWORD AllocateHetEntry(TMPQArchive * ha, TFileEntry * pFileEntry);
TMPQExtHeader * LoadExtTable(TMPQArchive * ha, ULONGLONG ByteOffset, size_t Size, DWORD dwSignature, DWORD dwKey);
TMPQHetTable * LoadHetTable(TMPQArchive * ha);
TMPQBetTable * LoadBetTable(TMPQArchive * ha);
void FindFreeMpqSpace(TMPQArchive * ha, ULONGLONG * pFreeSpacePos);
TMPQBlock * LoadBlockTable(TMPQArchive * ha, bool bDontFixEntries = false);
TMPQBlock * TranslateBlockTable(TMPQArchive * ha, ULONGLONG * pcbTableSize, bool * pbNeedHiBlockTable);
ULONGLONG FindFreeMpqSpace(TMPQArchive * ha);
// Functions that loads and verifies MPQ data bitmap
int LoadMpqDataBitmap(TMPQArchive * ha, ULONGLONG FileSize, bool * pbFileIsComplete);
// Functions that load the HET and BET tables
int CreateHashTable(TMPQArchive * ha, DWORD dwHashTableSize);
int LoadAnyHashTable(TMPQArchive * ha);
int BuildFileTable(TMPQArchive * ha);
int DefragmentFileTable(TMPQArchive * ha);
int CreateFileTable(TMPQArchive * ha, DWORD dwFileTableSize);
int RebuildHetTable(TMPQArchive * ha);
int RebuildFileTable(TMPQArchive * ha, DWORD dwNewHashTableSize);
int BuildFileTable(TMPQArchive * ha, ULONGLONG FileSize);
int SaveMPQTables(TMPQArchive * ha);
TMPQHetTable * CreateHetTable(DWORD dwEntryCount, DWORD dwTotalCount, DWORD dwHashBitSize, LPBYTE pbSrcData);
TMPQHetTable * CreateHetTable(DWORD dwMaxFileCount, DWORD dwHashBitSize, bool bCreateEmpty);
void FreeHetTable(TMPQHetTable * pHetTable);
TMPQBetTable * CreateBetTable(DWORD dwMaxFileCount);
void FreeBetTable(TMPQBetTable * pBetTable);
// Functions for finding files in the file table
TFileEntry * GetFileEntryLocale2(TMPQArchive * ha, const char * szFileName, LCID lcLocale, LPDWORD PtrHashIndex);
TFileEntry * GetFileEntryAny(TMPQArchive * ha, const char * szFileName);
TFileEntry * GetFileEntryLocale(TMPQArchive * ha, const char * szFileName, LCID lcLocale);
TFileEntry * GetFileEntryExact(TMPQArchive * ha, const char * szFileName, LCID lcLocale, LPDWORD PtrHashIndex);
TFileEntry * GetFileEntryExact(TMPQArchive * ha, const char * szFileName, LCID lcLocale);
TFileEntry * GetFileEntryByIndex(TMPQArchive * ha, DWORD dwIndex);
// Allocates file name in the file entry
void AllocateFileName(TMPQArchive * ha, TFileEntry * pFileEntry, const char * szFileName);
void AllocateFileName(TFileEntry * pFileEntry, const char * szFileName);
// Allocates new file entry in the MPQ tables. Reuses existing, if possible
TFileEntry * AllocateFileEntry(TMPQArchive * ha, const char * szFileName, LCID lcLocale, LPDWORD PtrHashIndex);
int RenameFileEntry(TMPQArchive * ha, TMPQFile * hf, const char * szNewFileName);
int DeleteFileEntry(TMPQArchive * ha, TMPQFile * hf);
TFileEntry * FindFreeFileEntry(TMPQArchive * ha);
TFileEntry * AllocateFileEntry(TMPQArchive * ha, const char * szFileName, LCID lcLocale);
int RenameFileEntry(TMPQArchive * ha, TFileEntry * pFileEntry, const char * szNewFileName);
void ClearFileEntry(TMPQArchive * ha, TFileEntry * pFileEntry);
int FreeFileEntry(TMPQArchive * ha, TFileEntry * pFileEntry);
// Invalidates entries for (listfile) and (attributes)
void InvalidateInternalFiles(TMPQArchive * ha);
// Retrieves information about the strong signature
bool QueryMpqSignatureInfo(TMPQArchive * ha, PMPQ_SIGNATURE_INFO pSignatureInfo);
//-----------------------------------------------------------------------------
// Support for alternate file formats (SBaseSubTypes.cpp)
int ConvertSqpHeaderToFormat4(TMPQArchive * ha, ULONGLONG FileSize, DWORD dwFlags);
TMPQHash * LoadSqpHashTable(TMPQArchive * ha);
TMPQBlock * LoadSqpBlockTable(TMPQArchive * ha);
int ConvertMpkHeaderToFormat4(TMPQArchive * ha, ULONGLONG FileSize, DWORD dwFlags);
void DecryptMpkTable(void * pvMpkTable, size_t cbSize);
TMPQHash * LoadMpkHashTable(TMPQArchive * ha);
TMPQBlock * LoadMpkBlockTable(TMPQArchive * ha);
int SCompDecompressMpk(void * pvOutBuffer, int * pcbOutBuffer, void * pvInBuffer, int cbInBuffer);
//-----------------------------------------------------------------------------
// Common functions - MPQ File
TMPQFile * CreateFileHandle(TMPQArchive * ha, TFileEntry * pFileEntry);
TMPQFile * CreateWritableHandle(TMPQArchive * ha, DWORD dwFileSize);
void * LoadMpqTable(TMPQArchive * ha, ULONGLONG ByteOffset, DWORD dwCompressedSize, DWORD dwRealSize, DWORD dwKey, bool * pbTableIsCut);
TMPQFile * CreateMpqFile(TMPQArchive * ha);
int LoadMpqTable(TMPQArchive * ha, ULONGLONG ByteOffset, void * pvTable, DWORD dwCompressedSize, DWORD dwRealSize, DWORD dwKey);
int AllocateSectorBuffer(TMPQFile * hf);
int AllocatePatchInfo(TMPQFile * hf, bool bLoadFromFile);
int AllocateSectorOffsets(TMPQFile * hf, bool bLoadFromFile);
int AllocateSectorChecksums(TMPQFile * hf, bool bLoadFromFile);
void CalculateRawSectorOffset(ULONGLONG & RawFilePos, TMPQFile * hf, DWORD dwSectorOffset);
int WritePatchInfo(TMPQFile * hf);
int WriteSectorOffsets(TMPQFile * hf);
int WriteSectorChecksums(TMPQFile * hf);
int WriteMemDataMD5(TFileStream * pStream, ULONGLONG RawDataOffs, void * pvRawData, DWORD dwRawDataSize, DWORD dwChunkSize, LPDWORD pcbTotalSize);
int WriteMpqDataMD5(TFileStream * pStream, ULONGLONG RawDataOffs, DWORD dwRawDataSize, DWORD dwChunkSize);
void FreeFileHandle(TMPQFile *& hf);
void FreeArchiveHandle(TMPQArchive *& ha);
//-----------------------------------------------------------------------------
// Patch functions
// Structure used for the patching process
typedef struct _TMPQPatcher
{
BYTE this_md5[MD5_DIGEST_SIZE]; // MD5 of the current file state
LPBYTE pbFileData1; // Primary working buffer
LPBYTE pbFileData2; // Secondary working buffer
DWORD cbMaxFileData; // Maximum allowed size of the patch data
DWORD cbFileData; // Current size of the result data
DWORD nCounter; // Counter of the patch process
} TMPQPatcher;
void FreeMPQFile(TMPQFile *& hf);
bool IsIncrementalPatchFile(const void * pvData, DWORD cbData, LPDWORD pdwPatchedFileSize);
int Patch_InitPatcher(TMPQPatcher * pPatcher, TMPQFile * hf);
int Patch_Process(TMPQPatcher * pPatcher, TMPQFile * hf);
void Patch_Finalize(TMPQPatcher * pPatcher);
int PatchFileData(TMPQFile * hf);
void FreeMPQArchive(TMPQArchive *& ha);
//-----------------------------------------------------------------------------
// Utility functions
bool CheckWildCard(const char * szString, const char * szWildCard);
const char * GetPlainFileNameA(const char * szFileName);
const TCHAR * GetPlainFileNameT(const TCHAR * szFileName);
bool IsInternalMpqFileName(const char * szFileName);
template <typename XCHAR>
const XCHAR * GetPlainFileName(const XCHAR * szFileName)
{
const XCHAR * szPlainName = szFileName;
while(*szFileName != 0)
{
if(*szFileName == '\\' || *szFileName == '/')
szPlainName = szFileName + 1;
szFileName++;
}
return szPlainName;
}
//-----------------------------------------------------------------------------
// Internal support for MPQ modifications
// Support for adding files to the MPQ
int SFileAddFile_Init(
TMPQArchive * ha,
const char * szArchivedName,
ULONGLONG ft,
DWORD dwFileSize,
LCID lcLocale,
DWORD dwFlags,
TMPQFile ** phf
);
int SFileAddFile_Init(
TMPQArchive * ha,
TMPQFile * hfSrc,
TMPQFile ** phf
);
TMPQArchive * ha,
const char * szArchivedName,
ULONGLONG ft,
DWORD dwFileSize,
LCID lcLocale,
DWORD dwFlags,
TMPQFile ** phf
);
int SFileAddFile_Write(
TMPQFile * hf,
const void * pvData,
DWORD dwSize,
DWORD dwCompression
);
TMPQFile * hf,
const void * pvData,
DWORD dwSize,
DWORD dwCompression
);
int SFileAddFile_Finish(
TMPQFile * hf
);
TMPQFile * hf
);
//-----------------------------------------------------------------------------
// Attributes support
@ -358,29 +258,16 @@ int SAttrFileSaveToMpq(TMPQArchive * ha);
int SListFileSaveToMpq(TMPQArchive * ha);
//-----------------------------------------------------------------------------
// Weak signature support
int SSignFileCreate(TMPQArchive * ha);
int SSignFileFinish(TMPQArchive * ha);
//-----------------------------------------------------------------------------
// Dump data support
#ifdef __STORMLIB_DUMP_DATA__
void DumpMpqHeader(TMPQHeader * pHeader);
void DumpHashTable(TMPQHash * pHashTable, DWORD dwHashTableSize);
void DumpHetAndBetTable(TMPQHetTable * pHetTable, TMPQBetTable * pBetTable);
void DumpFileTable(TFileEntry * pFileTable, DWORD dwFileTableSize);
#else
#define DumpMpqHeader(h) /* */
#define DumpHashTable(t, s) /* */
#define DumpHetAndBetTable(t, s) /* */
#define DumpFileTable(t, s) /* */
#define DumpMpqHeader(h) /* */
#define DumpHetAndBetTable(h, b) /* */
#endif
#endif // __STORMCOMMON_H__

File diff suppressed because it is too large Load diff

View file

@ -21,313 +21,221 @@
/* 24.07.04 1.03 Sam Mac OS X compatibility */
/* 22.11.06 1.04 Sam Mac OS X compatibility (for StormLib 6.0) */
/* 31.12.06 1.05 XPinguin Full GNU/Linux compatibility */
/* 17.10.12 1.05 Lad Moved error codes so they don't overlap with errno.h */
/*****************************************************************************/
#ifndef __STORMPORT_H__
#define __STORMPORT_H__
#ifndef __cplusplus
#define bool char
#define true 1
#define false 0
#define bool char
#define true 1
#define false 0
#endif
//-----------------------------------------------------------------------------
// Defines for Windows
#if !defined(PLATFORM_DEFINED) && (defined(WIN32) || defined(WIN64))
#if !defined(PLATFORM_DEFINED) && defined(_WIN32)
// In MSVC 8.0, there are some functions declared as deprecated.
#if _MSC_VER >= 1400
#define _CRT_SECURE_NO_DEPRECATE
#define _CRT_NON_CONFORMING_SWPRINTFS
#endif
// In MSVC 8.0, there are some functions declared as deprecated.
#if _MSC_VER >= 1400
#define _CRT_SECURE_NO_DEPRECATE
#define _CRT_NON_CONFORMING_SWPRINTFS
#endif
#include <tchar.h>
#include <assert.h>
#include <ctype.h>
#include <stdio.h>
#include <windows.h>
#include <wininet.h>
#define PLATFORM_LITTLE_ENDIAN
#include <tchar.h>
#include <assert.h>
#include <ctype.h>
#include <stdio.h>
#include <windows.h>
#include <wininet.h>
#define PLATFORM_LITTLE_ENDIAN
#ifdef WIN64
#define PLATFORM_64BIT
#else
#define PLATFORM_32BIT
#endif
#ifdef _WIN64
#define PLATFORM_64BIT
#else
#define PLATFORM_32BIT
#endif
#define PLATFORM_WINDOWS
#define PLATFORM_DEFINED // The platform is known now
#define PLATFORM_WINDOWS
#define PLATFORM_DEFINED // The platform is known now
#endif
//-----------------------------------------------------------------------------
// Defines for Mac
#if !defined(PLATFORM_DEFINED) && defined(__APPLE__) // Mac BSD API
// Macintosh
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdlib.h>
#include <errno.h>
// Macintosh
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdlib.h>
#include <errno.h>
// Support for PowerPC on Max OS X
#if (__ppc__ == 1) || (__POWERPC__ == 1) || (_ARCH_PPC == 1)
#include <stdint.h>
#include <CoreFoundation/CFByteOrder.h>
#endif
#define PKEXPORT
#define __SYS_ZLIB
#define __SYS_BZLIB
#define PKEXPORT
#define __SYS_ZLIB
#define __SYS_BZLIB
#ifndef __BIG_ENDIAN__
#define PLATFORM_LITTLE_ENDIAN
#endif
#ifndef __BIG_ENDIAN__
#define PLATFORM_LITTLE_ENDIAN
#endif
#define PLATFORM_MAC
#define PLATFORM_DEFINED // The platform is known now
#define PLATFORM_MAC
#define PLATFORM_DEFINED // The platform is known now
#endif
#if !defined(PLATFORM_DEFINED) && defined(__HAIKU__)
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
#include <errno.h>
#ifndef __BIG_ENDIAN__
#define PLATFORM_LITTLE_ENDIAN
#endif
#define PLATFORM_HAIKU
#define PLATFORM_DEFINED // The platform is known now
#endif
//-----------------------------------------------------------------------------
// Assumption: we are not on Windows nor Macintosh, so this must be linux *grin*
#if !defined(PLATFORM_DEFINED)
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
#include <errno.h>
#define PLATFORM_LITTLE_ENDIAN
#define PLATFORM_LINUX
# if defined (__FreeBSD__)
# define PLATFORM_FREEBSD
# endif
#define PLATFORM_DEFINED
#define PLATFORM_LITTLE_ENDIAN
#define PLATFORM_LINUX
#define PLATFORM_DEFINED
#endif
//-----------------------------------------------------------------------------
// Definition of Windows-specific types for non-Windows platforms
// Definition of Windows-specific structures for non-Windows platforms
#ifndef PLATFORM_WINDOWS
#if __LP64__
#define PLATFORM_64BIT
#else
#define PLATFORM_32BIT
#endif
#if __LP64__
#define PLATFORM_64BIT
#else
#define PLATFORM_32BIT
#endif
// Typedefs for ANSI C
typedef unsigned char BYTE;
typedef unsigned short USHORT;
typedef int LONG;
typedef unsigned int DWORD;
typedef unsigned long DWORD_PTR;
typedef long LONG_PTR;
typedef long INT_PTR;
typedef long long LONGLONG;
typedef unsigned long long ULONGLONG;
typedef void * HANDLE;
typedef void * LPOVERLAPPED; // Unsupported on Linux and Mac
typedef char TCHAR;
typedef unsigned int LCID;
typedef LONG * PLONG;
typedef DWORD * LPDWORD;
typedef BYTE * LPBYTE;
typedef const char * LPCTSTR;
typedef const char * LPCSTR;
typedef char * LPTSTR;
typedef char * LPSTR;
// Typedefs for ANSI C
typedef unsigned char BYTE;
typedef unsigned short USHORT;
typedef int LONG;
typedef unsigned int DWORD;
typedef unsigned long DWORD_PTR;
typedef long LONG_PTR;
typedef long INT_PTR;
typedef long long LONGLONG;
typedef unsigned long long ULONGLONG;
typedef void * HANDLE;
typedef void * LPOVERLAPPED; // Unsupported on Linux and Mac
typedef char TCHAR;
typedef unsigned int LCID;
typedef LONG * PLONG;
typedef DWORD * LPDWORD;
typedef BYTE * LPBYTE;
#ifdef PLATFORM_32BIT
#define _LZMA_UINT32_IS_ULONG
#endif
#ifdef PLATFORM_32BIT
#define _LZMA_UINT32_IS_ULONG
#endif
// Some Windows-specific defines
#ifndef MAX_PATH
#define MAX_PATH 1024
#endif
// Some Windows-specific defines
#ifndef MAX_PATH
#define MAX_PATH 1024
#endif
#ifndef _countof
#define _countof(x) (sizeof(x) / sizeof(x[0]))
#endif
#define WINAPI
#define WINAPI
#define FILE_BEGIN SEEK_SET
#define FILE_CURRENT SEEK_CUR
#define FILE_END SEEK_END
#define FILE_BEGIN SEEK_SET
#define FILE_CURRENT SEEK_CUR
#define FILE_END SEEK_END
#define _T(x) x
#define _tcslen strlen
#define _tcscpy strcpy
#define _tcscat strcat
#define _tcsrchr strrchr
#define _tprintf printf
#define _stprintf sprintf
#define _tremove remove
#define _T(x) x
#define _tcslen strlen
#define _tcscpy strcpy
#define _tcscat strcat
#define _tcschr strchr
#define _tcsrchr strrchr
#define _tcsstr strstr
#define _tcsnicmp strncasecmp
#define _tprintf printf
#define _stprintf sprintf
#define _tremove remove
#define _tmain main
#define _stricmp strcasecmp
#define _strnicmp strncasecmp
#define _tcsnicmp strncasecmp
#define _stricmp strcasecmp
#define _strnicmp strncasecmp
#define _tcsicmp strcasecmp
#define _tcsnicmp strncasecmp
#endif // !PLATFORM_WINDOWS
#endif // !WIN32
// 64-bit calls are supplied by "normal" calls on Mac
#if defined(PLATFORM_MAC) || defined(PLATFORM_HAIKU) || defined(PLATFORM_FREEBSD)
#define stat64 stat
#define fstat64 fstat
#define lseek64 lseek
#define ftruncate64 ftruncate
#define off64_t off_t
#define O_LARGEFILE 0
#endif
#if defined(PLATFORM_FREEBSD)
#define lstat64 lstat
#if defined(PLATFORM_MAC)
#define stat64 stat
#define fstat64 fstat
#define lseek64 lseek
#define off64_t off_t
#define O_LARGEFILE 0
#endif
// Platform-specific error codes for UNIX-based platforms
#if defined(PLATFORM_MAC) || defined(PLATFORM_LINUX) || defined(PLATFORM_HAIKU)
#define ERROR_SUCCESS 0
#define ERROR_FILE_NOT_FOUND ENOENT
#define ERROR_ACCESS_DENIED EPERM
#define ERROR_INVALID_HANDLE EBADF
#define ERROR_NOT_ENOUGH_MEMORY ENOMEM
#define ERROR_NOT_SUPPORTED ENOTSUP
#define ERROR_INVALID_PARAMETER EINVAL
#define ERROR_NEGATIVE_SEEK EINVAL
#define ERROR_DISK_FULL ENOSPC
#define ERROR_ALREADY_EXISTS EEXIST
#define ERROR_INSUFFICIENT_BUFFER ENOBUFS
#define ERROR_BAD_FORMAT 1000 // No such error code under Linux
#define ERROR_NO_MORE_FILES 1001 // No such error code under Linux
#define ERROR_HANDLE_EOF 1002 // No such error code under Linux
#define ERROR_CAN_NOT_COMPLETE 1003 // No such error code under Linux
#define ERROR_FILE_CORRUPT 1004 // No such error code under Linux
#if defined(PLATFORM_MAC) || defined(PLATFORM_LINUX)
#define ERROR_SUCCESS 0
#define ERROR_FILE_NOT_FOUND ENOENT
#define ERROR_ACCESS_DENIED EPERM
#define ERROR_INVALID_HANDLE EBADF
#define ERROR_NOT_ENOUGH_MEMORY ENOMEM
#define ERROR_BAD_FORMAT 105 // No such error code under Linux
#define ERROR_NO_MORE_FILES 106
#define ERROR_HANDLE_EOF 107 // No such error code under Linux
#define ERROR_NOT_SUPPORTED ENOTSUP
#define ERROR_INVALID_PARAMETER EINVAL
#define ERROR_DISK_FULL ENOSPC
#define ERROR_ALREADY_EXISTS EEXIST
#define ERROR_CAN_NOT_COMPLETE 108 // No such error code under Linux
#define ERROR_FILE_CORRUPT 109 // No such error code under Linux
#define ERROR_INSUFFICIENT_BUFFER ENOBUFS
#endif
//-----------------------------------------------------------------------------
// Swapping functions
#ifdef PLATFORM_LITTLE_ENDIAN
#define BSWAP_INT16_UNSIGNED(a) (a)
#define BSWAP_INT16_SIGNED(a) (a)
#define BSWAP_INT32_UNSIGNED(a) (a)
#define BSWAP_INT32_SIGNED(a) (a)
#define BSWAP_INT64_SIGNED(a) (a)
#define BSWAP_INT64_UNSIGNED(a) (a)
#define BSWAP_ARRAY16_UNSIGNED(a,b) {}
#define BSWAP_ARRAY32_UNSIGNED(a,b) {}
#define BSWAP_ARRAY64_UNSIGNED(a,b) {}
#define BSWAP_PART_HEADER(a) {}
#define BSWAP_TMPQHEADER(a,b) {}
#define BSWAP_TMPKHEADER(a) {}
#define BSWAP_INT16_UNSIGNED(a) (a)
#define BSWAP_INT16_SIGNED(a) (a)
#define BSWAP_INT32_UNSIGNED(a) (a)
#define BSWAP_INT32_SIGNED(a) (a)
#define BSWAP_INT64_SIGNED(a) (a)
#define BSWAP_INT64_UNSIGNED(a) (a)
#define BSWAP_ARRAY16_UNSIGNED(a,b) {}
#define BSWAP_ARRAY32_UNSIGNED(a,b) {}
#define BSWAP_ARRAY64_UNSIGNED(a,b) {}
#define BSWAP_PART_HEADER(a) {}
#define BSWAP_TMPQUSERDATA(a) {}
#define BSWAP_TMPQHEADER(a) {}
#else
#ifdef __cplusplus
extern "C" {
#endif
int16_t SwapInt16(uint16_t);
uint16_t SwapUInt16(uint16_t);
int32_t SwapInt32(uint32_t);
uint32_t SwapUInt32(uint32_t);
int64_t SwapInt64(uint64_t);
uint64_t SwapUInt64(uint64_t);
void ConvertUInt16Buffer(void * ptr, size_t length);
void ConvertUInt32Buffer(void * ptr, size_t length);
void ConvertUInt64Buffer(void * ptr, size_t length);
void ConvertTMPQUserData(void *userData);
void ConvertTMPQHeader(void *header, uint16_t wPart);
void ConvertTMPKHeader(void *header);
int16_t SwapInt16(uint16_t);
uint16_t SwapUInt16(uint16_t);
int32_t SwapInt32(uint32_t);
uint32_t SwapUInt32(uint32_t);
int64_t SwapInt64(uint64_t);
uint64_t SwapUInt64(uint64_t);
void ConvertUInt16Buffer(void * ptr, size_t length);
void ConvertUInt32Buffer(void * ptr, size_t length);
void ConvertUInt64Buffer(void * ptr, size_t length);
void ConvertPartHeader(void * partHeader);
void ConvertTMPQUserData(void *userData);
void ConvertTMPQHeader(void *header);
#ifdef __cplusplus
}
#endif
#define BSWAP_INT16_SIGNED(a) SwapInt16((a))
#define BSWAP_INT16_UNSIGNED(a) SwapUInt16((a))
#define BSWAP_INT32_SIGNED(a) SwapInt32((a))
#define BSWAP_INT32_UNSIGNED(a) SwapUInt32((a))
#define BSWAP_INT64_SIGNED(a) SwapInt64((a))
#define BSWAP_INT64_UNSIGNED(a) SwapUInt64((a))
#define BSWAP_ARRAY16_UNSIGNED(a,b) ConvertUInt16Buffer((a),(b))
#define BSWAP_ARRAY32_UNSIGNED(a,b) ConvertUInt32Buffer((a),(b))
#define BSWAP_ARRAY64_UNSIGNED(a,b) ConvertUInt64Buffer((a),(b))
#define BSWAP_TMPQHEADER(a,b) ConvertTMPQHeader((a),(b))
#define BSWAP_TMPKHEADER(a) ConvertTMPKHeader((a))
#define BSWAP_INT16_SIGNED(a) SwapInt16((a))
#define BSWAP_INT16_UNSIGNED(a) SwapUInt16((a))
#define BSWAP_INT32_SIGNED(a) SwapInt32((a))
#define BSWAP_INT32_UNSIGNED(a) SwapUInt32((a))
#define BSWAP_INT64_SIGNED(a) SwapInt64((a))
#define BSWAP_INT64_UNSIGNED(a) SwapUInt64((a))
#define BSWAP_ARRAY16_UNSIGNED(a,b) ConvertUInt16Buffer((a),(b))
#define BSWAP_ARRAY32_UNSIGNED(a,b) ConvertUInt32Buffer((a),(b))
#define BSWAP_ARRAY64_UNSIGNED(a,b) ConvertUInt64Buffer((a),(b))
#define BSWAP_PART_HEADER(a) ConvertPartHeader(a)
#define BSWAP_TMPQUSERDATA(a) ConvertTMPQUserData((a))
#define BSWAP_TMPQHEADER(a) ConvertTMPQHeader((a))
#endif
//-----------------------------------------------------------------------------
// Macro for deprecated symbols
/*
#ifdef _MSC_VER
#if _MSC_FULL_VER >= 140050320
#define STORMLIB_DEPRECATED(_Text) __declspec(deprecated(_Text))
#else
#define STORMLIB_DEPRECATED(_Text) __declspec(deprecated)
#endif
#else
#ifdef __GNUC__
#define STORMLIB_DEPRECATED(_Text) __attribute__((deprecated))
#else
#define STORMLIB_DEPRECATED(_Text) __attribute__((deprecated(_Text)))
#endif
#endif
// When a flag is deprecated, use this macro
#ifndef _STORMLIB_NO_DEPRECATE
#define STORMLIB_DEPRECATED_FLAG(type, oldflag, newflag) \
const STORMLIB_DEPRECATED(#oldflag " is deprecated. Use " #newflag ". To supress this warning, define _STORMLIB_NO_DEPRECATE") static type oldflag = (type)newflag;
#else
#define STORMLIB_DEPRECATED_FLAG(type, oldflag, newflag) static type oldflag = (type)newflag;
#endif
*/
#endif // __STORMPORT_H__

View file

@ -10,392 +10,349 @@
/* 11.03.03 1.00 Lad Splitted from Pkware.cpp */
/* 20.05.03 2.00 Lad Added compression */
/* 19.11.03 2.01 Dan Big endian handling */
/* 10.01.13 3.00 Lad Refactored, beautified, documented :-) */
/*****************************************************************************/
#include <stddef.h>
#include "adpcm.h"
//------------------------------------------------------------------------------
// Structures
typedef union _BYTE_AND_WORD_PTR
{
short * pw;
unsigned char * pb;
} BYTE_AND_WORD_PTR;
typedef union _WORD_AND_BYTE_ARRAY
{
short w;
unsigned char b[2];
} WORD_AND_BYTE_ARRAY;
//-----------------------------------------------------------------------------
// Tables necessary dor decompression
static int NextStepTable[] =
static long Table1503F120[] =
{
-1, 0, -1, 4, -1, 2, -1, 6,
-1, 1, -1, 5, -1, 3, -1, 7,
-1, 1, -1, 5, -1, 3, -1, 7,
-1, 2, -1, 4, -1, 6, -1, 8
0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000004, 0xFFFFFFFF, 0x00000002, 0xFFFFFFFF, 0x00000006,
0xFFFFFFFF, 0x00000001, 0xFFFFFFFF, 0x00000005, 0xFFFFFFFF, 0x00000003, 0xFFFFFFFF, 0x00000007,
0xFFFFFFFF, 0x00000001, 0xFFFFFFFF, 0x00000005, 0xFFFFFFFF, 0x00000003, 0xFFFFFFFF, 0x00000007,
0xFFFFFFFF, 0x00000002, 0xFFFFFFFF, 0x00000004, 0xFFFFFFFF, 0x00000006, 0xFFFFFFFF, 0x00000008
};
static int StepSizeTable[] =
static long step_table[] =
{
7, 8, 9, 10, 11, 12, 13, 14,
16, 17, 19, 21, 23, 25, 28, 31,
34, 37, 41, 45, 50, 55, 60, 66,
73, 80, 88, 97, 107, 118, 130, 143,
157, 173, 190, 209, 230, 253, 279, 307,
337, 371, 408, 449, 494, 544, 598, 658,
724, 796, 876, 963, 1060, 1166, 1282, 1411,
1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024,
3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484,
7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794,
32767
0x00000007, 0x00000008, 0x00000009, 0x0000000A, 0x0000000B, 0x0000000C, 0x0000000D, 0x0000000E,
0x00000010, 0x00000011, 0x00000013, 0x00000015, 0x00000017, 0x00000019, 0x0000001C, 0x0000001F,
0x00000022, 0x00000025, 0x00000029, 0x0000002D, 0x00000032, 0x00000037, 0x0000003C, 0x00000042,
0x00000049, 0x00000050, 0x00000058, 0x00000061, 0x0000006B, 0x00000076, 0x00000082, 0x0000008F,
0x0000009D, 0x000000AD, 0x000000BE, 0x000000D1, 0x000000E6, 0x000000FD, 0x00000117, 0x00000133,
0x00000151, 0x00000173, 0x00000198, 0x000001C1, 0x000001EE, 0x00000220, 0x00000256, 0x00000292,
0x000002D4, 0x0000031C, 0x0000036C, 0x000003C3, 0x00000424, 0x0000048E, 0x00000502, 0x00000583,
0x00000610, 0x000006AB, 0x00000756, 0x00000812, 0x000008E0, 0x000009C3, 0x00000ABD, 0x00000BD0,
0x00000CFF, 0x00000E4C, 0x00000FBA, 0x0000114C, 0x00001307, 0x000014EE, 0x00001706, 0x00001954,
0x00001BDC, 0x00001EA5, 0x000021B6, 0x00002515, 0x000028CA, 0x00002CDF, 0x0000315B, 0x0000364B,
0x00003BB9, 0x000041B2, 0x00004844, 0x00004F7E, 0x00005771, 0x0000602F, 0x000069CE, 0x00007462,
0x00007FFF
};
//-----------------------------------------------------------------------------
// Helper class for writing output ADPCM data
class TADPCMStream
{
public:
TADPCMStream(void * pvBuffer, size_t cbBuffer)
{
pbBufferEnd = (unsigned char *)pvBuffer + cbBuffer;
pbBuffer = (unsigned char *)pvBuffer;
}
bool ReadByteSample(unsigned char & ByteSample)
{
// Check if there is enough space in the buffer
if(pbBuffer >= pbBufferEnd)
return false;
ByteSample = *pbBuffer++;
return true;
}
bool WriteByteSample(unsigned char ByteSample)
{
// Check if there is enough space in the buffer
if(pbBuffer >= pbBufferEnd)
return false;
*pbBuffer++ = ByteSample;
return true;
}
bool ReadWordSample(short & OneSample)
{
// Check if we have enough space in the output buffer
if((size_t)(pbBufferEnd - pbBuffer) < sizeof(short))
return false;
// Write the sample
OneSample = pbBuffer[0] + (((short)pbBuffer[1]) << 0x08);
pbBuffer += sizeof(short);
return true;
}
bool WriteWordSample(short OneSample)
{
// Check if we have enough space in the output buffer
if((size_t)(pbBufferEnd - pbBuffer) < sizeof(short))
return false;
// Write the sample
*pbBuffer++ = (unsigned char)(OneSample & 0xFF);
*pbBuffer++ = (unsigned char)(OneSample >> 0x08);
return true;
}
int LengthProcessed(void * pvOutBuffer)
{
return (int)((unsigned char *)pbBuffer - (unsigned char *)pvOutBuffer);
}
unsigned char * pbBufferEnd;
unsigned char * pbBuffer;
};
//----------------------------------------------------------------------------
// Local functions
// CompressWave
static inline short GetNextStepIndex(int StepIndex, unsigned int EncodedSample)
// 1500EF70
int CompressADPCM(unsigned char * pbOutBuffer, int dwOutLength, short * pwInBuffer, int dwInLength, int nChannels, int nCmpLevel)
// ECX EDX
{
// Get the next step index
StepIndex = StepIndex + NextStepTable[EncodedSample & 0x1F];
WORD_AND_BYTE_ARRAY Wcmp;
BYTE_AND_WORD_PTR out; // Pointer to the output buffer
long SInt32Array1[2];
long SInt32Array2[2];
long SInt32Array3[2];
long nBytesRemains = dwOutLength; // Number of bytes remaining
long nWordsRemains; // Number of words remaining
// unsigned char * pbSaveOutBuffer; // Copy of output buffer (actually not used)
unsigned long dwBitBuff;
unsigned long dwStopBit;
unsigned long dwBit;
unsigned long ebx;
unsigned long esi;
long nTableValue;
long nOneWord;
long var_1C;
long var_2C;
int nLength;
int nIndex;
int nValue;
int i, chnl;
// Don't make the step index overflow
if(StepIndex < 0)
StepIndex = 0;
else if(StepIndex > 88)
StepIndex = 88;
return (short)StepIndex;
}
static inline int UpdatePredictedSample(int PredictedSample, int EncodedSample, int Difference)
{
// Is the sign bit set?
if(EncodedSample & 0x40)
{
PredictedSample -= Difference;
if(PredictedSample <= -32768)
PredictedSample = -32768;
}
else
{
PredictedSample += Difference;
if(PredictedSample >= 32767)
PredictedSample = 32767;
}
return PredictedSample;
}
static inline int DecodeSample(int PredictedSample, int EncodedSample, int StepSize, int Difference)
{
if(EncodedSample & 0x01)
Difference += (StepSize >> 0);
if(EncodedSample & 0x02)
Difference += (StepSize >> 1);
if(EncodedSample & 0x04)
Difference += (StepSize >> 2);
if(EncodedSample & 0x08)
Difference += (StepSize >> 3);
if(EncodedSample & 0x10)
Difference += (StepSize >> 4);
if(EncodedSample & 0x20)
Difference += (StepSize >> 5);
return UpdatePredictedSample(PredictedSample, EncodedSample, Difference);
}
//----------------------------------------------------------------------------
// Compression routine
int CompressADPCM(void * pvOutBuffer, int cbOutBuffer, void * pvInBuffer, int cbInBuffer, int ChannelCount, int CompressionLevel)
{
TADPCMStream os(pvOutBuffer, cbOutBuffer); // The output stream
TADPCMStream is(pvInBuffer, cbInBuffer); // The input stream
unsigned char BitShift = (unsigned char)(CompressionLevel - 1);
short PredictedSamples[MAX_ADPCM_CHANNEL_COUNT];// Predicted samples for each channel
short StepIndexes[MAX_ADPCM_CHANNEL_COUNT]; // Step indexes for each channel
short InputSample; // Input sample for the current channel
int TotalStepSize;
int ChannelIndex;
int AbsDifference;
int Difference;
int MaxBitMask;
int StepSize;
// _tprintf(_T("== CMPR Started ==============\n"));
// First byte in the output stream contains zero. The second one contains the compression level
os.WriteByteSample(0);
if(!os.WriteByteSample(BitShift))
// If less than 2 bytes remain, don't decompress anything
// pbSaveOutBuffer = pbOutBuffer;
out.pb = pbOutBuffer;
if(nBytesRemains < 2)
return 2;
// Set the initial step index for each channel
PredictedSamples[0] = PredictedSamples[1] = 0;
StepIndexes[0] = StepIndexes[1] = INITIAL_ADPCM_STEP_INDEX;
Wcmp.b[1] = (unsigned char)(nCmpLevel - 1);
Wcmp.b[0] = (unsigned char)0;
// Next, InitialSample value for each channel follows
for(int i = 0; i < ChannelCount; i++)
*out.pw++ = BSWAP_INT16_SIGNED(Wcmp.w);
if((out.pb - pbOutBuffer + (nChannels * 2)) > nBytesRemains)
return (int)(out.pb - pbOutBuffer + (nChannels * 2));
SInt32Array1[0] = SInt32Array1[1] = 0x2C;
for(i = 0; i < nChannels; i++)
{
// Get the initial sample from the input stream
if(!is.ReadWordSample(InputSample))
return os.LengthProcessed(pvOutBuffer);
// Store the initial sample to our sample array
PredictedSamples[i] = InputSample;
// Also store the loaded sample to the output stream
if(!os.WriteWordSample(InputSample))
return os.LengthProcessed(pvOutBuffer);
nOneWord = BSWAP_INT16_SIGNED(*pwInBuffer++);
*out.pw++ = BSWAP_INT16_SIGNED((short)nOneWord);
SInt32Array2[i] = nOneWord;
}
// Get the initial index
ChannelIndex = ChannelCount - 1;
// Now keep reading the input data as long as there is something in the input buffer
while(is.ReadWordSample(InputSample))
// Weird. But it's there
nLength = dwInLength;
if(nLength < 0) // mov eax, dwInLength; cdq; sub eax, edx;
nLength++;
nLength = (nLength / 2) - (int)(out.pb - pbOutBuffer);
nLength = (nLength < 0) ? 0 : nLength;
nIndex = nChannels - 1; // edi
nWordsRemains = dwInLength / 2; // eax
// ebx - nChannels
// ecx - pwOutPos
for(chnl = nChannels; chnl < nWordsRemains; chnl++)
{
int EncodedSample = 0;
// 1500F030
if((out.pb - pbOutBuffer + 2) > nBytesRemains)
return (int)(out.pb - pbOutBuffer + 2);
// If we have two channels, we need to flip the channel index
ChannelIndex = (ChannelIndex + 1) % ChannelCount;
// Switch index
if(nChannels == 2)
nIndex = (nIndex == 0) ? 1 : 0;
// Get the difference from the previous sample.
// If the difference is negative, set the sign bit to the encoded sample
AbsDifference = InputSample - PredictedSamples[ChannelIndex];
if(AbsDifference < 0)
// Load one word from the input stream
nOneWord = BSWAP_INT16_SIGNED(*pwInBuffer++); // ecx - nOneWord
SInt32Array3[nIndex] = nOneWord;
// esi - SInt32Array2[nIndex]
// eax - nValue
nValue = nOneWord - SInt32Array2[nIndex];
nValue = (nValue < 0) ? ((nValue ^ 0xFFFFFFFF) + 1) : nValue;
ebx = (nOneWord >= SInt32Array2[nIndex]) ? 0 : 0x40;
// esi - SInt32Array2[nIndex]
// edx - step_table[SInt32Array2[nIndex]]
// edi - (step_table[SInt32Array1[nIndex]] >> nCmpLevel)
nTableValue = step_table[SInt32Array1[nIndex]];
dwStopBit = (unsigned long)nCmpLevel;
// edi - nIndex;
if(nValue < (nTableValue >> nCmpLevel))
{
AbsDifference = -AbsDifference;
EncodedSample |= 0x40;
}
// If the difference is too low (higher that difference treshold),
// write a step index modifier marker
StepSize = StepSizeTable[StepIndexes[ChannelIndex]];
if(AbsDifference < (StepSize >> CompressionLevel))
{
if(StepIndexes[ChannelIndex] != 0)
StepIndexes[ChannelIndex]--;
os.WriteByteSample(0x80);
if(SInt32Array1[nIndex] != 0)
SInt32Array1[nIndex]--;
*out.pb++ = 0x80;
}
else
{
// If the difference is too high, write marker that
// indicates increase in step size
while(AbsDifference > (StepSize << 1))
while(nValue > nTableValue * 2)
{
if(StepIndexes[ChannelIndex] >= 0x58)
if(SInt32Array1[nIndex] >= 0x58 || nLength == 0)
break;
// Modify the step index
StepIndexes[ChannelIndex] += 8;
if(StepIndexes[ChannelIndex] > 0x58)
StepIndexes[ChannelIndex] = 0x58;
SInt32Array1[nIndex] += 8;
if(SInt32Array1[nIndex] > 0x58)
SInt32Array1[nIndex] = 0x58;
// Write the "modify step index" marker
StepSize = StepSizeTable[StepIndexes[ChannelIndex]];
os.WriteByteSample(0x81);
nTableValue = step_table[SInt32Array1[nIndex]];
*out.pb++ = 0x81;
nLength--;
}
// Get the limit bit value
MaxBitMask = (1 << (BitShift - 1));
MaxBitMask = (MaxBitMask > 0x20) ? 0x20 : MaxBitMask;
Difference = StepSize >> BitShift;
TotalStepSize = 0;
var_2C = nTableValue >> Wcmp.b[1];
dwBitBuff = 0;
for(int BitVal = 0x01; BitVal <= MaxBitMask; BitVal <<= 1)
esi = (1 << (dwStopBit - 2));
dwStopBit = (esi <= 0x20) ? esi : 0x20;
for(var_1C = 0, dwBit = 1; ; dwBit <<= 1)
{
if((TotalStepSize + StepSize) <= AbsDifference)
// esi = var_1C + nTableValue;
if((var_1C + nTableValue) <= nValue)
{
TotalStepSize += StepSize;
EncodedSample |= BitVal;
var_1C += nTableValue;
dwBitBuff |= dwBit;
}
StepSize >>= 1;
if(dwBit == dwStopBit)
break;
nTableValue >>= 1;
}
PredictedSamples[ChannelIndex] = (short)UpdatePredictedSample(PredictedSamples[ChannelIndex],
EncodedSample,
Difference + TotalStepSize);
// Write the encoded sample to the output stream
if(!os.WriteByteSample((unsigned char)EncodedSample))
break;
// Calculates the step index to use for the next encode
StepIndexes[ChannelIndex] = GetNextStepIndex(StepIndexes[ChannelIndex], EncodedSample);
nValue = SInt32Array2[nIndex];
if(ebx != 0)
{
nValue -= (var_1C + var_2C);
if(nValue < -32768)
nValue = -32768;
}
else
{
nValue += (var_1C + var_2C);
if(nValue > 32767)
nValue = 32767;
}
SInt32Array2[nIndex] = nValue;
*out.pb++ = (unsigned char)(dwBitBuff | ebx);
nTableValue = Table1503F120[dwBitBuff & 0x1F];
SInt32Array1[nIndex] = SInt32Array1[nIndex] + nTableValue;
if(SInt32Array1[nIndex] < 0)
SInt32Array1[nIndex] = 0;
else if(SInt32Array1[nIndex] > 0x58)
SInt32Array1[nIndex] = 0x58;
}
}
// _tprintf(_T("== CMPR Ended ================\n"));
return os.LengthProcessed(pvOutBuffer);
return (int)(out.pb - pbOutBuffer);
}
//----------------------------------------------------------------------------
// Decompression routine
// DecompressADPCM
int DecompressADPCM(void * pvOutBuffer, int cbOutBuffer, void * pvInBuffer, int cbInBuffer, int ChannelCount)
// 1500F230
int DecompressADPCM(unsigned char * pbOutBuffer, int dwOutLength, unsigned char * pbInBuffer, int dwInLength, int nChannels)
{
TADPCMStream os(pvOutBuffer, cbOutBuffer); // Output stream
TADPCMStream is(pvInBuffer, cbInBuffer); // Input stream
unsigned char EncodedSample;
unsigned char BitShift;
short PredictedSamples[MAX_ADPCM_CHANNEL_COUNT]; // Predicted sample for each channel
short StepIndexes[MAX_ADPCM_CHANNEL_COUNT]; // Predicted step index for each channel
int ChannelIndex; // Current channel index
BYTE_AND_WORD_PTR out; // Output buffer
BYTE_AND_WORD_PTR in;
unsigned char * pbInBufferEnd = (pbInBuffer + dwInLength);
long SInt32Array1[2];
long SInt32Array2[2];
long nOneWord;
int nIndex;
int i;
// Initialize the StepIndex for each channel
PredictedSamples[0] = PredictedSamples[1] = 0;
StepIndexes[0] = StepIndexes[1] = INITIAL_ADPCM_STEP_INDEX;
SInt32Array1[0] = SInt32Array1[1] = 0x2C;
out.pb = pbOutBuffer;
in.pb = pbInBuffer;
in.pw++;
// _tprintf(_T("== DCMP Started ==============\n"));
// The first byte is always zero, the second one contains bit shift (compression level - 1)
is.ReadByteSample(BitShift);
is.ReadByteSample(BitShift);
// _tprintf(_T("DCMP: BitShift = %u\n"), (unsigned int)(unsigned char)BitShift);
// Next, InitialSample value for each channel follows
for(int i = 0; i < ChannelCount; i++)
// Fill the Uint32Array2 array by channel values.
for(i = 0; i < nChannels; i++)
{
// Get the initial sample from the input stream
short InitialSample;
nOneWord = BSWAP_INT16_SIGNED(*in.pw++);
SInt32Array2[i] = nOneWord;
if(dwOutLength < 2)
return (int)(out.pb - pbOutBuffer);
// Attempt to read the initial sample
if(!is.ReadWordSample(InitialSample))
return os.LengthProcessed(pvOutBuffer);
// _tprintf(_T("DCMP: Loaded InitialSample[%u]: %04X\n"), i, (unsigned int)(unsigned short)InitialSample);
// Store the initial sample to our sample array
PredictedSamples[i] = InitialSample;
// Also store the loaded sample to the output stream
if(!os.WriteWordSample(InitialSample))
return os.LengthProcessed(pvOutBuffer);
*out.pw++ = BSWAP_INT16_SIGNED((short)nOneWord);
dwOutLength -= sizeof(short);
}
// Get the initial index
ChannelIndex = ChannelCount - 1;
nIndex = nChannels - 1;
// Keep reading as long as there is something in the input buffer
while(is.ReadByteSample(EncodedSample))
// Perform the decompression
while(in.pb < pbInBufferEnd)
{
// _tprintf(_T("DCMP: Loaded Encoded Sample: %02X\n"), (unsigned int)(unsigned char)EncodedSample);
unsigned char nOneByte = *in.pb++;
// If we have two channels, we need to flip the channel index
ChannelIndex = (ChannelIndex + 1) % ChannelCount;
// Switch index
if(nChannels == 2)
nIndex = (nIndex == 0) ? 1 : 0;
if(EncodedSample == 0x80)
// 1500F2A2: Get one byte from input buffer
if(nOneByte & 0x80)
{
if(StepIndexes[ChannelIndex] != 0)
StepIndexes[ChannelIndex]--;
switch(nOneByte & 0x7F)
{
case 0: // 1500F315
if(SInt32Array1[nIndex] != 0)
SInt32Array1[nIndex]--;
// _tprintf(_T("DCMP: Writing Decoded Sample: %04lX\n"), (unsigned int)(unsigned short)PredictedSamples[ChannelIndex]);
if(!os.WriteWordSample(PredictedSamples[ChannelIndex]))
return os.LengthProcessed(pvOutBuffer);
}
else if(EncodedSample == 0x81)
{
// Modify the step index
StepIndexes[ChannelIndex] += 8;
if(StepIndexes[ChannelIndex] > 0x58)
StepIndexes[ChannelIndex] = 0x58;
if(dwOutLength < 2)
return (int)(out.pb - pbOutBuffer);
// _tprintf(_T("DCMP: New value of StepIndex: %04lX\n"), (unsigned int)(unsigned short)StepIndexes[ChannelIndex]);
*out.pw++ = BSWAP_INT16_SIGNED((unsigned short)SInt32Array2[nIndex]);
dwOutLength -= sizeof(unsigned short);
break;
// Next pass, keep going on the same channel
ChannelIndex = (ChannelIndex + 1) % ChannelCount;
case 1: // 1500F2E8
SInt32Array1[nIndex] += 8;
if(SInt32Array1[nIndex] > 0x58)
SInt32Array1[nIndex] = 0x58;
if(nChannels == 2)
nIndex = (nIndex == 0) ? 1 : 0;
break;
case 2: // 1500F41E
break;
default: // 1500F2C4
SInt32Array1[nIndex] -= 8;
if(SInt32Array1[nIndex] < 0)
SInt32Array1[nIndex] = 0;
if(nChannels == 2)
nIndex = (nIndex == 0) ? 1 : 0;
break;
}
}
else
{
int StepIndex = StepIndexes[ChannelIndex];
int StepSize = StepSizeTable[StepIndex];
// 1500F349
long temp1 = step_table[SInt32Array1[nIndex]]; // EDI
long temp2 = temp1 >> pbInBuffer[1]; // ESI
long temp3 = SInt32Array2[nIndex]; // ECX
// Encode one sample
PredictedSamples[ChannelIndex] = (short)DecodeSample(PredictedSamples[ChannelIndex],
EncodedSample,
StepSize,
StepSize >> BitShift);
if(nOneByte & 0x01) // EBX = nOneByte
temp2 += (temp1 >> 0);
// _tprintf(_T("DCMP: Writing decoded sample: %04X\n"), (unsigned int)(unsigned short)PredictedSamples[ChannelIndex]);
if(nOneByte & 0x02)
temp2 += (temp1 >> 1);
// Write the decoded sample to the output stream
if(!os.WriteWordSample(PredictedSamples[ChannelIndex]))
if(nOneByte & 0x04)
temp2 += (temp1 >> 2);
if(nOneByte & 0x08)
temp2 += (temp1 >> 3);
if(nOneByte & 0x10)
temp2 += (temp1 >> 4);
if(nOneByte & 0x20)
temp2 += (temp1 >> 5);
if(nOneByte & 0x40)
{
temp3 = temp3 - temp2;
if(temp3 <= -32768)
temp3 = -32768;
}
else
{
temp3 = temp3 + temp2;
if(temp3 >= 32767)
temp3 = 32767;
}
SInt32Array2[nIndex] = temp3;
if(dwOutLength < 2)
break;
// Calculates the step index to use for the next encode
StepIndexes[ChannelIndex] = GetNextStepIndex(StepIndex, EncodedSample);
// _tprintf(_T("DCMP: New step index: %04X\n"), (unsigned int)(unsigned short)StepIndexes[ChannelIndex]);
// Store the output 16-bit value
*out.pw++ = BSWAP_INT16_SIGNED((short)SInt32Array2[nIndex]);
dwOutLength -= 2;
SInt32Array1[nIndex] += Table1503F120[nOneByte & 0x1F];
if(SInt32Array1[nIndex] < 0)
SInt32Array1[nIndex] = 0;
else if(SInt32Array1[nIndex] > 0x58)
SInt32Array1[nIndex] = 0x58;
}
}
// _tprintf(_T("DCMP: Total length written: %u\n"), (unsigned int)os.LengthProcessed(pvOutBuffer));
// _tprintf(_T("== DCMP Ended ================\n"));
// Return total bytes written since beginning of the output buffer
return os.LengthProcessed(pvOutBuffer);
return (int)(out.pb - pbOutBuffer);
}

View file

@ -12,15 +12,11 @@
#define __ADPCM_H__
//-----------------------------------------------------------------------------
// Defines
// Functions
#define MAX_ADPCM_CHANNEL_COUNT 2
#define INITIAL_ADPCM_STEP_INDEX 0x2C
#include "../StormPort.h"
//-----------------------------------------------------------------------------
// Public functions
int CompressADPCM (void * pvOutBuffer, int dwOutLength, void * pvInBuffer, int dwInLength, int nCmpType, int ChannelCount);
int DecompressADPCM(void * pvOutBuffer, int dwOutLength, void * pvInBuffer, int dwInLength, int ChannelCount);
int CompressADPCM (unsigned char * pbOutBuffer, int dwOutLength, short * pwInBuffer, int dwInLength, int nCmpType, int nChannels);
int DecompressADPCM(unsigned char * pbOutBuffer, int dwOutLength, unsigned char * pbInBuffer, int dwInLength, int nChannels);
#endif // __ADPCM_H__

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,282 @@
/*-------------------------------------------------------------*/
/*--- Public header file for the library. ---*/
/*--- bzlib.h ---*/
/*-------------------------------------------------------------*/
/* ------------------------------------------------------------------
This file is part of bzip2/libbzip2, a program and library for
lossless, block-sorting data compression.
bzip2/libbzip2 version 1.0.5 of 10 December 2007
Copyright (C) 1996-2007 Julian Seward <jseward@bzip.org>
Please read the WARNING, DISCLAIMER and PATENTS sections in the
README file.
This program is released under the terms of the license contained
in the file LICENSE.
------------------------------------------------------------------ */
#ifndef _BZLIB_H
#define _BZLIB_H
#ifdef __cplusplus
extern "C" {
#endif
#define BZ_RUN 0
#define BZ_FLUSH 1
#define BZ_FINISH 2
#define BZ_OK 0
#define BZ_RUN_OK 1
#define BZ_FLUSH_OK 2
#define BZ_FINISH_OK 3
#define BZ_STREAM_END 4
#define BZ_SEQUENCE_ERROR (-1)
#define BZ_PARAM_ERROR (-2)
#define BZ_MEM_ERROR (-3)
#define BZ_DATA_ERROR (-4)
#define BZ_DATA_ERROR_MAGIC (-5)
#define BZ_IO_ERROR (-6)
#define BZ_UNEXPECTED_EOF (-7)
#define BZ_OUTBUFF_FULL (-8)
#define BZ_CONFIG_ERROR (-9)
typedef
struct {
char *next_in;
unsigned int avail_in;
unsigned int total_in_lo32;
unsigned int total_in_hi32;
char *next_out;
unsigned int avail_out;
unsigned int total_out_lo32;
unsigned int total_out_hi32;
void *state;
void *(*bzalloc)(void *,int,int);
void (*bzfree)(void *,void *);
void *opaque;
}
bz_stream;
#ifndef BZ_IMPORT
#define BZ_EXPORT
#endif
#ifndef BZ_NO_STDIO
/* Need a definitition for FILE */
#include <stdio.h>
#endif
#ifdef _WIN32
# include <windows.h>
# ifdef small
/* windows.h define small to char */
# undef small
# endif
# ifdef BZ_EXPORT
# define BZ_API(func) WINAPI func
# define BZ_EXTERN extern
# else
/* import windows dll dynamically */
# define BZ_API(func) (WINAPI * func)
# define BZ_EXTERN
# endif
#else
# define BZ_API(func) func
# define BZ_EXTERN extern
#endif
/*-- Core (low-level) library functions --*/
BZ_EXTERN int BZ_API(BZ2_bzCompressInit) (
bz_stream* strm,
int blockSize100k,
int verbosity,
int workFactor
);
BZ_EXTERN int BZ_API(BZ2_bzCompress) (
bz_stream* strm,
int action
);
BZ_EXTERN int BZ_API(BZ2_bzCompressEnd) (
bz_stream* strm
);
BZ_EXTERN int BZ_API(BZ2_bzDecompressInit) (
bz_stream *strm,
int verbosity,
int small
);
BZ_EXTERN int BZ_API(BZ2_bzDecompress) (
bz_stream* strm
);
BZ_EXTERN int BZ_API(BZ2_bzDecompressEnd) (
bz_stream *strm
);
/*-- High(er) level library functions --*/
#ifndef BZ_NO_STDIO
#define BZ_MAX_UNUSED 5000
typedef void BZFILE;
BZ_EXTERN BZFILE* BZ_API(BZ2_bzReadOpen) (
int* bzerror,
FILE* f,
int verbosity,
int small,
void* unused,
int nUnused
);
BZ_EXTERN void BZ_API(BZ2_bzReadClose) (
int* bzerror,
BZFILE* b
);
BZ_EXTERN void BZ_API(BZ2_bzReadGetUnused) (
int* bzerror,
BZFILE* b,
void** unused,
int* nUnused
);
BZ_EXTERN int BZ_API(BZ2_bzRead) (
int* bzerror,
BZFILE* b,
void* buf,
int len
);
BZ_EXTERN BZFILE* BZ_API(BZ2_bzWriteOpen) (
int* bzerror,
FILE* f,
int blockSize100k,
int verbosity,
int workFactor
);
BZ_EXTERN void BZ_API(BZ2_bzWrite) (
int* bzerror,
BZFILE* b,
void* buf,
int len
);
BZ_EXTERN void BZ_API(BZ2_bzWriteClose) (
int* bzerror,
BZFILE* b,
int abandon,
unsigned int* nbytes_in,
unsigned int* nbytes_out
);
BZ_EXTERN void BZ_API(BZ2_bzWriteClose64) (
int* bzerror,
BZFILE* b,
int abandon,
unsigned int* nbytes_in_lo32,
unsigned int* nbytes_in_hi32,
unsigned int* nbytes_out_lo32,
unsigned int* nbytes_out_hi32
);
#endif
/*-- Utility functions --*/
BZ_EXTERN int BZ_API(BZ2_bzBuffToBuffCompress) (
char* dest,
unsigned int* destLen,
char* source,
unsigned int sourceLen,
int blockSize100k,
int verbosity,
int workFactor
);
BZ_EXTERN int BZ_API(BZ2_bzBuffToBuffDecompress) (
char* dest,
unsigned int* destLen,
char* source,
unsigned int sourceLen,
int small,
int verbosity
);
/*--
Code contributed by Yoshioka Tsuneo (tsuneo@rr.iij4u.or.jp)
to support better zlib compatibility.
This code is not _officially_ part of libbzip2 (yet);
I haven't tested it, documented it, or considered the
threading-safeness of it.
If this code breaks, please contact both Yoshioka and me.
--*/
BZ_EXTERN const char * BZ_API(BZ2_bzlibVersion) (
void
);
#ifndef BZ_NO_STDIO
BZ_EXTERN BZFILE * BZ_API(BZ2_bzopen) (
const char *path,
const char *mode
);
BZ_EXTERN BZFILE * BZ_API(BZ2_bzdopen) (
int fd,
const char *mode
);
BZ_EXTERN int BZ_API(BZ2_bzread) (
BZFILE* b,
void* buf,
int len
);
BZ_EXTERN int BZ_API(BZ2_bzwrite) (
BZFILE* b,
void* buf,
int len
);
BZ_EXTERN int BZ_API(BZ2_bzflush) (
BZFILE* b
);
BZ_EXTERN void BZ_API(BZ2_bzclose) (
BZFILE* b
);
BZ_EXTERN const char * BZ_API(BZ2_bzerror) (
BZFILE *b,
int *errnum
);
#endif
#ifdef __cplusplus
}
#endif
#endif
/*-------------------------------------------------------------*/
/*--- end bzlib.h ---*/
/*-------------------------------------------------------------*/

View file

@ -0,0 +1,509 @@
/*-------------------------------------------------------------*/
/*--- Private header file for the library. ---*/
/*--- bzlib_private.h ---*/
/*-------------------------------------------------------------*/
/* ------------------------------------------------------------------
This file is part of bzip2/libbzip2, a program and library for
lossless, block-sorting data compression.
bzip2/libbzip2 version 1.0.5 of 10 December 2007
Copyright (C) 1996-2007 Julian Seward <jseward@bzip.org>
Please read the WARNING, DISCLAIMER and PATENTS sections in the
README file.
This program is released under the terms of the license contained
in the file LICENSE.
------------------------------------------------------------------ */
#ifndef _BZLIB_PRIVATE_H
#define _BZLIB_PRIVATE_H
#include <stdlib.h>
#ifndef BZ_NO_STDIO
#include <stdio.h>
#include <ctype.h>
#include <string.h>
#endif
#include "bzlib.h"
/*-- General stuff. --*/
#define BZ_VERSION "1.0.5, 10-Dec-2007"
typedef char Char;
typedef unsigned char Bool;
typedef unsigned char UChar;
typedef int Int32;
typedef unsigned int UInt32;
typedef short Int16;
typedef unsigned short UInt16;
#define True ((Bool)1)
#define False ((Bool)0)
#ifndef __GNUC__
#define __inline__ /* */
#endif
#ifndef BZ_NO_STDIO
extern void BZ2_bz__AssertH__fail ( int errcode );
#define AssertH(cond,errcode) \
{ if (!(cond)) BZ2_bz__AssertH__fail ( errcode ); }
#if BZ_DEBUG
#define AssertD(cond,msg) \
{ if (!(cond)) { \
fprintf ( stderr, \
"\n\nlibbzip2(debug build): internal error\n\t%s\n", msg );\
exit(1); \
}}
#else
#define AssertD(cond,msg) /* */
#endif
#define VPrintf0(zf) \
fprintf(stderr,zf)
#define VPrintf1(zf,za1) \
fprintf(stderr,zf,za1)
#define VPrintf2(zf,za1,za2) \
fprintf(stderr,zf,za1,za2)
#define VPrintf3(zf,za1,za2,za3) \
fprintf(stderr,zf,za1,za2,za3)
#define VPrintf4(zf,za1,za2,za3,za4) \
fprintf(stderr,zf,za1,za2,za3,za4)
#define VPrintf5(zf,za1,za2,za3,za4,za5) \
fprintf(stderr,zf,za1,za2,za3,za4,za5)
#else
extern void bz_internal_error ( int errcode );
#define AssertH(cond,errcode) \
{ if (!(cond)) bz_internal_error ( errcode ); }
#define AssertD(cond,msg) do { } while (0)
#define VPrintf0(zf) do { } while (0)
#define VPrintf1(zf,za1) do { } while (0)
#define VPrintf2(zf,za1,za2) do { } while (0)
#define VPrintf3(zf,za1,za2,za3) do { } while (0)
#define VPrintf4(zf,za1,za2,za3,za4) do { } while (0)
#define VPrintf5(zf,za1,za2,za3,za4,za5) do { } while (0)
#endif
#define BZALLOC(nnn) (strm->bzalloc)(strm->opaque,(nnn),1)
#define BZFREE(ppp) (strm->bzfree)(strm->opaque,(ppp))
/*-- Header bytes. --*/
#define BZ_HDR_B 0x42 /* 'B' */
#define BZ_HDR_Z 0x5a /* 'Z' */
#define BZ_HDR_h 0x68 /* 'h' */
#define BZ_HDR_0 0x30 /* '0' */
/*-- Constants for the back end. --*/
#define BZ_MAX_ALPHA_SIZE 258
#define BZ_MAX_CODE_LEN 23
#define BZ_RUNA 0
#define BZ_RUNB 1
#define BZ_N_GROUPS 6
#define BZ_G_SIZE 50
#define BZ_N_ITERS 4
#define BZ_MAX_SELECTORS (2 + (900000 / BZ_G_SIZE))
/*-- Stuff for randomising repetitive blocks. --*/
extern Int32 BZ2_rNums[512];
#define BZ_RAND_DECLS \
Int32 rNToGo; \
Int32 rTPos \
#define BZ_RAND_INIT_MASK \
s->rNToGo = 0; \
s->rTPos = 0 \
#define BZ_RAND_MASK ((s->rNToGo == 1) ? 1 : 0)
#define BZ_RAND_UPD_MASK \
if (s->rNToGo == 0) { \
s->rNToGo = BZ2_rNums[s->rTPos]; \
s->rTPos++; \
if (s->rTPos == 512) s->rTPos = 0; \
} \
s->rNToGo--;
/*-- Stuff for doing CRCs. --*/
extern UInt32 BZ2_crc32Table[256];
#define BZ_INITIALISE_CRC(crcVar) \
{ \
crcVar = 0xffffffffL; \
}
#define BZ_FINALISE_CRC(crcVar) \
{ \
crcVar = ~(crcVar); \
}
#define BZ_UPDATE_CRC(crcVar,cha) \
{ \
crcVar = (crcVar << 8) ^ \
BZ2_crc32Table[(crcVar >> 24) ^ \
((UChar)cha)]; \
}
/*-- States and modes for compression. --*/
#define BZ_M_IDLE 1
#define BZ_M_RUNNING 2
#define BZ_M_FLUSHING 3
#define BZ_M_FINISHING 4
#define BZ_S_OUTPUT 1
#define BZ_S_INPUT 2
#define BZ_N_RADIX 2
#define BZ_N_QSORT 12
#define BZ_N_SHELL 18
#define BZ_N_OVERSHOOT (BZ_N_RADIX + BZ_N_QSORT + BZ_N_SHELL + 2)
/*-- Structure holding all the compression-side stuff. --*/
typedef
struct {
/* pointer back to the struct bz_stream */
bz_stream* strm;
/* mode this stream is in, and whether inputting */
/* or outputting data */
Int32 mode;
Int32 state;
/* remembers avail_in when flush/finish requested */
UInt32 avail_in_expect;
/* for doing the block sorting */
UInt32* arr1;
UInt32* arr2;
UInt32* ftab;
Int32 origPtr;
/* aliases for arr1 and arr2 */
UInt32* ptr;
UChar* block;
UInt16* mtfv;
UChar* zbits;
/* for deciding when to use the fallback sorting algorithm */
Int32 workFactor;
/* run-length-encoding of the input */
UInt32 state_in_ch;
Int32 state_in_len;
BZ_RAND_DECLS;
/* input and output limits and current posns */
Int32 nblock;
Int32 nblockMAX;
Int32 numZ;
Int32 state_out_pos;
/* map of bytes used in block */
Int32 nInUse;
Bool inUse[256];
UChar unseqToSeq[256];
/* the buffer for bit stream creation */
UInt32 bsBuff;
Int32 bsLive;
/* block and combined CRCs */
UInt32 blockCRC;
UInt32 combinedCRC;
/* misc administratium */
Int32 verbosity;
Int32 blockNo;
Int32 blockSize100k;
/* stuff for coding the MTF values */
Int32 nMTF;
Int32 mtfFreq [BZ_MAX_ALPHA_SIZE];
UChar selector [BZ_MAX_SELECTORS];
UChar selectorMtf[BZ_MAX_SELECTORS];
UChar len [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE];
Int32 code [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE];
Int32 rfreq [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE];
/* second dimension: only 3 needed; 4 makes index calculations faster */
UInt32 len_pack[BZ_MAX_ALPHA_SIZE][4];
}
EState;
/*-- externs for compression. --*/
extern void
BZ2_blockSort ( EState* );
extern void
BZ2_compressBlock ( EState*, Bool );
extern void
BZ2_bsInitWrite ( EState* );
extern void
BZ2_hbAssignCodes ( Int32*, UChar*, Int32, Int32, Int32 );
extern void
BZ2_hbMakeCodeLengths ( UChar*, Int32*, Int32, Int32 );
/*-- states for decompression. --*/
#define BZ_X_IDLE 1
#define BZ_X_OUTPUT 2
#define BZ_X_MAGIC_1 10
#define BZ_X_MAGIC_2 11
#define BZ_X_MAGIC_3 12
#define BZ_X_MAGIC_4 13
#define BZ_X_BLKHDR_1 14
#define BZ_X_BLKHDR_2 15
#define BZ_X_BLKHDR_3 16
#define BZ_X_BLKHDR_4 17
#define BZ_X_BLKHDR_5 18
#define BZ_X_BLKHDR_6 19
#define BZ_X_BCRC_1 20
#define BZ_X_BCRC_2 21
#define BZ_X_BCRC_3 22
#define BZ_X_BCRC_4 23
#define BZ_X_RANDBIT 24
#define BZ_X_ORIGPTR_1 25
#define BZ_X_ORIGPTR_2 26
#define BZ_X_ORIGPTR_3 27
#define BZ_X_MAPPING_1 28
#define BZ_X_MAPPING_2 29
#define BZ_X_SELECTOR_1 30
#define BZ_X_SELECTOR_2 31
#define BZ_X_SELECTOR_3 32
#define BZ_X_CODING_1 33
#define BZ_X_CODING_2 34
#define BZ_X_CODING_3 35
#define BZ_X_MTF_1 36
#define BZ_X_MTF_2 37
#define BZ_X_MTF_3 38
#define BZ_X_MTF_4 39
#define BZ_X_MTF_5 40
#define BZ_X_MTF_6 41
#define BZ_X_ENDHDR_2 42
#define BZ_X_ENDHDR_3 43
#define BZ_X_ENDHDR_4 44
#define BZ_X_ENDHDR_5 45
#define BZ_X_ENDHDR_6 46
#define BZ_X_CCRC_1 47
#define BZ_X_CCRC_2 48
#define BZ_X_CCRC_3 49
#define BZ_X_CCRC_4 50
/*-- Constants for the fast MTF decoder. --*/
#define MTFA_SIZE 4096
#define MTFL_SIZE 16
/*-- Structure holding all the decompression-side stuff. --*/
typedef
struct {
/* pointer back to the struct bz_stream */
bz_stream* strm;
/* state indicator for this stream */
Int32 state;
/* for doing the final run-length decoding */
UChar state_out_ch;
Int32 state_out_len;
Bool blockRandomised;
BZ_RAND_DECLS;
/* the buffer for bit stream reading */
UInt32 bsBuff;
Int32 bsLive;
/* misc administratium */
Int32 blockSize100k;
Bool smallDecompress;
Int32 currBlockNo;
Int32 verbosity;
/* for undoing the Burrows-Wheeler transform */
Int32 origPtr;
UInt32 tPos;
Int32 k0;
Int32 unzftab[256];
Int32 nblock_used;
Int32 cftab[257];
Int32 cftabCopy[257];
/* for undoing the Burrows-Wheeler transform (FAST) */
UInt32 *tt;
/* for undoing the Burrows-Wheeler transform (SMALL) */
UInt16 *ll16;
UChar *ll4;
/* stored and calculated CRCs */
UInt32 storedBlockCRC;
UInt32 storedCombinedCRC;
UInt32 calculatedBlockCRC;
UInt32 calculatedCombinedCRC;
/* map of bytes used in block */
Int32 nInUse;
Bool inUse[256];
Bool inUse16[16];
UChar seqToUnseq[256];
/* for decoding the MTF values */
UChar mtfa [MTFA_SIZE];
Int32 mtfbase[256 / MTFL_SIZE];
UChar selector [BZ_MAX_SELECTORS];
UChar selectorMtf[BZ_MAX_SELECTORS];
UChar len [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE];
Int32 limit [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE];
Int32 base [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE];
Int32 perm [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE];
Int32 minLens[BZ_N_GROUPS];
/* save area for scalars in the main decompress code */
Int32 save_i;
Int32 save_j;
Int32 save_t;
Int32 save_alphaSize;
Int32 save_nGroups;
Int32 save_nSelectors;
Int32 save_EOB;
Int32 save_groupNo;
Int32 save_groupPos;
Int32 save_nextSym;
Int32 save_nblockMAX;
Int32 save_nblock;
Int32 save_es;
Int32 save_N;
Int32 save_curr;
Int32 save_zt;
Int32 save_zn;
Int32 save_zvec;
Int32 save_zj;
Int32 save_gSel;
Int32 save_gMinlen;
Int32* save_gLimit;
Int32* save_gBase;
Int32* save_gPerm;
}
DState;
/*-- Macros for decompression. --*/
#define BZ_GET_FAST(cccc) \
/* c_tPos is unsigned, hence test < 0 is pointless. */ \
if (s->tPos >= (UInt32)100000 * (UInt32)s->blockSize100k) return True; \
s->tPos = s->tt[s->tPos]; \
cccc = (UChar)(s->tPos & 0xff); \
s->tPos >>= 8;
#define BZ_GET_FAST_C(cccc) \
/* c_tPos is unsigned, hence test < 0 is pointless. */ \
if (c_tPos >= (UInt32)100000 * (UInt32)ro_blockSize100k) return True; \
c_tPos = c_tt[c_tPos]; \
cccc = (UChar)(c_tPos & 0xff); \
c_tPos >>= 8;
#define SET_LL4(i,n) \
{ if (((i) & 0x1) == 0) \
s->ll4[(i) >> 1] = (s->ll4[(i) >> 1] & 0xf0) | (n); else \
s->ll4[(i) >> 1] = (s->ll4[(i) >> 1] & 0x0f) | ((n) << 4); \
}
#define GET_LL4(i) \
((((UInt32)(s->ll4[(i) >> 1])) >> (((i) << 2) & 0x4)) & 0xF)
#define SET_LL(i,n) \
{ s->ll16[i] = (UInt16)(n & 0x0000ffff); \
SET_LL4(i, n >> 16); \
}
#define GET_LL(i) \
(((UInt32)s->ll16[i]) | (GET_LL4(i) << 16))
#define BZ_GET_SMALL(cccc) \
/* c_tPos is unsigned, hence test < 0 is pointless. */ \
if (s->tPos >= (UInt32)100000 * (UInt32)s->blockSize100k) return True; \
cccc = BZ2_indexIntoF ( s->tPos, s->cftab ); \
s->tPos = GET_LL(s->tPos);
/*-- externs for decompression. --*/
extern Int32
BZ2_indexIntoF ( Int32, Int32* );
extern Int32
BZ2_decompress ( DState* );
extern void
BZ2_hbCreateDecodeTables ( Int32*, Int32*, Int32*, UChar*,
Int32, Int32, Int32 );
#endif
/*-- BZ_NO_STDIO seems to make NULL disappear on some platforms. --*/
#ifdef BZ_NO_STDIO
#ifndef NULL
#define NULL 0
#endif
#endif
/*-------------------------------------------------------------*/
/*--- end bzlib_private.h ---*/
/*-------------------------------------------------------------*/

View file

@ -0,0 +1,672 @@
/*-------------------------------------------------------------*/
/*--- Compression machinery (not incl block sorting) ---*/
/*--- compress.c ---*/
/*-------------------------------------------------------------*/
/* ------------------------------------------------------------------
This file is part of bzip2/libbzip2, a program and library for
lossless, block-sorting data compression.
bzip2/libbzip2 version 1.0.5 of 10 December 2007
Copyright (C) 1996-2007 Julian Seward <jseward@bzip.org>
Please read the WARNING, DISCLAIMER and PATENTS sections in the
README file.
This program is released under the terms of the license contained
in the file LICENSE.
------------------------------------------------------------------ */
/* CHANGES
0.9.0 -- original version.
0.9.0a/b -- no changes in this file.
0.9.0c -- changed setting of nGroups in sendMTFValues()
so as to do a bit better on small files
*/
#include "bzlib_private.h"
/*---------------------------------------------------*/
/*--- Bit stream I/O ---*/
/*---------------------------------------------------*/
/*---------------------------------------------------*/
void BZ2_bsInitWrite ( EState* s )
{
s->bsLive = 0;
s->bsBuff = 0;
}
/*---------------------------------------------------*/
static
void bsFinishWrite ( EState* s )
{
while (s->bsLive > 0) {
s->zbits[s->numZ] = (UChar)(s->bsBuff >> 24);
s->numZ++;
s->bsBuff <<= 8;
s->bsLive -= 8;
}
}
/*---------------------------------------------------*/
#define bsNEEDW(nz) \
{ \
while (s->bsLive >= 8) { \
s->zbits[s->numZ] \
= (UChar)(s->bsBuff >> 24); \
s->numZ++; \
s->bsBuff <<= 8; \
s->bsLive -= 8; \
} \
}
/*---------------------------------------------------*/
static
__inline__
void bsW ( EState* s, Int32 n, UInt32 v )
{
bsNEEDW ( n );
s->bsBuff |= (v << (32 - s->bsLive - n));
s->bsLive += n;
}
/*---------------------------------------------------*/
static
void bsPutUInt32 ( EState* s, UInt32 u )
{
bsW ( s, 8, (u >> 24) & 0xffL );
bsW ( s, 8, (u >> 16) & 0xffL );
bsW ( s, 8, (u >> 8) & 0xffL );
bsW ( s, 8, u & 0xffL );
}
/*---------------------------------------------------*/
static
void bsPutUChar ( EState* s, UChar c )
{
bsW( s, 8, (UInt32)c );
}
/*---------------------------------------------------*/
/*--- The back end proper ---*/
/*---------------------------------------------------*/
/*---------------------------------------------------*/
static
void makeMaps_e ( EState* s )
{
Int32 i;
s->nInUse = 0;
for (i = 0; i < 256; i++)
if (s->inUse[i]) {
s->unseqToSeq[i] = s->nInUse;
s->nInUse++;
}
}
/*---------------------------------------------------*/
static
void generateMTFValues ( EState* s )
{
UChar yy[256];
Int32 i, j;
Int32 zPend;
Int32 wr;
Int32 EOB;
/*
After sorting (eg, here),
s->arr1 [ 0 .. s->nblock-1 ] holds sorted order,
and
((UChar*)s->arr2) [ 0 .. s->nblock-1 ]
holds the original block data.
The first thing to do is generate the MTF values,
and put them in
((UInt16*)s->arr1) [ 0 .. s->nblock-1 ].
Because there are strictly fewer or equal MTF values
than block values, ptr values in this area are overwritten
with MTF values only when they are no longer needed.
The final compressed bitstream is generated into the
area starting at
(UChar*) (&((UChar*)s->arr2)[s->nblock])
These storage aliases are set up in bzCompressInit(),
except for the last one, which is arranged in
compressBlock().
*/
UInt32* ptr = s->ptr;
UChar* block = s->block;
UInt16* mtfv = s->mtfv;
makeMaps_e ( s );
EOB = s->nInUse+1;
for (i = 0; i <= EOB; i++) s->mtfFreq[i] = 0;
wr = 0;
zPend = 0;
for (i = 0; i < s->nInUse; i++) yy[i] = (UChar) i;
for (i = 0; i < s->nblock; i++) {
UChar ll_i;
AssertD ( wr <= i, "generateMTFValues(1)" );
j = ptr[i]-1; if (j < 0) j += s->nblock;
ll_i = s->unseqToSeq[block[j]];
AssertD ( ll_i < s->nInUse, "generateMTFValues(2a)" );
if (yy[0] == ll_i) {
zPend++;
} else {
if (zPend > 0) {
zPend--;
while (True) {
if (zPend & 1) {
mtfv[wr] = BZ_RUNB; wr++;
s->mtfFreq[BZ_RUNB]++;
} else {
mtfv[wr] = BZ_RUNA; wr++;
s->mtfFreq[BZ_RUNA]++;
}
if (zPend < 2) break;
zPend = (zPend - 2) / 2;
};
zPend = 0;
}
{
register UChar rtmp;
register UChar* ryy_j;
register UChar rll_i;
rtmp = yy[1];
yy[1] = yy[0];
ryy_j = &(yy[1]);
rll_i = ll_i;
while ( rll_i != rtmp ) {
register UChar rtmp2;
ryy_j++;
rtmp2 = rtmp;
rtmp = *ryy_j;
*ryy_j = rtmp2;
};
yy[0] = rtmp;
j = ryy_j - &(yy[0]);
mtfv[wr] = j+1; wr++; s->mtfFreq[j+1]++;
}
}
}
if (zPend > 0) {
zPend--;
while (True) {
if (zPend & 1) {
mtfv[wr] = BZ_RUNB; wr++;
s->mtfFreq[BZ_RUNB]++;
} else {
mtfv[wr] = BZ_RUNA; wr++;
s->mtfFreq[BZ_RUNA]++;
}
if (zPend < 2) break;
zPend = (zPend - 2) / 2;
};
zPend = 0;
}
mtfv[wr] = EOB; wr++; s->mtfFreq[EOB]++;
s->nMTF = wr;
}
/*---------------------------------------------------*/
#define BZ_LESSER_ICOST 0
#define BZ_GREATER_ICOST 15
static
void sendMTFValues ( EState* s )
{
Int32 v, t, i, j, gs, ge, totc, bt, bc, iter;
Int32 nSelectors, alphaSize, minLen, maxLen, selCtr;
Int32 nGroups, nBytes;
/*--
UChar len [BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE];
is a global since the decoder also needs it.
Int32 code[BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE];
Int32 rfreq[BZ_N_GROUPS][BZ_MAX_ALPHA_SIZE];
are also globals only used in this proc.
Made global to keep stack frame size small.
--*/
UInt16 cost[BZ_N_GROUPS];
Int32 fave[BZ_N_GROUPS];
UInt16* mtfv = s->mtfv;
if (s->verbosity >= 3)
VPrintf3( " %d in block, %d after MTF & 1-2 coding, "
"%d+2 syms in use\n",
s->nblock, s->nMTF, s->nInUse );
alphaSize = s->nInUse+2;
for (t = 0; t < BZ_N_GROUPS; t++)
for (v = 0; v < alphaSize; v++)
s->len[t][v] = BZ_GREATER_ICOST;
/*--- Decide how many coding tables to use ---*/
AssertH ( s->nMTF > 0, 3001 );
if (s->nMTF < 200) nGroups = 2; else
if (s->nMTF < 600) nGroups = 3; else
if (s->nMTF < 1200) nGroups = 4; else
if (s->nMTF < 2400) nGroups = 5; else
nGroups = 6;
/*--- Generate an initial set of coding tables ---*/
{
Int32 nPart, remF, tFreq, aFreq;
nPart = nGroups;
remF = s->nMTF;
gs = 0;
while (nPart > 0) {
tFreq = remF / nPart;
ge = gs-1;
aFreq = 0;
while (aFreq < tFreq && ge < alphaSize-1) {
ge++;
aFreq += s->mtfFreq[ge];
}
if (ge > gs
&& nPart != nGroups && nPart != 1
&& ((nGroups-nPart) % 2 == 1)) {
aFreq -= s->mtfFreq[ge];
ge--;
}
if (s->verbosity >= 3)
VPrintf5( " initial group %d, [%d .. %d], "
"has %d syms (%4.1f%%)\n",
nPart, gs, ge, aFreq,
(100.0 * (float)aFreq) / (float)(s->nMTF) );
for (v = 0; v < alphaSize; v++)
if (v >= gs && v <= ge)
s->len[nPart-1][v] = BZ_LESSER_ICOST; else
s->len[nPart-1][v] = BZ_GREATER_ICOST;
nPart--;
gs = ge+1;
remF -= aFreq;
}
}
/*---
Iterate up to BZ_N_ITERS times to improve the tables.
---*/
for (iter = 0; iter < BZ_N_ITERS; iter++) {
for (t = 0; t < nGroups; t++) fave[t] = 0;
for (t = 0; t < nGroups; t++)
for (v = 0; v < alphaSize; v++)
s->rfreq[t][v] = 0;
/*---
Set up an auxiliary length table which is used to fast-track
the common case (nGroups == 6).
---*/
if (nGroups == 6) {
for (v = 0; v < alphaSize; v++) {
s->len_pack[v][0] = (s->len[1][v] << 16) | s->len[0][v];
s->len_pack[v][1] = (s->len[3][v] << 16) | s->len[2][v];
s->len_pack[v][2] = (s->len[5][v] << 16) | s->len[4][v];
}
}
nSelectors = 0;
totc = 0;
gs = 0;
while (True) {
/*--- Set group start & end marks. --*/
if (gs >= s->nMTF) break;
ge = gs + BZ_G_SIZE - 1;
if (ge >= s->nMTF) ge = s->nMTF-1;
/*--
Calculate the cost of this group as coded
by each of the coding tables.
--*/
for (t = 0; t < nGroups; t++) cost[t] = 0;
if (nGroups == 6 && 50 == ge-gs+1) {
/*--- fast track the common case ---*/
register UInt32 cost01, cost23, cost45;
register UInt16 icv;
cost01 = cost23 = cost45 = 0;
# define BZ_ITER(nn) \
icv = mtfv[gs+(nn)]; \
cost01 += s->len_pack[icv][0]; \
cost23 += s->len_pack[icv][1]; \
cost45 += s->len_pack[icv][2]; \
BZ_ITER(0); BZ_ITER(1); BZ_ITER(2); BZ_ITER(3); BZ_ITER(4);
BZ_ITER(5); BZ_ITER(6); BZ_ITER(7); BZ_ITER(8); BZ_ITER(9);
BZ_ITER(10); BZ_ITER(11); BZ_ITER(12); BZ_ITER(13); BZ_ITER(14);
BZ_ITER(15); BZ_ITER(16); BZ_ITER(17); BZ_ITER(18); BZ_ITER(19);
BZ_ITER(20); BZ_ITER(21); BZ_ITER(22); BZ_ITER(23); BZ_ITER(24);
BZ_ITER(25); BZ_ITER(26); BZ_ITER(27); BZ_ITER(28); BZ_ITER(29);
BZ_ITER(30); BZ_ITER(31); BZ_ITER(32); BZ_ITER(33); BZ_ITER(34);
BZ_ITER(35); BZ_ITER(36); BZ_ITER(37); BZ_ITER(38); BZ_ITER(39);
BZ_ITER(40); BZ_ITER(41); BZ_ITER(42); BZ_ITER(43); BZ_ITER(44);
BZ_ITER(45); BZ_ITER(46); BZ_ITER(47); BZ_ITER(48); BZ_ITER(49);
# undef BZ_ITER
cost[0] = cost01 & 0xffff; cost[1] = cost01 >> 16;
cost[2] = cost23 & 0xffff; cost[3] = cost23 >> 16;
cost[4] = cost45 & 0xffff; cost[5] = cost45 >> 16;
} else {
/*--- slow version which correctly handles all situations ---*/
for (i = gs; i <= ge; i++) {
UInt16 icv = mtfv[i];
for (t = 0; t < nGroups; t++) cost[t] += s->len[t][icv];
}
}
/*--
Find the coding table which is best for this group,
and record its identity in the selector table.
--*/
bc = 999999999; bt = -1;
for (t = 0; t < nGroups; t++)
if (cost[t] < bc) { bc = cost[t]; bt = t; };
totc += bc;
fave[bt]++;
s->selector[nSelectors] = bt;
nSelectors++;
/*--
Increment the symbol frequencies for the selected table.
--*/
if (nGroups == 6 && 50 == ge-gs+1) {
/*--- fast track the common case ---*/
# define BZ_ITUR(nn) s->rfreq[bt][ mtfv[gs+(nn)] ]++
BZ_ITUR(0); BZ_ITUR(1); BZ_ITUR(2); BZ_ITUR(3); BZ_ITUR(4);
BZ_ITUR(5); BZ_ITUR(6); BZ_ITUR(7); BZ_ITUR(8); BZ_ITUR(9);
BZ_ITUR(10); BZ_ITUR(11); BZ_ITUR(12); BZ_ITUR(13); BZ_ITUR(14);
BZ_ITUR(15); BZ_ITUR(16); BZ_ITUR(17); BZ_ITUR(18); BZ_ITUR(19);
BZ_ITUR(20); BZ_ITUR(21); BZ_ITUR(22); BZ_ITUR(23); BZ_ITUR(24);
BZ_ITUR(25); BZ_ITUR(26); BZ_ITUR(27); BZ_ITUR(28); BZ_ITUR(29);
BZ_ITUR(30); BZ_ITUR(31); BZ_ITUR(32); BZ_ITUR(33); BZ_ITUR(34);
BZ_ITUR(35); BZ_ITUR(36); BZ_ITUR(37); BZ_ITUR(38); BZ_ITUR(39);
BZ_ITUR(40); BZ_ITUR(41); BZ_ITUR(42); BZ_ITUR(43); BZ_ITUR(44);
BZ_ITUR(45); BZ_ITUR(46); BZ_ITUR(47); BZ_ITUR(48); BZ_ITUR(49);
# undef BZ_ITUR
} else {
/*--- slow version which correctly handles all situations ---*/
for (i = gs; i <= ge; i++)
s->rfreq[bt][ mtfv[i] ]++;
}
gs = ge+1;
}
if (s->verbosity >= 3) {
VPrintf2 ( " pass %d: size is %d, grp uses are ",
iter+1, totc/8 );
for (t = 0; t < nGroups; t++)
VPrintf1 ( "%d ", fave[t] );
VPrintf0 ( "\n" );
}
/*--
Recompute the tables based on the accumulated frequencies.
--*/
/* maxLen was changed from 20 to 17 in bzip2-1.0.3. See
comment in huffman.c for details. */
for (t = 0; t < nGroups; t++)
BZ2_hbMakeCodeLengths ( &(s->len[t][0]), &(s->rfreq[t][0]),
alphaSize, 17 /*20*/ );
}
AssertH( nGroups < 8, 3002 );
AssertH( nSelectors < 32768 &&
nSelectors <= (2 + (900000 / BZ_G_SIZE)),
3003 );
/*--- Compute MTF values for the selectors. ---*/
{
UChar pos[BZ_N_GROUPS], ll_i, tmp2, tmp;
for (i = 0; i < nGroups; i++) pos[i] = i;
for (i = 0; i < nSelectors; i++) {
ll_i = s->selector[i];
j = 0;
tmp = pos[j];
while ( ll_i != tmp ) {
j++;
tmp2 = tmp;
tmp = pos[j];
pos[j] = tmp2;
};
pos[0] = tmp;
s->selectorMtf[i] = j;
}
};
/*--- Assign actual codes for the tables. --*/
for (t = 0; t < nGroups; t++) {
minLen = 32;
maxLen = 0;
for (i = 0; i < alphaSize; i++) {
if (s->len[t][i] > maxLen) maxLen = s->len[t][i];
if (s->len[t][i] < minLen) minLen = s->len[t][i];
}
AssertH ( !(maxLen > 17 /*20*/ ), 3004 );
AssertH ( !(minLen < 1), 3005 );
BZ2_hbAssignCodes ( &(s->code[t][0]), &(s->len[t][0]),
minLen, maxLen, alphaSize );
}
/*--- Transmit the mapping table. ---*/
{
Bool inUse16[16];
for (i = 0; i < 16; i++) {
inUse16[i] = False;
for (j = 0; j < 16; j++)
if (s->inUse[i * 16 + j]) inUse16[i] = True;
}
nBytes = s->numZ;
for (i = 0; i < 16; i++)
if (inUse16[i]) bsW(s,1,1); else bsW(s,1,0);
for (i = 0; i < 16; i++)
if (inUse16[i])
for (j = 0; j < 16; j++) {
if (s->inUse[i * 16 + j]) bsW(s,1,1); else bsW(s,1,0);
}
if (s->verbosity >= 3)
VPrintf1( " bytes: mapping %d, ", s->numZ-nBytes );
}
/*--- Now the selectors. ---*/
nBytes = s->numZ;
bsW ( s, 3, nGroups );
bsW ( s, 15, nSelectors );
for (i = 0; i < nSelectors; i++) {
for (j = 0; j < s->selectorMtf[i]; j++) bsW(s,1,1);
bsW(s,1,0);
}
if (s->verbosity >= 3)
VPrintf1( "selectors %d, ", s->numZ-nBytes );
/*--- Now the coding tables. ---*/
nBytes = s->numZ;
for (t = 0; t < nGroups; t++) {
Int32 curr = s->len[t][0];
bsW ( s, 5, curr );
for (i = 0; i < alphaSize; i++) {
while (curr < s->len[t][i]) { bsW(s,2,2); curr++; /* 10 */ };
while (curr > s->len[t][i]) { bsW(s,2,3); curr--; /* 11 */ };
bsW ( s, 1, 0 );
}
}
if (s->verbosity >= 3)
VPrintf1 ( "code lengths %d, ", s->numZ-nBytes );
/*--- And finally, the block data proper ---*/
nBytes = s->numZ;
selCtr = 0;
gs = 0;
while (True) {
if (gs >= s->nMTF) break;
ge = gs + BZ_G_SIZE - 1;
if (ge >= s->nMTF) ge = s->nMTF-1;
AssertH ( s->selector[selCtr] < nGroups, 3006 );
if (nGroups == 6 && 50 == ge-gs+1) {
/*--- fast track the common case ---*/
UInt16 mtfv_i;
UChar* s_len_sel_selCtr
= &(s->len[s->selector[selCtr]][0]);
Int32* s_code_sel_selCtr
= &(s->code[s->selector[selCtr]][0]);
# define BZ_ITAH(nn) \
mtfv_i = mtfv[gs+(nn)]; \
bsW ( s, \
s_len_sel_selCtr[mtfv_i], \
s_code_sel_selCtr[mtfv_i] )
BZ_ITAH(0); BZ_ITAH(1); BZ_ITAH(2); BZ_ITAH(3); BZ_ITAH(4);
BZ_ITAH(5); BZ_ITAH(6); BZ_ITAH(7); BZ_ITAH(8); BZ_ITAH(9);
BZ_ITAH(10); BZ_ITAH(11); BZ_ITAH(12); BZ_ITAH(13); BZ_ITAH(14);
BZ_ITAH(15); BZ_ITAH(16); BZ_ITAH(17); BZ_ITAH(18); BZ_ITAH(19);
BZ_ITAH(20); BZ_ITAH(21); BZ_ITAH(22); BZ_ITAH(23); BZ_ITAH(24);
BZ_ITAH(25); BZ_ITAH(26); BZ_ITAH(27); BZ_ITAH(28); BZ_ITAH(29);
BZ_ITAH(30); BZ_ITAH(31); BZ_ITAH(32); BZ_ITAH(33); BZ_ITAH(34);
BZ_ITAH(35); BZ_ITAH(36); BZ_ITAH(37); BZ_ITAH(38); BZ_ITAH(39);
BZ_ITAH(40); BZ_ITAH(41); BZ_ITAH(42); BZ_ITAH(43); BZ_ITAH(44);
BZ_ITAH(45); BZ_ITAH(46); BZ_ITAH(47); BZ_ITAH(48); BZ_ITAH(49);
# undef BZ_ITAH
} else {
/*--- slow version which correctly handles all situations ---*/
for (i = gs; i <= ge; i++) {
bsW ( s,
s->len [s->selector[selCtr]] [mtfv[i]],
s->code [s->selector[selCtr]] [mtfv[i]] );
}
}
gs = ge+1;
selCtr++;
}
AssertH( selCtr == nSelectors, 3007 );
if (s->verbosity >= 3)
VPrintf1( "codes %d\n", s->numZ-nBytes );
}
/*---------------------------------------------------*/
void BZ2_compressBlock ( EState* s, Bool is_last_block )
{
if (s->nblock > 0) {
BZ_FINALISE_CRC ( s->blockCRC );
s->combinedCRC = (s->combinedCRC << 1) | (s->combinedCRC >> 31);
s->combinedCRC ^= s->blockCRC;
if (s->blockNo > 1) s->numZ = 0;
if (s->verbosity >= 2)
VPrintf4( " block %d: crc = 0x%08x, "
"combined CRC = 0x%08x, size = %d\n",
s->blockNo, s->blockCRC, s->combinedCRC, s->nblock );
BZ2_blockSort ( s );
}
s->zbits = (UChar*) (&((UChar*)s->arr2)[s->nblock]);
/*-- If this is the first block, create the stream header. --*/
if (s->blockNo == 1) {
BZ2_bsInitWrite ( s );
bsPutUChar ( s, BZ_HDR_B );
bsPutUChar ( s, BZ_HDR_Z );
bsPutUChar ( s, BZ_HDR_h );
bsPutUChar ( s, (UChar)(BZ_HDR_0 + s->blockSize100k) );
}
if (s->nblock > 0) {
bsPutUChar ( s, 0x31 ); bsPutUChar ( s, 0x41 );
bsPutUChar ( s, 0x59 ); bsPutUChar ( s, 0x26 );
bsPutUChar ( s, 0x53 ); bsPutUChar ( s, 0x59 );
/*-- Now the block's CRC, so it is in a known place. --*/
bsPutUInt32 ( s, s->blockCRC );
/*--
Now a single bit indicating (non-)randomisation.
As of version 0.9.5, we use a better sorting algorithm
which makes randomisation unnecessary. So always set
the randomised bit to 'no'. Of course, the decoder
still needs to be able to handle randomised blocks
so as to maintain backwards compatibility with
older versions of bzip2.
--*/
bsW(s,1,0);
bsW ( s, 24, s->origPtr );
generateMTFValues ( s );
sendMTFValues ( s );
}
/*-- If this is the last block, add the stream trailer. --*/
if (is_last_block) {
bsPutUChar ( s, 0x17 ); bsPutUChar ( s, 0x72 );
bsPutUChar ( s, 0x45 ); bsPutUChar ( s, 0x38 );
bsPutUChar ( s, 0x50 ); bsPutUChar ( s, 0x90 );
bsPutUInt32 ( s, s->combinedCRC );
if (s->verbosity >= 2)
VPrintf1( " final combined CRC = 0x%08x\n ", s->combinedCRC );
bsFinishWrite ( s );
}
}
/*-------------------------------------------------------------*/
/*--- end compress.c ---*/
/*-------------------------------------------------------------*/

View file

@ -0,0 +1,104 @@
/*-------------------------------------------------------------*/
/*--- Table for doing CRCs ---*/
/*--- crctable.c ---*/
/*-------------------------------------------------------------*/
/* ------------------------------------------------------------------
This file is part of bzip2/libbzip2, a program and library for
lossless, block-sorting data compression.
bzip2/libbzip2 version 1.0.5 of 10 December 2007
Copyright (C) 1996-2007 Julian Seward <jseward@bzip.org>
Please read the WARNING, DISCLAIMER and PATENTS sections in the
README file.
This program is released under the terms of the license contained
in the file LICENSE.
------------------------------------------------------------------ */
#include "bzlib_private.h"
/*--
I think this is an implementation of the AUTODIN-II,
Ethernet & FDDI 32-bit CRC standard. Vaguely derived
from code by Rob Warnock, in Section 51 of the
comp.compression FAQ.
--*/
UInt32 BZ2_crc32Table[256] = {
/*-- Ugly, innit? --*/
0x00000000L, 0x04c11db7L, 0x09823b6eL, 0x0d4326d9L,
0x130476dcL, 0x17c56b6bL, 0x1a864db2L, 0x1e475005L,
0x2608edb8L, 0x22c9f00fL, 0x2f8ad6d6L, 0x2b4bcb61L,
0x350c9b64L, 0x31cd86d3L, 0x3c8ea00aL, 0x384fbdbdL,
0x4c11db70L, 0x48d0c6c7L, 0x4593e01eL, 0x4152fda9L,
0x5f15adacL, 0x5bd4b01bL, 0x569796c2L, 0x52568b75L,
0x6a1936c8L, 0x6ed82b7fL, 0x639b0da6L, 0x675a1011L,
0x791d4014L, 0x7ddc5da3L, 0x709f7b7aL, 0x745e66cdL,
0x9823b6e0L, 0x9ce2ab57L, 0x91a18d8eL, 0x95609039L,
0x8b27c03cL, 0x8fe6dd8bL, 0x82a5fb52L, 0x8664e6e5L,
0xbe2b5b58L, 0xbaea46efL, 0xb7a96036L, 0xb3687d81L,
0xad2f2d84L, 0xa9ee3033L, 0xa4ad16eaL, 0xa06c0b5dL,
0xd4326d90L, 0xd0f37027L, 0xddb056feL, 0xd9714b49L,
0xc7361b4cL, 0xc3f706fbL, 0xceb42022L, 0xca753d95L,
0xf23a8028L, 0xf6fb9d9fL, 0xfbb8bb46L, 0xff79a6f1L,
0xe13ef6f4L, 0xe5ffeb43L, 0xe8bccd9aL, 0xec7dd02dL,
0x34867077L, 0x30476dc0L, 0x3d044b19L, 0x39c556aeL,
0x278206abL, 0x23431b1cL, 0x2e003dc5L, 0x2ac12072L,
0x128e9dcfL, 0x164f8078L, 0x1b0ca6a1L, 0x1fcdbb16L,
0x018aeb13L, 0x054bf6a4L, 0x0808d07dL, 0x0cc9cdcaL,
0x7897ab07L, 0x7c56b6b0L, 0x71159069L, 0x75d48ddeL,
0x6b93dddbL, 0x6f52c06cL, 0x6211e6b5L, 0x66d0fb02L,
0x5e9f46bfL, 0x5a5e5b08L, 0x571d7dd1L, 0x53dc6066L,
0x4d9b3063L, 0x495a2dd4L, 0x44190b0dL, 0x40d816baL,
0xaca5c697L, 0xa864db20L, 0xa527fdf9L, 0xa1e6e04eL,
0xbfa1b04bL, 0xbb60adfcL, 0xb6238b25L, 0xb2e29692L,
0x8aad2b2fL, 0x8e6c3698L, 0x832f1041L, 0x87ee0df6L,
0x99a95df3L, 0x9d684044L, 0x902b669dL, 0x94ea7b2aL,
0xe0b41de7L, 0xe4750050L, 0xe9362689L, 0xedf73b3eL,
0xf3b06b3bL, 0xf771768cL, 0xfa325055L, 0xfef34de2L,
0xc6bcf05fL, 0xc27dede8L, 0xcf3ecb31L, 0xcbffd686L,
0xd5b88683L, 0xd1799b34L, 0xdc3abdedL, 0xd8fba05aL,
0x690ce0eeL, 0x6dcdfd59L, 0x608edb80L, 0x644fc637L,
0x7a089632L, 0x7ec98b85L, 0x738aad5cL, 0x774bb0ebL,
0x4f040d56L, 0x4bc510e1L, 0x46863638L, 0x42472b8fL,
0x5c007b8aL, 0x58c1663dL, 0x558240e4L, 0x51435d53L,
0x251d3b9eL, 0x21dc2629L, 0x2c9f00f0L, 0x285e1d47L,
0x36194d42L, 0x32d850f5L, 0x3f9b762cL, 0x3b5a6b9bL,
0x0315d626L, 0x07d4cb91L, 0x0a97ed48L, 0x0e56f0ffL,
0x1011a0faL, 0x14d0bd4dL, 0x19939b94L, 0x1d528623L,
0xf12f560eL, 0xf5ee4bb9L, 0xf8ad6d60L, 0xfc6c70d7L,
0xe22b20d2L, 0xe6ea3d65L, 0xeba91bbcL, 0xef68060bL,
0xd727bbb6L, 0xd3e6a601L, 0xdea580d8L, 0xda649d6fL,
0xc423cd6aL, 0xc0e2d0ddL, 0xcda1f604L, 0xc960ebb3L,
0xbd3e8d7eL, 0xb9ff90c9L, 0xb4bcb610L, 0xb07daba7L,
0xae3afba2L, 0xaafbe615L, 0xa7b8c0ccL, 0xa379dd7bL,
0x9b3660c6L, 0x9ff77d71L, 0x92b45ba8L, 0x9675461fL,
0x8832161aL, 0x8cf30badL, 0x81b02d74L, 0x857130c3L,
0x5d8a9099L, 0x594b8d2eL, 0x5408abf7L, 0x50c9b640L,
0x4e8ee645L, 0x4a4ffbf2L, 0x470cdd2bL, 0x43cdc09cL,
0x7b827d21L, 0x7f436096L, 0x7200464fL, 0x76c15bf8L,
0x68860bfdL, 0x6c47164aL, 0x61043093L, 0x65c52d24L,
0x119b4be9L, 0x155a565eL, 0x18197087L, 0x1cd86d30L,
0x029f3d35L, 0x065e2082L, 0x0b1d065bL, 0x0fdc1becL,
0x3793a651L, 0x3352bbe6L, 0x3e119d3fL, 0x3ad08088L,
0x2497d08dL, 0x2056cd3aL, 0x2d15ebe3L, 0x29d4f654L,
0xc5a92679L, 0xc1683bceL, 0xcc2b1d17L, 0xc8ea00a0L,
0xd6ad50a5L, 0xd26c4d12L, 0xdf2f6bcbL, 0xdbee767cL,
0xe3a1cbc1L, 0xe760d676L, 0xea23f0afL, 0xeee2ed18L,
0xf0a5bd1dL, 0xf464a0aaL, 0xf9278673L, 0xfde69bc4L,
0x89b8fd09L, 0x8d79e0beL, 0x803ac667L, 0x84fbdbd0L,
0x9abc8bd5L, 0x9e7d9662L, 0x933eb0bbL, 0x97ffad0cL,
0xafb010b1L, 0xab710d06L, 0xa6322bdfL, 0xa2f33668L,
0xbcb4666dL, 0xb8757bdaL, 0xb5365d03L, 0xb1f740b4L
};
/*-------------------------------------------------------------*/
/*--- end crctable.c ---*/
/*-------------------------------------------------------------*/

View file

@ -0,0 +1,626 @@
/*-------------------------------------------------------------*/
/*--- Decompression machinery ---*/
/*--- decompress.c ---*/
/*-------------------------------------------------------------*/
/* ------------------------------------------------------------------
This file is part of bzip2/libbzip2, a program and library for
lossless, block-sorting data compression.
bzip2/libbzip2 version 1.0.5 of 10 December 2007
Copyright (C) 1996-2007 Julian Seward <jseward@bzip.org>
Please read the WARNING, DISCLAIMER and PATENTS sections in the
README file.
This program is released under the terms of the license contained
in the file LICENSE.
------------------------------------------------------------------ */
#include "bzlib_private.h"
/*---------------------------------------------------*/
static
void makeMaps_d ( DState* s )
{
Int32 i;
s->nInUse = 0;
for (i = 0; i < 256; i++)
if (s->inUse[i]) {
s->seqToUnseq[s->nInUse] = i;
s->nInUse++;
}
}
/*---------------------------------------------------*/
#define RETURN(rrr) \
{ retVal = rrr; goto save_state_and_return; };
#define GET_BITS(lll,vvv,nnn) \
case lll: s->state = lll; \
while (True) { \
if (s->bsLive >= nnn) { \
UInt32 v; \
v = (s->bsBuff >> \
(s->bsLive-nnn)) & ((1 << nnn)-1); \
s->bsLive -= nnn; \
vvv = v; \
break; \
} \
if (s->strm->avail_in == 0) RETURN(BZ_OK); \
s->bsBuff \
= (s->bsBuff << 8) | \
((UInt32) \
(*((UChar*)(s->strm->next_in)))); \
s->bsLive += 8; \
s->strm->next_in++; \
s->strm->avail_in--; \
s->strm->total_in_lo32++; \
if (s->strm->total_in_lo32 == 0) \
s->strm->total_in_hi32++; \
}
#define GET_UCHAR(lll,uuu) \
GET_BITS(lll,uuu,8)
#define GET_BIT(lll,uuu) \
GET_BITS(lll,uuu,1)
/*---------------------------------------------------*/
#define GET_MTF_VAL(label1,label2,lval) \
{ \
if (groupPos == 0) { \
groupNo++; \
if (groupNo >= nSelectors) \
RETURN(BZ_DATA_ERROR); \
groupPos = BZ_G_SIZE; \
gSel = s->selector[groupNo]; \
gMinlen = s->minLens[gSel]; \
gLimit = &(s->limit[gSel][0]); \
gPerm = &(s->perm[gSel][0]); \
gBase = &(s->base[gSel][0]); \
} \
groupPos--; \
zn = gMinlen; \
GET_BITS(label1, zvec, zn); \
while (1) { \
if (zn > 20 /* the longest code */) \
RETURN(BZ_DATA_ERROR); \
if (zvec <= gLimit[zn]) break; \
zn++; \
GET_BIT(label2, zj); \
zvec = (zvec << 1) | zj; \
}; \
if (zvec - gBase[zn] < 0 \
|| zvec - gBase[zn] >= BZ_MAX_ALPHA_SIZE) \
RETURN(BZ_DATA_ERROR); \
lval = gPerm[zvec - gBase[zn]]; \
}
/*---------------------------------------------------*/
Int32 BZ2_decompress ( DState* s )
{
UChar uc;
Int32 retVal;
Int32 minLen, maxLen;
bz_stream* strm = s->strm;
/* stuff that needs to be saved/restored */
Int32 i;
Int32 j;
Int32 t;
Int32 alphaSize;
Int32 nGroups;
Int32 nSelectors;
Int32 EOB;
Int32 groupNo;
Int32 groupPos;
Int32 nextSym;
Int32 nblockMAX;
Int32 nblock;
Int32 es;
Int32 N;
Int32 curr;
Int32 zt;
Int32 zn;
Int32 zvec;
Int32 zj;
Int32 gSel;
Int32 gMinlen;
Int32* gLimit;
Int32* gBase;
Int32* gPerm;
if (s->state == BZ_X_MAGIC_1) {
/*initialise the save area*/
s->save_i = 0;
s->save_j = 0;
s->save_t = 0;
s->save_alphaSize = 0;
s->save_nGroups = 0;
s->save_nSelectors = 0;
s->save_EOB = 0;
s->save_groupNo = 0;
s->save_groupPos = 0;
s->save_nextSym = 0;
s->save_nblockMAX = 0;
s->save_nblock = 0;
s->save_es = 0;
s->save_N = 0;
s->save_curr = 0;
s->save_zt = 0;
s->save_zn = 0;
s->save_zvec = 0;
s->save_zj = 0;
s->save_gSel = 0;
s->save_gMinlen = 0;
s->save_gLimit = NULL;
s->save_gBase = NULL;
s->save_gPerm = NULL;
}
/*restore from the save area*/
i = s->save_i;
j = s->save_j;
t = s->save_t;
alphaSize = s->save_alphaSize;
nGroups = s->save_nGroups;
nSelectors = s->save_nSelectors;
EOB = s->save_EOB;
groupNo = s->save_groupNo;
groupPos = s->save_groupPos;
nextSym = s->save_nextSym;
nblockMAX = s->save_nblockMAX;
nblock = s->save_nblock;
es = s->save_es;
N = s->save_N;
curr = s->save_curr;
zt = s->save_zt;
zn = s->save_zn;
zvec = s->save_zvec;
zj = s->save_zj;
gSel = s->save_gSel;
gMinlen = s->save_gMinlen;
gLimit = s->save_gLimit;
gBase = s->save_gBase;
gPerm = s->save_gPerm;
retVal = BZ_OK;
switch (s->state) {
GET_UCHAR(BZ_X_MAGIC_1, uc);
if (uc != BZ_HDR_B) RETURN(BZ_DATA_ERROR_MAGIC);
GET_UCHAR(BZ_X_MAGIC_2, uc);
if (uc != BZ_HDR_Z) RETURN(BZ_DATA_ERROR_MAGIC);
GET_UCHAR(BZ_X_MAGIC_3, uc)
if (uc != BZ_HDR_h) RETURN(BZ_DATA_ERROR_MAGIC);
GET_BITS(BZ_X_MAGIC_4, s->blockSize100k, 8)
if (s->blockSize100k < (BZ_HDR_0 + 1) ||
s->blockSize100k > (BZ_HDR_0 + 9)) RETURN(BZ_DATA_ERROR_MAGIC);
s->blockSize100k -= BZ_HDR_0;
if (s->smallDecompress) {
s->ll16 = BZALLOC( s->blockSize100k * 100000 * sizeof(UInt16) );
s->ll4 = BZALLOC(
((1 + s->blockSize100k * 100000) >> 1) * sizeof(UChar)
);
if (s->ll16 == NULL || s->ll4 == NULL) RETURN(BZ_MEM_ERROR);
} else {
s->tt = BZALLOC( s->blockSize100k * 100000 * sizeof(Int32) );
if (s->tt == NULL) RETURN(BZ_MEM_ERROR);
}
GET_UCHAR(BZ_X_BLKHDR_1, uc);
if (uc == 0x17) goto endhdr_2;
if (uc != 0x31) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_BLKHDR_2, uc);
if (uc != 0x41) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_BLKHDR_3, uc);
if (uc != 0x59) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_BLKHDR_4, uc);
if (uc != 0x26) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_BLKHDR_5, uc);
if (uc != 0x53) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_BLKHDR_6, uc);
if (uc != 0x59) RETURN(BZ_DATA_ERROR);
s->currBlockNo++;
if (s->verbosity >= 2)
VPrintf1 ( "\n [%d: huff+mtf ", s->currBlockNo );
s->storedBlockCRC = 0;
GET_UCHAR(BZ_X_BCRC_1, uc);
s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc);
GET_UCHAR(BZ_X_BCRC_2, uc);
s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc);
GET_UCHAR(BZ_X_BCRC_3, uc);
s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc);
GET_UCHAR(BZ_X_BCRC_4, uc);
s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc);
GET_BITS(BZ_X_RANDBIT, s->blockRandomised, 1);
s->origPtr = 0;
GET_UCHAR(BZ_X_ORIGPTR_1, uc);
s->origPtr = (s->origPtr << 8) | ((Int32)uc);
GET_UCHAR(BZ_X_ORIGPTR_2, uc);
s->origPtr = (s->origPtr << 8) | ((Int32)uc);
GET_UCHAR(BZ_X_ORIGPTR_3, uc);
s->origPtr = (s->origPtr << 8) | ((Int32)uc);
if (s->origPtr < 0)
RETURN(BZ_DATA_ERROR);
if (s->origPtr > 10 + 100000*s->blockSize100k)
RETURN(BZ_DATA_ERROR);
/*--- Receive the mapping table ---*/
for (i = 0; i < 16; i++) {
GET_BIT(BZ_X_MAPPING_1, uc);
if (uc == 1)
s->inUse16[i] = True; else
s->inUse16[i] = False;
}
for (i = 0; i < 256; i++) s->inUse[i] = False;
for (i = 0; i < 16; i++)
if (s->inUse16[i])
for (j = 0; j < 16; j++) {
GET_BIT(BZ_X_MAPPING_2, uc);
if (uc == 1) s->inUse[i * 16 + j] = True;
}
makeMaps_d ( s );
if (s->nInUse == 0) RETURN(BZ_DATA_ERROR);
alphaSize = s->nInUse+2;
/*--- Now the selectors ---*/
GET_BITS(BZ_X_SELECTOR_1, nGroups, 3);
if (nGroups < 2 || nGroups > 6) RETURN(BZ_DATA_ERROR);
GET_BITS(BZ_X_SELECTOR_2, nSelectors, 15);
if (nSelectors < 1) RETURN(BZ_DATA_ERROR);
for (i = 0; i < nSelectors; i++) {
j = 0;
while (True) {
GET_BIT(BZ_X_SELECTOR_3, uc);
if (uc == 0) break;
j++;
if (j >= nGroups) RETURN(BZ_DATA_ERROR);
}
s->selectorMtf[i] = j;
}
/*--- Undo the MTF values for the selectors. ---*/
{
UChar pos[BZ_N_GROUPS], tmp, v;
for (v = 0; v < nGroups; v++) pos[v] = v;
for (i = 0; i < nSelectors; i++) {
v = s->selectorMtf[i];
tmp = pos[v];
while (v > 0) { pos[v] = pos[v-1]; v--; }
pos[0] = tmp;
s->selector[i] = tmp;
}
}
/*--- Now the coding tables ---*/
for (t = 0; t < nGroups; t++) {
GET_BITS(BZ_X_CODING_1, curr, 5);
for (i = 0; i < alphaSize; i++) {
while (True) {
if (curr < 1 || curr > 20) RETURN(BZ_DATA_ERROR);
GET_BIT(BZ_X_CODING_2, uc);
if (uc == 0) break;
GET_BIT(BZ_X_CODING_3, uc);
if (uc == 0) curr++; else curr--;
}
s->len[t][i] = curr;
}
}
/*--- Create the Huffman decoding tables ---*/
for (t = 0; t < nGroups; t++) {
minLen = 32;
maxLen = 0;
for (i = 0; i < alphaSize; i++) {
if (s->len[t][i] > maxLen) maxLen = s->len[t][i];
if (s->len[t][i] < minLen) minLen = s->len[t][i];
}
BZ2_hbCreateDecodeTables (
&(s->limit[t][0]),
&(s->base[t][0]),
&(s->perm[t][0]),
&(s->len[t][0]),
minLen, maxLen, alphaSize
);
s->minLens[t] = minLen;
}
/*--- Now the MTF values ---*/
EOB = s->nInUse+1;
nblockMAX = 100000 * s->blockSize100k;
groupNo = -1;
groupPos = 0;
for (i = 0; i <= 255; i++) s->unzftab[i] = 0;
/*-- MTF init --*/
{
Int32 ii, jj, kk;
kk = MTFA_SIZE-1;
for (ii = 256 / MTFL_SIZE - 1; ii >= 0; ii--) {
for (jj = MTFL_SIZE-1; jj >= 0; jj--) {
s->mtfa[kk] = (UChar)(ii * MTFL_SIZE + jj);
kk--;
}
s->mtfbase[ii] = kk + 1;
}
}
/*-- end MTF init --*/
nblock = 0;
GET_MTF_VAL(BZ_X_MTF_1, BZ_X_MTF_2, nextSym);
while (True) {
if (nextSym == EOB) break;
if (nextSym == BZ_RUNA || nextSym == BZ_RUNB) {
es = -1;
N = 1;
do {
if (nextSym == BZ_RUNA) es = es + (0+1) * N; else
if (nextSym == BZ_RUNB) es = es + (1+1) * N;
N = N * 2;
GET_MTF_VAL(BZ_X_MTF_3, BZ_X_MTF_4, nextSym);
}
while (nextSym == BZ_RUNA || nextSym == BZ_RUNB);
es++;
uc = s->seqToUnseq[ s->mtfa[s->mtfbase[0]] ];
s->unzftab[uc] += es;
if (s->smallDecompress)
while (es > 0) {
if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR);
s->ll16[nblock] = (UInt16)uc;
nblock++;
es--;
}
else
while (es > 0) {
if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR);
s->tt[nblock] = (UInt32)uc;
nblock++;
es--;
};
continue;
} else {
if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR);
/*-- uc = MTF ( nextSym-1 ) --*/
{
Int32 ii, jj, kk, pp, lno, off;
UInt32 nn;
nn = (UInt32)(nextSym - 1);
if (nn < MTFL_SIZE) {
/* avoid general-case expense */
pp = s->mtfbase[0];
uc = s->mtfa[pp+nn];
while (nn > 3) {
Int32 z = pp+nn;
s->mtfa[(z) ] = s->mtfa[(z)-1];
s->mtfa[(z)-1] = s->mtfa[(z)-2];
s->mtfa[(z)-2] = s->mtfa[(z)-3];
s->mtfa[(z)-3] = s->mtfa[(z)-4];
nn -= 4;
}
while (nn > 0) {
s->mtfa[(pp+nn)] = s->mtfa[(pp+nn)-1]; nn--;
};
s->mtfa[pp] = uc;
} else {
/* general case */
lno = nn / MTFL_SIZE;
off = nn % MTFL_SIZE;
pp = s->mtfbase[lno] + off;
uc = s->mtfa[pp];
while (pp > s->mtfbase[lno]) {
s->mtfa[pp] = s->mtfa[pp-1]; pp--;
};
s->mtfbase[lno]++;
while (lno > 0) {
s->mtfbase[lno]--;
s->mtfa[s->mtfbase[lno]]
= s->mtfa[s->mtfbase[lno-1] + MTFL_SIZE - 1];
lno--;
}
s->mtfbase[0]--;
s->mtfa[s->mtfbase[0]] = uc;
if (s->mtfbase[0] == 0) {
kk = MTFA_SIZE-1;
for (ii = 256 / MTFL_SIZE-1; ii >= 0; ii--) {
for (jj = MTFL_SIZE-1; jj >= 0; jj--) {
s->mtfa[kk] = s->mtfa[s->mtfbase[ii] + jj];
kk--;
}
s->mtfbase[ii] = kk + 1;
}
}
}
}
/*-- end uc = MTF ( nextSym-1 ) --*/
s->unzftab[s->seqToUnseq[uc]]++;
if (s->smallDecompress)
s->ll16[nblock] = (UInt16)(s->seqToUnseq[uc]); else
s->tt[nblock] = (UInt32)(s->seqToUnseq[uc]);
nblock++;
GET_MTF_VAL(BZ_X_MTF_5, BZ_X_MTF_6, nextSym);
continue;
}
}
/* Now we know what nblock is, we can do a better sanity
check on s->origPtr.
*/
if (s->origPtr < 0 || s->origPtr >= nblock)
RETURN(BZ_DATA_ERROR);
/*-- Set up cftab to facilitate generation of T^(-1) --*/
s->cftab[0] = 0;
for (i = 1; i <= 256; i++) s->cftab[i] = s->unzftab[i-1];
for (i = 1; i <= 256; i++) s->cftab[i] += s->cftab[i-1];
for (i = 0; i <= 256; i++) {
if (s->cftab[i] < 0 || s->cftab[i] > nblock) {
/* s->cftab[i] can legitimately be == nblock */
RETURN(BZ_DATA_ERROR);
}
}
s->state_out_len = 0;
s->state_out_ch = 0;
BZ_INITIALISE_CRC ( s->calculatedBlockCRC );
s->state = BZ_X_OUTPUT;
if (s->verbosity >= 2) VPrintf0 ( "rt+rld" );
if (s->smallDecompress) {
/*-- Make a copy of cftab, used in generation of T --*/
for (i = 0; i <= 256; i++) s->cftabCopy[i] = s->cftab[i];
/*-- compute the T vector --*/
for (i = 0; i < nblock; i++) {
uc = (UChar)(s->ll16[i]);
SET_LL(i, s->cftabCopy[uc]);
s->cftabCopy[uc]++;
}
/*-- Compute T^(-1) by pointer reversal on T --*/
i = s->origPtr;
j = GET_LL(i);
do {
Int32 tmp = GET_LL(j);
SET_LL(j, i);
i = j;
j = tmp;
}
while (i != s->origPtr);
s->tPos = s->origPtr;
s->nblock_used = 0;
if (s->blockRandomised) {
BZ_RAND_INIT_MASK;
BZ_GET_SMALL(s->k0); s->nblock_used++;
BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK;
} else {
BZ_GET_SMALL(s->k0); s->nblock_used++;
}
} else {
/*-- compute the T^(-1) vector --*/
for (i = 0; i < nblock; i++) {
uc = (UChar)(s->tt[i] & 0xff);
s->tt[s->cftab[uc]] |= (i << 8);
s->cftab[uc]++;
}
s->tPos = s->tt[s->origPtr] >> 8;
s->nblock_used = 0;
if (s->blockRandomised) {
BZ_RAND_INIT_MASK;
BZ_GET_FAST(s->k0); s->nblock_used++;
BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK;
} else {
BZ_GET_FAST(s->k0); s->nblock_used++;
}
}
RETURN(BZ_OK);
endhdr_2:
GET_UCHAR(BZ_X_ENDHDR_2, uc);
if (uc != 0x72) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_ENDHDR_3, uc);
if (uc != 0x45) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_ENDHDR_4, uc);
if (uc != 0x38) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_ENDHDR_5, uc);
if (uc != 0x50) RETURN(BZ_DATA_ERROR);
GET_UCHAR(BZ_X_ENDHDR_6, uc);
if (uc != 0x90) RETURN(BZ_DATA_ERROR);
s->storedCombinedCRC = 0;
GET_UCHAR(BZ_X_CCRC_1, uc);
s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc);
GET_UCHAR(BZ_X_CCRC_2, uc);
s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc);
GET_UCHAR(BZ_X_CCRC_3, uc);
s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc);
GET_UCHAR(BZ_X_CCRC_4, uc);
s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc);
s->state = BZ_X_IDLE;
RETURN(BZ_STREAM_END);
default: AssertH ( False, 4001 );
}
AssertH ( False, 4002 );
save_state_and_return:
s->save_i = i;
s->save_j = j;
s->save_t = t;
s->save_alphaSize = alphaSize;
s->save_nGroups = nGroups;
s->save_nSelectors = nSelectors;
s->save_EOB = EOB;
s->save_groupNo = groupNo;
s->save_groupPos = groupPos;
s->save_nextSym = nextSym;
s->save_nblockMAX = nblockMAX;
s->save_nblock = nblock;
s->save_es = es;
s->save_N = N;
s->save_curr = curr;
s->save_zt = zt;
s->save_zn = zn;
s->save_zvec = zvec;
s->save_zj = zj;
s->save_gSel = gSel;
s->save_gMinlen = gMinlen;
s->save_gLimit = gLimit;
s->save_gBase = gBase;
s->save_gPerm = gPerm;
return retVal;
}
/*-------------------------------------------------------------*/
/*--- end decompress.c ---*/
/*-------------------------------------------------------------*/

View file

@ -0,0 +1,205 @@
/*-------------------------------------------------------------*/
/*--- Huffman coding low-level stuff ---*/
/*--- huffman.c ---*/
/*-------------------------------------------------------------*/
/* ------------------------------------------------------------------
This file is part of bzip2/libbzip2, a program and library for
lossless, block-sorting data compression.
bzip2/libbzip2 version 1.0.5 of 10 December 2007
Copyright (C) 1996-2007 Julian Seward <jseward@bzip.org>
Please read the WARNING, DISCLAIMER and PATENTS sections in the
README file.
This program is released under the terms of the license contained
in the file LICENSE.
------------------------------------------------------------------ */
#include "bzlib_private.h"
/*---------------------------------------------------*/
#define WEIGHTOF(zz0) ((zz0) & 0xffffff00)
#define DEPTHOF(zz1) ((zz1) & 0x000000ff)
#define MYMAX(zz2,zz3) ((zz2) > (zz3) ? (zz2) : (zz3))
#define ADDWEIGHTS(zw1,zw2) \
(WEIGHTOF(zw1)+WEIGHTOF(zw2)) | \
(1 + MYMAX(DEPTHOF(zw1),DEPTHOF(zw2)))
#define UPHEAP(z) \
{ \
Int32 zz, tmp; \
zz = z; tmp = heap[zz]; \
while (weight[tmp] < weight[heap[zz >> 1]]) { \
heap[zz] = heap[zz >> 1]; \
zz >>= 1; \
} \
heap[zz] = tmp; \
}
#define DOWNHEAP(z) \
{ \
Int32 zz, yy, tmp; \
zz = z; tmp = heap[zz]; \
while (True) { \
yy = zz << 1; \
if (yy > nHeap) break; \
if (yy < nHeap && \
weight[heap[yy+1]] < weight[heap[yy]]) \
yy++; \
if (weight[tmp] < weight[heap[yy]]) break; \
heap[zz] = heap[yy]; \
zz = yy; \
} \
heap[zz] = tmp; \
}
/*---------------------------------------------------*/
void BZ2_hbMakeCodeLengths ( UChar *len,
Int32 *freq,
Int32 alphaSize,
Int32 maxLen )
{
/*--
Nodes and heap entries run from 1. Entry 0
for both the heap and nodes is a sentinel.
--*/
Int32 nNodes, nHeap, n1, n2, i, j, k;
Bool tooLong;
Int32 heap [ BZ_MAX_ALPHA_SIZE + 2 ];
Int32 weight [ BZ_MAX_ALPHA_SIZE * 2 ];
Int32 parent [ BZ_MAX_ALPHA_SIZE * 2 ];
for (i = 0; i < alphaSize; i++)
weight[i+1] = (freq[i] == 0 ? 1 : freq[i]) << 8;
while (True) {
nNodes = alphaSize;
nHeap = 0;
heap[0] = 0;
weight[0] = 0;
parent[0] = -2;
for (i = 1; i <= alphaSize; i++) {
parent[i] = -1;
nHeap++;
heap[nHeap] = i;
UPHEAP(nHeap);
}
AssertH( nHeap < (BZ_MAX_ALPHA_SIZE+2), 2001 );
while (nHeap > 1) {
n1 = heap[1]; heap[1] = heap[nHeap]; nHeap--; DOWNHEAP(1);
n2 = heap[1]; heap[1] = heap[nHeap]; nHeap--; DOWNHEAP(1);
nNodes++;
parent[n1] = parent[n2] = nNodes;
weight[nNodes] = ADDWEIGHTS(weight[n1], weight[n2]);
parent[nNodes] = -1;
nHeap++;
heap[nHeap] = nNodes;
UPHEAP(nHeap);
}
AssertH( nNodes < (BZ_MAX_ALPHA_SIZE * 2), 2002 );
tooLong = False;
for (i = 1; i <= alphaSize; i++) {
j = 0;
k = i;
while (parent[k] >= 0) { k = parent[k]; j++; }
len[i-1] = j;
if (j > maxLen) tooLong = True;
}
if (! tooLong) break;
/* 17 Oct 04: keep-going condition for the following loop used
to be 'i < alphaSize', which missed the last element,
theoretically leading to the possibility of the compressor
looping. However, this count-scaling step is only needed if
one of the generated Huffman code words is longer than
maxLen, which up to and including version 1.0.2 was 20 bits,
which is extremely unlikely. In version 1.0.3 maxLen was
changed to 17 bits, which has minimal effect on compression
ratio, but does mean this scaling step is used from time to
time, enough to verify that it works.
This means that bzip2-1.0.3 and later will only produce
Huffman codes with a maximum length of 17 bits. However, in
order to preserve backwards compatibility with bitstreams
produced by versions pre-1.0.3, the decompressor must still
handle lengths of up to 20. */
for (i = 1; i <= alphaSize; i++) {
j = weight[i] >> 8;
j = 1 + (j / 2);
weight[i] = j << 8;
}
}
}
/*---------------------------------------------------*/
void BZ2_hbAssignCodes ( Int32 *code,
UChar *length,
Int32 minLen,
Int32 maxLen,
Int32 alphaSize )
{
Int32 n, vec, i;
vec = 0;
for (n = minLen; n <= maxLen; n++) {
for (i = 0; i < alphaSize; i++)
if (length[i] == n) { code[i] = vec; vec++; };
vec <<= 1;
}
}
/*---------------------------------------------------*/
void BZ2_hbCreateDecodeTables ( Int32 *limit,
Int32 *base,
Int32 *perm,
UChar *length,
Int32 minLen,
Int32 maxLen,
Int32 alphaSize )
{
Int32 pp, i, j, vec;
pp = 0;
for (i = minLen; i <= maxLen; i++)
for (j = 0; j < alphaSize; j++)
if (length[j] == i) { perm[pp] = j; pp++; };
for (i = 0; i < BZ_MAX_CODE_LEN; i++) base[i] = 0;
for (i = 0; i < alphaSize; i++) base[length[i]+1]++;
for (i = 1; i < BZ_MAX_CODE_LEN; i++) base[i] += base[i-1];
for (i = 0; i < BZ_MAX_CODE_LEN; i++) limit[i] = 0;
vec = 0;
for (i = minLen; i <= maxLen; i++) {
vec += (base[i+1] - base[i]);
limit[i] = vec-1;
vec <<= 1;
}
for (i = minLen + 1; i <= maxLen; i++)
base[i] = ((limit[i-1] + 1) << 1) - base[i];
}
/*-------------------------------------------------------------*/
/*--- end huffman.c ---*/
/*-------------------------------------------------------------*/

View file

@ -0,0 +1,84 @@
/*-------------------------------------------------------------*/
/*--- Table for randomising repetitive blocks ---*/
/*--- randtable.c ---*/
/*-------------------------------------------------------------*/
/* ------------------------------------------------------------------
This file is part of bzip2/libbzip2, a program and library for
lossless, block-sorting data compression.
bzip2/libbzip2 version 1.0.5 of 10 December 2007
Copyright (C) 1996-2007 Julian Seward <jseward@bzip.org>
Please read the WARNING, DISCLAIMER and PATENTS sections in the
README file.
This program is released under the terms of the license contained
in the file LICENSE.
------------------------------------------------------------------ */
#include "bzlib_private.h"
/*---------------------------------------------*/
Int32 BZ2_rNums[512] = {
619, 720, 127, 481, 931, 816, 813, 233, 566, 247,
985, 724, 205, 454, 863, 491, 741, 242, 949, 214,
733, 859, 335, 708, 621, 574, 73, 654, 730, 472,
419, 436, 278, 496, 867, 210, 399, 680, 480, 51,
878, 465, 811, 169, 869, 675, 611, 697, 867, 561,
862, 687, 507, 283, 482, 129, 807, 591, 733, 623,
150, 238, 59, 379, 684, 877, 625, 169, 643, 105,
170, 607, 520, 932, 727, 476, 693, 425, 174, 647,
73, 122, 335, 530, 442, 853, 695, 249, 445, 515,
909, 545, 703, 919, 874, 474, 882, 500, 594, 612,
641, 801, 220, 162, 819, 984, 589, 513, 495, 799,
161, 604, 958, 533, 221, 400, 386, 867, 600, 782,
382, 596, 414, 171, 516, 375, 682, 485, 911, 276,
98, 553, 163, 354, 666, 933, 424, 341, 533, 870,
227, 730, 475, 186, 263, 647, 537, 686, 600, 224,
469, 68, 770, 919, 190, 373, 294, 822, 808, 206,
184, 943, 795, 384, 383, 461, 404, 758, 839, 887,
715, 67, 618, 276, 204, 918, 873, 777, 604, 560,
951, 160, 578, 722, 79, 804, 96, 409, 713, 940,
652, 934, 970, 447, 318, 353, 859, 672, 112, 785,
645, 863, 803, 350, 139, 93, 354, 99, 820, 908,
609, 772, 154, 274, 580, 184, 79, 626, 630, 742,
653, 282, 762, 623, 680, 81, 927, 626, 789, 125,
411, 521, 938, 300, 821, 78, 343, 175, 128, 250,
170, 774, 972, 275, 999, 639, 495, 78, 352, 126,
857, 956, 358, 619, 580, 124, 737, 594, 701, 612,
669, 112, 134, 694, 363, 992, 809, 743, 168, 974,
944, 375, 748, 52, 600, 747, 642, 182, 862, 81,
344, 805, 988, 739, 511, 655, 814, 334, 249, 515,
897, 955, 664, 981, 649, 113, 974, 459, 893, 228,
433, 837, 553, 268, 926, 240, 102, 654, 459, 51,
686, 754, 806, 760, 493, 403, 415, 394, 687, 700,
946, 670, 656, 610, 738, 392, 760, 799, 887, 653,
978, 321, 576, 617, 626, 502, 894, 679, 243, 440,
680, 879, 194, 572, 640, 724, 926, 56, 204, 700,
707, 151, 457, 449, 797, 195, 791, 558, 945, 679,
297, 59, 87, 824, 713, 663, 412, 693, 342, 606,
134, 108, 571, 364, 631, 212, 174, 643, 304, 329,
343, 97, 430, 751, 497, 314, 983, 374, 822, 928,
140, 206, 73, 263, 980, 736, 876, 478, 430, 305,
170, 514, 364, 692, 829, 82, 855, 953, 676, 246,
369, 970, 294, 750, 807, 827, 150, 790, 288, 923,
804, 378, 215, 828, 592, 281, 565, 555, 710, 82,
896, 831, 547, 261, 524, 462, 293, 465, 502, 56,
661, 821, 976, 991, 658, 869, 905, 758, 745, 193,
768, 550, 608, 933, 378, 286, 215, 979, 792, 961,
61, 688, 793, 644, 986, 403, 106, 366, 905, 644,
372, 567, 466, 434, 645, 210, 389, 550, 919, 135,
780, 773, 635, 389, 707, 100, 626, 958, 165, 504,
920, 176, 193, 713, 857, 265, 203, 50, 668, 108,
645, 990, 626, 197, 510, 357, 358, 850, 858, 364,
936, 638
};
/*-------------------------------------------------------------*/
/*--- end randtable.c ---*/
/*-------------------------------------------------------------*/

File diff suppressed because it is too large Load diff

View file

@ -9,15 +9,25 @@
/* 03.05.03 2.00 Lad Added compression */
/* 08.12.03 2.01 Dan High-memory handling (> 0x80000000) */
/*****************************************************************************/
#ifndef __HUFFMAN_H__
#define __HUFFMAN_H__
#include "../StormPort.h"
//-----------------------------------------------------------------------------
// Defines
#define HUFF_ITEM_COUNT 0x203 // Number of items in the item pool
#define LINK_ITEM_COUNT 0x80 // Maximum number of quick-link items
#define INSERT_ITEM 1
#define SWITCH_ITEMS 2 // Switch the item1 and item2
#define PTR_NOT(ptr) (THTreeItem *)(~(DWORD_PTR)(ptr))
#define PTR_PTR(ptr) ((THTreeItem *)(ptr))
#define PTR_INT(ptr) (INT_PTR)(ptr)
#ifndef NULL
#define NULL 0
#endif
//-----------------------------------------------------------------------------
// Structures and classes
@ -27,76 +37,65 @@ class TInputStream
{
public:
TInputStream(void * pvInBuffer, size_t cbInBuffer);
unsigned int Get1Bit();
unsigned int Peek7Bits();
unsigned int Get8Bits();
unsigned long GetBit();
unsigned long Get7Bits();
unsigned long Get8Bits();
void SkipBits(unsigned int BitCount);
unsigned char * pbInBufferEnd; // End position in the the input buffer
unsigned char * pbInBuffer; // Current position in the the input buffer
unsigned int BitBuffer; // Input bit buffer
unsigned int BitCount; // Number of bits remaining in 'dwBitBuff'
unsigned char * pbInBuffer; // Input data
unsigned char * pbInBufferEnd; // End of the input buffer
unsigned long BitBuffer; // Input bit buffer
unsigned int BitCount; // Number of bits remaining in 'dwBitBuff'
};
// Output stream for Huffmann compression
class TOutputStream
{
public:
TOutputStream(void * pvOutBuffer, size_t cbOutLength);
void PutBits(unsigned int dwValue, unsigned int nBitCount);
void Flush();
unsigned char * pbOutBufferEnd; // End position in the output buffer
unsigned char * pbOutBuffer; // Current position in the output buffer
unsigned int BitBuffer; // Bit buffer
unsigned int BitCount; // Number of bits in the bit buffer
void PutBits(unsigned long dwBuff, unsigned int nPutBits);
unsigned char * pbOutBuffer; // 00 : Output buffer
unsigned long cbOutSize; // 04 : Size of output buffer
unsigned char * pbOutPos; // 08 : Current output position
unsigned long dwBitBuff; // 0C : Bit buffer
unsigned long nBits; // 10 : Number of bits in the bit buffer
};
// A virtual tree item that represents the head of the item list
#define LIST_HEAD() ((THTreeItem *)(&pFirst))
enum TInsertPoint
{
InsertAfter = 1,
InsertBefore = 2
};
// Huffmann tree item
// Huffmann tree item (?)
struct THTreeItem
{
THTreeItem() { pPrev = pNext = NULL; DecompressedValue = 0; Weight = 0; pParent = pChildLo = NULL; }
// ~THTreeItem() { RemoveItem(); }
THTreeItem * Call1501DB70(THTreeItem * pLast);
THTreeItem * GetPrevItem(LONG_PTR value);
void ClearItemLinks();
void RemoveItem();
// void RemoveEntry();
THTreeItem * pNext; // Pointer to lower-weight tree item
THTreeItem * pPrev; // Pointer to higher-weight item
unsigned int DecompressedValue; // 08 - Decompressed byte value (also index in the array)
unsigned int Weight; // 0C - Weight
THTreeItem * pParent; // 10 - Pointer to parent item (NULL if none)
THTreeItem * pChildLo; // 14 - Pointer to the child with lower-weight child ("left child")
THTreeItem * next; // 00 - Pointer to next THTreeItem
THTreeItem * prev; // 04 - Pointer to prev THTreeItem (< 0 if none)
unsigned long dcmpByte; // 08 - Index of this item in item pointer array, decompressed byte value
unsigned long byteValue; // 0C - Some byte value
THTreeItem * parent; // 10 - Pointer to parent THTreeItem (NULL if none)
THTreeItem * child; // 14 - Pointer to child THTreeItem
int addressMultiplier; // -1 if object on negative address (>0x80000000), +1 if positive
};
// Structure used for quick navigating in the huffmann tree.
// Allows skipping up to 7 bits in the compressed stream, thus
// decompressing a bit faster. Sometimes it can even get the decompressed
// byte directly.
struct TQuickLink
{
unsigned int ValidValue; // If greater than THuffmannTree::MinValidValue, the entry is valid
unsigned int ValidBits; // Number of bits that are valid for this item link
// Structure used for quick decompress. The 'bitCount' contains number of bits
// and byte value contains result decompressed byte value.
// After each walk through Huffman tree are filled all entries which are
// multiplies of number of bits loaded from input stream. These entries
// contain number of bits and result value. At the next 7 bits is tested this
// structure first. If corresponding entry found, decompression routine will
// not walk through Huffman tree and directly stores output byte to output stream.
struct TQDecompress
{
unsigned long offs00; // 00 - 1 if resolved
unsigned long nBits; // 04 - Bit count
union
{
THTreeItem * pItem; // Pointer to the item within the Huffmann tree
unsigned int DecompressedValue; // Value for direct decompression
unsigned long dcmpByte; // 08 - Byte value for decompress (if bitCount <= 7)
THTreeItem * pItem; // 08 - THTreeItem (if number of bits is greater than 7
};
};
// Structure for Huffman tree (Size 0x3674 bytes). Because I'm not expert
// for the decompression, I do not know actually if the class is really a Hufmann
@ -104,40 +103,40 @@ struct TQuickLink
class THuffmannTree
{
public:
THuffmannTree(bool bCompression);
~THuffmannTree();
void LinkTwoItems(THTreeItem * pItem1, THTreeItem * pItem2);
void InsertItem(THTreeItem * item, TInsertPoint InsertPoint, THTreeItem * item2);
THuffmannTree();
void InitTree(bool bCompression);
void BuildTree(unsigned int nCmpType);
// void ModifyTree(unsigned long dwIndex);
// void UninitTree();
THTreeItem * FindHigherOrEqualItem(THTreeItem * pItem, unsigned int Weight);
THTreeItem * CreateNewItem(unsigned int DecompressedValue, unsigned int Weight, TInsertPoint InsertPoint);
// void Call15007010(Bit32 dwInLength, THTreeItem * item);
THTreeItem * Call1500E740(unsigned int nValue);
void Call1500E820(THTreeItem * pItem);
unsigned int DoCompression(TOutputStream * os, unsigned char * pbInBuffer, int nInLength, int nCmpType);
unsigned int DoDecompression(unsigned char * pbOutBuffer, unsigned int dwOutLength, TInputStream * is);
unsigned int FixupItemPosByWeight(THTreeItem * pItem, unsigned int MaxWeight);
bool BuildTree(unsigned int CompressionType);
unsigned long bIsCmp0; // 0000 - 1 if compression type 0
unsigned long offs0004; // 0004 - Some flag
THTreeItem items0008[0x203]; // 0008 - HTree items
void IncWeightsAndRebalance(THTreeItem * pItem);
void InsertNewBranchAndRebalance(unsigned int Value1, unsigned int Value2);
//- Sometimes used as HTree item -----------
THTreeItem * pItem3050; // 3050 - Always NULL (?)
THTreeItem * pItem3054; // 3054 - Pointer to Huffman tree item
THTreeItem * pItem3058; // 3058 - Pointer to Huffman tree item (< 0 if invalid)
void EncodeOneByte(TOutputStream * os, THTreeItem * pItem);
unsigned int DecodeOneByte(TInputStream * is);
//- Sometimes used as HTree item -----------
THTreeItem * pItem305C; // 305C - Usually NULL
THTreeItem * pFirst; // 3060 - Pointer to top (first) Huffman tree item
THTreeItem * pLast; // 3064 - Pointer to bottom (last) Huffman tree item (< 0 if invalid)
unsigned long nItems; // 3068 - Number of used HTree items
unsigned int Compress(TOutputStream * os, void * pvInBuffer, int cbInBuffer, int nCmpType);
unsigned int Decompress(void * pvOutBuffer, unsigned int cbOutLength, TInputStream * is);
THTreeItem ItemBuffer[HUFF_ITEM_COUNT]; // Buffer for tree items. No memory allocation is needed
unsigned int ItemsUsed; // Number of tree items used from ItemBuffer
// Head of the linear item list
THTreeItem * pFirst; // Pointer to the highest weight item
THTreeItem * pLast; // Pointer to the lowest weight item
//-------------------------------------------
THTreeItem * items306C[0x102]; // 306C - THTreeItem pointer array
TQDecompress qd3474[0x80]; // 3474 - Array for quick decompression
int addressMultiplier; // -1 if object on negative address (>0x80000000), +1 if positive
THTreeItem * ItemsByByte[0x102]; // Array of item pointers, one for each possible byte value
TQuickLink QuickLinks[LINK_ITEM_COUNT]; // Array of quick-link items
unsigned int MinValidValue; // A minimum value of TQDecompress::ValidValue to be considered valid
unsigned int bIsCmp0; // 1 if compression type 0
static unsigned char Table1502A630[];// Some table
};
#endif // __HUFFMAN_H__

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,145 @@
/*****************************************************************************/
/* huffman.h Copyright (c) Ladislav Zezula 2003 */
/*---------------------------------------------------------------------------*/
/* Description : */
/*---------------------------------------------------------------------------*/
/* Date Ver Who Comment */
/* -------- ---- --- ------- */
/* xx.xx.xx 1.00 Lad The first version of huffman.h */
/* 03.05.03 2.00 Lad Added compression */
/* 08.12.03 2.01 Dan High-memory handling (> 0x80000000) */
/*****************************************************************************/
#ifndef __HUFFMAN_H__
#define __HUFFMAN_H__
#include <stdint.h>
#define SIntPtr intptr_t
//-----------------------------------------------------------------------------
// Defines
#define INSERT_ITEM 1
#define SWITCH_ITEMS 2 // Switch the item1 and item2
#define PTR_NOT(ptr) ((ptr) == gcpFirst ? gpFirst : gpItem3054)
#define PTR_PTR(ptr) ((THTreeItem *)(ptr))
#ifndef NULL
#define NULL 0
#endif
//-----------------------------------------------------------------------------
// Structures and classes
// Input stream for Huffmann decompression
class TInputStream
{
public:
unsigned long GetBit();
unsigned long Get7Bits();
unsigned long Get8Bits();
void SkipBits(unsigned int BitCount);
unsigned char * pbInBuffer; // Input data
unsigned char * pbInBufferEnd; // End of the input buffer
unsigned long BitBuffer; // Input bit buffer
unsigned int BitCount; // Number of bits remaining in 'dwBitBuff'
};
// Output stream for Huffmann compression
class TOutputStream
{
public:
void PutBits(unsigned long dwBuff, unsigned int nPutBits);
unsigned char * pbOutBuffer; // 00 : Output buffer
unsigned long cbOutSize; // 04 : Size of output buffer
unsigned char * pbOutPos; // 08 : Current output position
unsigned long dwBitBuff; // 0C : Bit buffer
unsigned long nBits; // 10 : Number of bits in the bit buffer
};
// Huffmann tree item (?)
struct THTreeItem
{
public:
THTreeItem * Call1501DB70(THTreeItem * pLast);
THTreeItem * GetPrevItem(SIntPtr value);
void ClearItemLinks();
void RemoveItem();
THTreeItem * next; // 00 - Pointer to next THTreeItem
THTreeItem * prev; // 04 - Pointer to prev THTreeItem (< 0 if none)
unsigned long dcmpByte; // 08 - Index of this item in item pointer array, decompressed byte value
unsigned long byteValue; // 0C - Some byte value
THTreeItem * parent; // 10 - Pointer to parent THTreeItem (NULL if none)
THTreeItem * child; // 14 - Pointer to child THTreeItem
int addressMultiplier; // -1 if object on negative address (>0x80000000), +1 if positive
};
// Structure used for quick decompress. The 'bitCount' contains number of bits
// and byte value contains result decompressed byte value.
// After each walk through Huffman tree are filled all entries which are
// multiplies of number of bits loaded from input stream. These entries
// contain number of bits and result value. At the next 7 bits is tested this
// structure first. If corresponding entry found, decompression routine will
// not walk through Huffman tree and directly stores output byte to output stream.
struct TQDecompress
{
unsigned long offs00; // 00 - 1 if resolved
unsigned long nBits; // 04 - Bit count
union
{
unsigned long dcmpByte; // 08 - Byte value for decompress (if bitCount <= 7)
THTreeItem * pItem; // 08 - THTreeItem (if number of bits is greater than 7
};
};
// Structure for Huffman tree (Size 0x3674 bytes). Because I'm not expert
// for the decompression, I do not know actually if the class is really a Hufmann
// tree. If someone knows the decompression details, please let me know
class THuffmannTree
{
public:
THuffmannTree();
void InitTree(bool bCompression);
void BuildTree(unsigned int nCmpType);
// void ModifyTree(unsigned long dwIndex);
// void UninitTree();
// void Call15007010(Bit32 dwInLength, THTreeItem * item);
THTreeItem * Call1500E740(unsigned int nValue);
void Call1500E820(THTreeItem * pItem);
unsigned int DoCompression(TOutputStream * os, unsigned char * pbInBuffer, int nInLength, int nCmpType);
unsigned int DoDecompression(unsigned char * pbOutBuffer, unsigned int dwOutLength, TInputStream * is);
unsigned long bIsCmp0; // 0000 - 1 if compression type 0
unsigned long offs0004; // 0004 - Some flag
THTreeItem items0008[0x203]; // 0008 - HTree items
//- Sometimes used as HTree item -----------
THTreeItem * pItem3050; // 3050 - Always NULL (?)
THTreeItem * pItem3054; // 3054 - Pointer to Huffman tree item
THTreeItem * pItem3058; // 3058 - Pointer to Huffman tree item (< 0 if invalid)
//- Sometimes used as HTree item -----------
THTreeItem * pItem305C; // 305C - Usually NULL
THTreeItem * pFirst; // 3060 - Pointer to top (first) Huffman tree item
THTreeItem * pLast; // 3064 - Pointer to bottom (last) Huffman tree item (< 0 if invalid)
unsigned long nItems; // 3068 - Number of used HTree items
//-------------------------------------------
THTreeItem * items306C[0x102]; // 306C - THTreeItem pointer array
TQDecompress qd3474[0x80]; // 3474 - Array for quick decompression
int addressMultiplier; // -1 if object on negative address (>0x80000000), +1 if positive
static unsigned char Table1502A630[];// Some table
};
#endif // __HUFFMAN_H__

View file

@ -0,0 +1,69 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../headers/tomcrypt.h"
/**
@file hash_memory.c
Hash memory helper, Tom St Denis
*/
/**
Hash a block of memory and store the digest.
@param hash The index of the hash you wish to use
@param in The data you wish to hash
@param inlen The length of the data to hash (octets)
@param out [out] Where to store the digest
@param outlen [in/out] Max size and resulting size of the digest
@return CRYPT_OK if successful
*/
int hash_memory(int hash, const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen)
{
hash_state *md;
int err;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
if ((err = hash_is_valid(hash)) != CRYPT_OK) {
return err;
}
if (*outlen < hash_descriptor[hash].hashsize) {
*outlen = hash_descriptor[hash].hashsize;
return CRYPT_BUFFER_OVERFLOW;
}
md = XMALLOC(sizeof(hash_state));
if (md == NULL) {
return CRYPT_MEM;
}
if ((err = hash_descriptor[hash].init(md)) != CRYPT_OK) {
goto LBL_ERR;
}
if ((err = hash_descriptor[hash].process(md, in, inlen)) != CRYPT_OK) {
goto LBL_ERR;
}
err = hash_descriptor[hash].done(md, out);
*outlen = hash_descriptor[hash].hashsize;
LBL_ERR:
#ifdef LTC_CLEAN_STACK
zeromem(md, sizeof(hash_state));
#endif
XFREE(md);
return err;
}
/* $Source: /cvs/libtom/libtomcrypt/src/hashes/helper/hash_memory.c,v $ */
/* $Revision: 1.6 $ */
/* $Date: 2006/12/28 01:27:23 $ */

View file

@ -0,0 +1,368 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../headers/tomcrypt.h"
/**
@file md5.c
LTC_MD5 hash function by Tom St Denis
*/
#ifdef LTC_MD5
const struct ltc_hash_descriptor md5_desc =
{
"md5",
3,
16,
64,
/* OID */
{ 1, 2, 840, 113549, 2, 5, },
6,
&md5_init,
&md5_process,
&md5_done,
&md5_test,
NULL
};
#define F(x,y,z) (z ^ (x & (y ^ z)))
#define G(x,y,z) (y ^ (z & (y ^ x)))
#define H(x,y,z) (x^y^z)
#define I(x,y,z) (y^(x|(~z)))
#ifdef LTC_SMALL_CODE
#define FF(a,b,c,d,M,s,t) \
a = (a + F(b,c,d) + M + t); a = ROL(a, s) + b;
#define GG(a,b,c,d,M,s,t) \
a = (a + G(b,c,d) + M + t); a = ROL(a, s) + b;
#define HH(a,b,c,d,M,s,t) \
a = (a + H(b,c,d) + M + t); a = ROL(a, s) + b;
#define II(a,b,c,d,M,s,t) \
a = (a + I(b,c,d) + M + t); a = ROL(a, s) + b;
static const unsigned char Worder[64] = {
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
1,6,11,0,5,10,15,4,9,14,3,8,13,2,7,12,
5,8,11,14,1,4,7,10,13,0,3,6,9,12,15,2,
0,7,14,5,12,3,10,1,8,15,6,13,4,11,2,9
};
static const unsigned char Rorder[64] = {
7,12,17,22,7,12,17,22,7,12,17,22,7,12,17,22,
5,9,14,20,5,9,14,20,5,9,14,20,5,9,14,20,
4,11,16,23,4,11,16,23,4,11,16,23,4,11,16,23,
6,10,15,21,6,10,15,21,6,10,15,21,6,10,15,21
};
static const ulong32 Korder[64] = {
0xd76aa478UL, 0xe8c7b756UL, 0x242070dbUL, 0xc1bdceeeUL, 0xf57c0fafUL, 0x4787c62aUL, 0xa8304613UL, 0xfd469501UL,
0x698098d8UL, 0x8b44f7afUL, 0xffff5bb1UL, 0x895cd7beUL, 0x6b901122UL, 0xfd987193UL, 0xa679438eUL, 0x49b40821UL,
0xf61e2562UL, 0xc040b340UL, 0x265e5a51UL, 0xe9b6c7aaUL, 0xd62f105dUL, 0x02441453UL, 0xd8a1e681UL, 0xe7d3fbc8UL,
0x21e1cde6UL, 0xc33707d6UL, 0xf4d50d87UL, 0x455a14edUL, 0xa9e3e905UL, 0xfcefa3f8UL, 0x676f02d9UL, 0x8d2a4c8aUL,
0xfffa3942UL, 0x8771f681UL, 0x6d9d6122UL, 0xfde5380cUL, 0xa4beea44UL, 0x4bdecfa9UL, 0xf6bb4b60UL, 0xbebfbc70UL,
0x289b7ec6UL, 0xeaa127faUL, 0xd4ef3085UL, 0x04881d05UL, 0xd9d4d039UL, 0xe6db99e5UL, 0x1fa27cf8UL, 0xc4ac5665UL,
0xf4292244UL, 0x432aff97UL, 0xab9423a7UL, 0xfc93a039UL, 0x655b59c3UL, 0x8f0ccc92UL, 0xffeff47dUL, 0x85845dd1UL,
0x6fa87e4fUL, 0xfe2ce6e0UL, 0xa3014314UL, 0x4e0811a1UL, 0xf7537e82UL, 0xbd3af235UL, 0x2ad7d2bbUL, 0xeb86d391UL
};
#else
#define FF(a,b,c,d,M,s,t) \
a = (a + F(b,c,d) + M + t); a = ROLc(a, s) + b;
#define GG(a,b,c,d,M,s,t) \
a = (a + G(b,c,d) + M + t); a = ROLc(a, s) + b;
#define HH(a,b,c,d,M,s,t) \
a = (a + H(b,c,d) + M + t); a = ROLc(a, s) + b;
#define II(a,b,c,d,M,s,t) \
a = (a + I(b,c,d) + M + t); a = ROLc(a, s) + b;
#endif
#ifdef LTC_CLEAN_STACK
static int _md5_compress(hash_state *md, unsigned char *buf)
#else
static int md5_compress(hash_state *md, unsigned char *buf)
#endif
{
ulong32 i, W[16], a, b, c, d;
#ifdef LTC_SMALL_CODE
ulong32 t;
#endif
/* copy the state into 512-bits into W[0..15] */
for (i = 0; i < 16; i++) {
LOAD32L(W[i], buf + (4*i));
}
/* copy state */
a = md->md5.state[0];
b = md->md5.state[1];
c = md->md5.state[2];
d = md->md5.state[3];
#ifdef LTC_SMALL_CODE
for (i = 0; i < 16; ++i) {
FF(a,b,c,d,W[Worder[i]],Rorder[i],Korder[i]);
t = d; d = c; c = b; b = a; a = t;
}
for (; i < 32; ++i) {
GG(a,b,c,d,W[Worder[i]],Rorder[i],Korder[i]);
t = d; d = c; c = b; b = a; a = t;
}
for (; i < 48; ++i) {
HH(a,b,c,d,W[Worder[i]],Rorder[i],Korder[i]);
t = d; d = c; c = b; b = a; a = t;
}
for (; i < 64; ++i) {
II(a,b,c,d,W[Worder[i]],Rorder[i],Korder[i]);
t = d; d = c; c = b; b = a; a = t;
}
#else
FF(a,b,c,d,W[0],7,0xd76aa478UL)
FF(d,a,b,c,W[1],12,0xe8c7b756UL)
FF(c,d,a,b,W[2],17,0x242070dbUL)
FF(b,c,d,a,W[3],22,0xc1bdceeeUL)
FF(a,b,c,d,W[4],7,0xf57c0fafUL)
FF(d,a,b,c,W[5],12,0x4787c62aUL)
FF(c,d,a,b,W[6],17,0xa8304613UL)
FF(b,c,d,a,W[7],22,0xfd469501UL)
FF(a,b,c,d,W[8],7,0x698098d8UL)
FF(d,a,b,c,W[9],12,0x8b44f7afUL)
FF(c,d,a,b,W[10],17,0xffff5bb1UL)
FF(b,c,d,a,W[11],22,0x895cd7beUL)
FF(a,b,c,d,W[12],7,0x6b901122UL)
FF(d,a,b,c,W[13],12,0xfd987193UL)
FF(c,d,a,b,W[14],17,0xa679438eUL)
FF(b,c,d,a,W[15],22,0x49b40821UL)
GG(a,b,c,d,W[1],5,0xf61e2562UL)
GG(d,a,b,c,W[6],9,0xc040b340UL)
GG(c,d,a,b,W[11],14,0x265e5a51UL)
GG(b,c,d,a,W[0],20,0xe9b6c7aaUL)
GG(a,b,c,d,W[5],5,0xd62f105dUL)
GG(d,a,b,c,W[10],9,0x02441453UL)
GG(c,d,a,b,W[15],14,0xd8a1e681UL)
GG(b,c,d,a,W[4],20,0xe7d3fbc8UL)
GG(a,b,c,d,W[9],5,0x21e1cde6UL)
GG(d,a,b,c,W[14],9,0xc33707d6UL)
GG(c,d,a,b,W[3],14,0xf4d50d87UL)
GG(b,c,d,a,W[8],20,0x455a14edUL)
GG(a,b,c,d,W[13],5,0xa9e3e905UL)
GG(d,a,b,c,W[2],9,0xfcefa3f8UL)
GG(c,d,a,b,W[7],14,0x676f02d9UL)
GG(b,c,d,a,W[12],20,0x8d2a4c8aUL)
HH(a,b,c,d,W[5],4,0xfffa3942UL)
HH(d,a,b,c,W[8],11,0x8771f681UL)
HH(c,d,a,b,W[11],16,0x6d9d6122UL)
HH(b,c,d,a,W[14],23,0xfde5380cUL)
HH(a,b,c,d,W[1],4,0xa4beea44UL)
HH(d,a,b,c,W[4],11,0x4bdecfa9UL)
HH(c,d,a,b,W[7],16,0xf6bb4b60UL)
HH(b,c,d,a,W[10],23,0xbebfbc70UL)
HH(a,b,c,d,W[13],4,0x289b7ec6UL)
HH(d,a,b,c,W[0],11,0xeaa127faUL)
HH(c,d,a,b,W[3],16,0xd4ef3085UL)
HH(b,c,d,a,W[6],23,0x04881d05UL)
HH(a,b,c,d,W[9],4,0xd9d4d039UL)
HH(d,a,b,c,W[12],11,0xe6db99e5UL)
HH(c,d,a,b,W[15],16,0x1fa27cf8UL)
HH(b,c,d,a,W[2],23,0xc4ac5665UL)
II(a,b,c,d,W[0],6,0xf4292244UL)
II(d,a,b,c,W[7],10,0x432aff97UL)
II(c,d,a,b,W[14],15,0xab9423a7UL)
II(b,c,d,a,W[5],21,0xfc93a039UL)
II(a,b,c,d,W[12],6,0x655b59c3UL)
II(d,a,b,c,W[3],10,0x8f0ccc92UL)
II(c,d,a,b,W[10],15,0xffeff47dUL)
II(b,c,d,a,W[1],21,0x85845dd1UL)
II(a,b,c,d,W[8],6,0x6fa87e4fUL)
II(d,a,b,c,W[15],10,0xfe2ce6e0UL)
II(c,d,a,b,W[6],15,0xa3014314UL)
II(b,c,d,a,W[13],21,0x4e0811a1UL)
II(a,b,c,d,W[4],6,0xf7537e82UL)
II(d,a,b,c,W[11],10,0xbd3af235UL)
II(c,d,a,b,W[2],15,0x2ad7d2bbUL)
II(b,c,d,a,W[9],21,0xeb86d391UL)
#endif
md->md5.state[0] = md->md5.state[0] + a;
md->md5.state[1] = md->md5.state[1] + b;
md->md5.state[2] = md->md5.state[2] + c;
md->md5.state[3] = md->md5.state[3] + d;
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
static int md5_compress(hash_state *md, unsigned char *buf)
{
int err;
err = _md5_compress(md, buf);
burn_stack(sizeof(ulong32) * 21);
return err;
}
#endif
/**
Initialize the hash state
@param md The hash state you wish to initialize
@return CRYPT_OK if successful
*/
int md5_init(hash_state * md)
{
LTC_ARGCHK(md != NULL);
md->md5.state[0] = 0x67452301UL;
md->md5.state[1] = 0xefcdab89UL;
md->md5.state[2] = 0x98badcfeUL;
md->md5.state[3] = 0x10325476UL;
md->md5.curlen = 0;
md->md5.length = 0;
return CRYPT_OK;
}
/**
Process a block of memory though the hash
@param md The hash state
@param in The data to hash
@param inlen The length of the data (octets)
@return CRYPT_OK if successful
*/
HASH_PROCESS(md5_process, md5_compress, md5, 64)
/**
Terminate the hash to get the digest
@param md The hash state
@param out [out] The destination of the hash (16 bytes)
@return CRYPT_OK if successful
*/
int md5_done(hash_state * md, unsigned char *out)
{
int i;
LTC_ARGCHK(md != NULL);
LTC_ARGCHK(out != NULL);
if (md->md5.curlen >= sizeof(md->md5.buf)) {
return CRYPT_INVALID_ARG;
}
/* increase the length of the message */
md->md5.length += md->md5.curlen * 8;
/* append the '1' bit */
md->md5.buf[md->md5.curlen++] = (unsigned char)0x80;
/* if the length is currently above 56 bytes we append zeros
* then compress. Then we can fall back to padding zeros and length
* encoding like normal.
*/
if (md->md5.curlen > 56) {
while (md->md5.curlen < 64) {
md->md5.buf[md->md5.curlen++] = (unsigned char)0;
}
md5_compress(md, md->md5.buf);
md->md5.curlen = 0;
}
/* pad upto 56 bytes of zeroes */
while (md->md5.curlen < 56) {
md->md5.buf[md->md5.curlen++] = (unsigned char)0;
}
/* store length */
STORE64L(md->md5.length, md->md5.buf+56);
md5_compress(md, md->md5.buf);
/* copy output */
for (i = 0; i < 4; i++) {
STORE32L(md->md5.state[i], out+(4*i));
}
#ifdef LTC_CLEAN_STACK
zeromem(md, sizeof(hash_state));
#endif
return CRYPT_OK;
}
/**
Self-test the hash
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int md5_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
char *msg;
unsigned char hash[16];
} tests[] = {
{ "",
{ 0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04,
0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e } },
{ "a",
{0x0c, 0xc1, 0x75, 0xb9, 0xc0, 0xf1, 0xb6, 0xa8,
0x31, 0xc3, 0x99, 0xe2, 0x69, 0x77, 0x26, 0x61 } },
{ "abc",
{ 0x90, 0x01, 0x50, 0x98, 0x3c, 0xd2, 0x4f, 0xb0,
0xd6, 0x96, 0x3f, 0x7d, 0x28, 0xe1, 0x7f, 0x72 } },
{ "message digest",
{ 0xf9, 0x6b, 0x69, 0x7d, 0x7c, 0xb7, 0x93, 0x8d,
0x52, 0x5a, 0x2f, 0x31, 0xaa, 0xf1, 0x61, 0xd0 } },
{ "abcdefghijklmnopqrstuvwxyz",
{ 0xc3, 0xfc, 0xd3, 0xd7, 0x61, 0x92, 0xe4, 0x00,
0x7d, 0xfb, 0x49, 0x6c, 0xca, 0x67, 0xe1, 0x3b } },
{ "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
{ 0xd1, 0x74, 0xab, 0x98, 0xd2, 0x77, 0xd9, 0xf5,
0xa5, 0x61, 0x1c, 0x2c, 0x9f, 0x41, 0x9d, 0x9f } },
{ "12345678901234567890123456789012345678901234567890123456789012345678901234567890",
{ 0x57, 0xed, 0xf4, 0xa2, 0x2b, 0xe3, 0xc9, 0x55,
0xac, 0x49, 0xda, 0x2e, 0x21, 0x07, 0xb6, 0x7a } },
{ NULL, { 0 } }
};
int i;
unsigned char tmp[16];
hash_state md;
for (i = 0; tests[i].msg != NULL; i++) {
md5_init(&md);
md5_process(&md, (unsigned char *)tests[i].msg, (unsigned long)strlen(tests[i].msg));
md5_done(&md, tmp);
if (XMEMCMP(tmp, tests[i].hash, 16) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/hashes/md5.c,v $ */
/* $Revision: 1.10 $ */
/* $Date: 2007/05/12 14:25:28 $ */

View file

@ -0,0 +1,288 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../headers/tomcrypt.h"
/**
@file sha1.c
LTC_SHA1 code by Tom St Denis
*/
#ifdef LTC_SHA1
const struct ltc_hash_descriptor sha1_desc =
{
"sha1",
2,
20,
64,
/* OID */
{ 1, 3, 14, 3, 2, 26, },
6,
&sha1_init,
&sha1_process,
&sha1_done,
&sha1_test,
NULL
};
#define F0(x,y,z) (z ^ (x & (y ^ z)))
#define F1(x,y,z) (x ^ y ^ z)
#define F2(x,y,z) ((x & y) | (z & (x | y)))
#define F3(x,y,z) (x ^ y ^ z)
#ifdef LTC_CLEAN_STACK
static int _sha1_compress(hash_state *md, unsigned char *buf)
#else
static int sha1_compress(hash_state *md, unsigned char *buf)
#endif
{
ulong32 a,b,c,d,e,W[80],i;
#ifdef LTC_SMALL_CODE
ulong32 t;
#endif
/* copy the state into 512-bits into W[0..15] */
for (i = 0; i < 16; i++) {
LOAD32H(W[i], buf + (4*i));
}
/* copy state */
a = md->sha1.state[0];
b = md->sha1.state[1];
c = md->sha1.state[2];
d = md->sha1.state[3];
e = md->sha1.state[4];
/* expand it */
for (i = 16; i < 80; i++) {
W[i] = ROL(W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16], 1);
}
/* compress */
/* round one */
#define FF0(a,b,c,d,e,i) e = (ROLc(a, 5) + F0(b,c,d) + e + W[i] + 0x5a827999UL); b = ROLc(b, 30);
#define FF1(a,b,c,d,e,i) e = (ROLc(a, 5) + F1(b,c,d) + e + W[i] + 0x6ed9eba1UL); b = ROLc(b, 30);
#define FF2(a,b,c,d,e,i) e = (ROLc(a, 5) + F2(b,c,d) + e + W[i] + 0x8f1bbcdcUL); b = ROLc(b, 30);
#define FF3(a,b,c,d,e,i) e = (ROLc(a, 5) + F3(b,c,d) + e + W[i] + 0xca62c1d6UL); b = ROLc(b, 30);
#ifdef LTC_SMALL_CODE
for (i = 0; i < 20; ) {
FF0(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 40; ) {
FF1(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 60; ) {
FF2(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;
}
for (; i < 80; ) {
FF3(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;
}
#else
for (i = 0; i < 20; ) {
FF0(a,b,c,d,e,i++);
FF0(e,a,b,c,d,i++);
FF0(d,e,a,b,c,i++);
FF0(c,d,e,a,b,i++);
FF0(b,c,d,e,a,i++);
}
/* round two */
for (; i < 40; ) {
FF1(a,b,c,d,e,i++);
FF1(e,a,b,c,d,i++);
FF1(d,e,a,b,c,i++);
FF1(c,d,e,a,b,i++);
FF1(b,c,d,e,a,i++);
}
/* round three */
for (; i < 60; ) {
FF2(a,b,c,d,e,i++);
FF2(e,a,b,c,d,i++);
FF2(d,e,a,b,c,i++);
FF2(c,d,e,a,b,i++);
FF2(b,c,d,e,a,i++);
}
/* round four */
for (; i < 80; ) {
FF3(a,b,c,d,e,i++);
FF3(e,a,b,c,d,i++);
FF3(d,e,a,b,c,i++);
FF3(c,d,e,a,b,i++);
FF3(b,c,d,e,a,i++);
}
#endif
#undef FF0
#undef FF1
#undef FF2
#undef FF3
/* store */
md->sha1.state[0] = md->sha1.state[0] + a;
md->sha1.state[1] = md->sha1.state[1] + b;
md->sha1.state[2] = md->sha1.state[2] + c;
md->sha1.state[3] = md->sha1.state[3] + d;
md->sha1.state[4] = md->sha1.state[4] + e;
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
static int sha1_compress(hash_state *md, unsigned char *buf)
{
int err;
err = _sha1_compress(md, buf);
burn_stack(sizeof(ulong32) * 87);
return err;
}
#endif
/**
Initialize the hash state
@param md The hash state you wish to initialize
@return CRYPT_OK if successful
*/
int sha1_init(hash_state * md)
{
LTC_ARGCHK(md != NULL);
md->sha1.state[0] = 0x67452301UL;
md->sha1.state[1] = 0xefcdab89UL;
md->sha1.state[2] = 0x98badcfeUL;
md->sha1.state[3] = 0x10325476UL;
md->sha1.state[4] = 0xc3d2e1f0UL;
md->sha1.curlen = 0;
md->sha1.length = 0;
return CRYPT_OK;
}
/**
Process a block of memory though the hash
@param md The hash state
@param in The data to hash
@param inlen The length of the data (octets)
@return CRYPT_OK if successful
*/
HASH_PROCESS(sha1_process, sha1_compress, sha1, 64)
/**
Terminate the hash to get the digest
@param md The hash state
@param out [out] The destination of the hash (20 bytes)
@return CRYPT_OK if successful
*/
int sha1_done(hash_state * md, unsigned char *out)
{
int i;
LTC_ARGCHK(md != NULL);
LTC_ARGCHK(out != NULL);
if (md->sha1.curlen >= sizeof(md->sha1.buf)) {
return CRYPT_INVALID_ARG;
}
/* increase the length of the message */
md->sha1.length += md->sha1.curlen * 8;
/* append the '1' bit */
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0x80;
/* if the length is currently above 56 bytes we append zeros
* then compress. Then we can fall back to padding zeros and length
* encoding like normal.
*/
if (md->sha1.curlen > 56) {
while (md->sha1.curlen < 64) {
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;
}
sha1_compress(md, md->sha1.buf);
md->sha1.curlen = 0;
}
/* pad upto 56 bytes of zeroes */
while (md->sha1.curlen < 56) {
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;
}
/* store length */
STORE64H(md->sha1.length, md->sha1.buf+56);
sha1_compress(md, md->sha1.buf);
/* copy output */
for (i = 0; i < 5; i++) {
STORE32H(md->sha1.state[i], out+(4*i));
}
#ifdef LTC_CLEAN_STACK
zeromem(md, sizeof(hash_state));
#endif
return CRYPT_OK;
}
/**
Self-test the hash
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int sha1_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
char *msg;
unsigned char hash[20];
} tests[] = {
{ "abc",
{ 0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a,
0xba, 0x3e, 0x25, 0x71, 0x78, 0x50, 0xc2, 0x6c,
0x9c, 0xd0, 0xd8, 0x9d }
},
{ "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
{ 0x84, 0x98, 0x3E, 0x44, 0x1C, 0x3B, 0xD2, 0x6E,
0xBA, 0xAE, 0x4A, 0xA1, 0xF9, 0x51, 0x29, 0xE5,
0xE5, 0x46, 0x70, 0xF1 }
}
};
int i;
unsigned char tmp[20];
hash_state md;
for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
sha1_init(&md);
sha1_process(&md, (unsigned char*)tests[i].msg, (unsigned long)strlen(tests[i].msg));
sha1_done(&md, tmp);
if (XMEMCMP(tmp, tests[i].hash, 20) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/hashes/sha1.c,v $ */
/* $Revision: 1.10 $ */
/* $Date: 2007/05/12 14:25:28 $ */

View file

@ -0,0 +1,87 @@
#ifndef TOMCRYPT_H_
#define TOMCRYPT_H_
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <ctype.h>
#include <limits.h>
/* use configuration data */
#include "tomcrypt_custom.h"
#ifdef __cplusplus
extern "C" {
#endif
/* version */
#define CRYPT 0x0117
#define SCRYPT "1.17"
/* max size of either a cipher/hash block or symmetric key [largest of the two] */
#define MAXBLOCKSIZE 128
/* descriptor table size */
#define TAB_SIZE 32
/* error codes [will be expanded in future releases] */
enum {
CRYPT_OK=0, /* Result OK */
CRYPT_ERROR, /* Generic Error */
CRYPT_NOP, /* Not a failure but no operation was performed */
CRYPT_INVALID_KEYSIZE, /* Invalid key size given */
CRYPT_INVALID_ROUNDS, /* Invalid number of rounds */
CRYPT_FAIL_TESTVECTOR, /* Algorithm failed test vectors */
CRYPT_BUFFER_OVERFLOW, /* Not enough space for output */
CRYPT_INVALID_PACKET, /* Invalid input packet given */
CRYPT_INVALID_PRNGSIZE, /* Invalid number of bits for a PRNG */
CRYPT_ERROR_READPRNG, /* Could not read enough from PRNG */
CRYPT_INVALID_CIPHER, /* Invalid cipher specified */
CRYPT_INVALID_HASH, /* Invalid hash specified */
CRYPT_INVALID_PRNG, /* Invalid PRNG specified */
CRYPT_MEM, /* Out of memory */
CRYPT_PK_TYPE_MISMATCH, /* Not equivalent types of PK keys */
CRYPT_PK_NOT_PRIVATE, /* Requires a private PK key */
CRYPT_INVALID_ARG, /* Generic invalid argument */
CRYPT_FILE_NOTFOUND, /* File Not Found */
CRYPT_PK_INVALID_TYPE, /* Invalid type of PK key */
CRYPT_PK_INVALID_SYSTEM,/* Invalid PK system specified */
CRYPT_PK_DUP, /* Duplicate key already in key ring */
CRYPT_PK_NOT_FOUND, /* Key not found in keyring */
CRYPT_PK_INVALID_SIZE, /* Invalid size input for PK parameters */
CRYPT_INVALID_PRIME_SIZE,/* Invalid size of prime requested */
CRYPT_PK_INVALID_PADDING /* Invalid padding on input */
};
#include "tomcrypt_cfg.h"
#include "tomcrypt_macros.h"
#include "tomcrypt_cipher.h"
#include "tomcrypt_hash.h"
#include "tomcrypt_mac.h"
#include "tomcrypt_prng.h"
#include "tomcrypt_pk.h"
#include "tomcrypt_math.h"
#include "tomcrypt_misc.h"
#include "tomcrypt_argchk.h"
#include "tomcrypt_pkcs.h"
#ifdef __cplusplus
}
#endif
#endif /* TOMCRYPT_H_ */
/* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt.h,v $ */
/* $Revision: 1.21 $ */
/* $Date: 2006/12/16 19:34:05 $ */

View file

@ -0,0 +1,38 @@
/* Defines the LTC_ARGCHK macro used within the library */
/* ARGTYPE is defined in mycrypt_cfg.h */
#if ARGTYPE == 0
#include <signal.h>
/* this is the default LibTomCrypt macro */
void crypt_argchk(char *v, char *s, int d);
#define LTC_ARGCHK(x) if (!(x)) { crypt_argchk(#x, __FILE__, __LINE__); }
#define LTC_ARGCHKVD(x) LTC_ARGCHK(x)
#elif ARGTYPE == 1
/* fatal type of error */
#define LTC_ARGCHK(x) assert((x))
#define LTC_ARGCHKVD(x) LTC_ARGCHK(x)
#elif ARGTYPE == 2
#define LTC_ARGCHK(x) if (!(x)) { fprintf(stderr, "\nwarning: ARGCHK failed at %s:%d\n", __FILE__, __LINE__); }
#define LTC_ARGCHKVD(x) LTC_ARGCHK(x)
#elif ARGTYPE == 3
#define LTC_ARGCHK(x)
#define LTC_ARGCHKVD(x) LTC_ARGCHK(x)
#elif ARGTYPE == 4
#define LTC_ARGCHK(x) if (!(x)) return CRYPT_INVALID_ARG;
#define LTC_ARGCHKVD(x) if (!(x)) return;
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_argchk.h,v $ */
/* $Revision: 1.5 $ */
/* $Date: 2006/08/27 20:50:21 $ */

View file

@ -0,0 +1,136 @@
/* This is the build config file.
*
* With this you can setup what to inlcude/exclude automatically during any build. Just comment
* out the line that #define's the word for the thing you want to remove. phew!
*/
#ifndef TOMCRYPT_CFG_H
#define TOMCRYPT_CFG_H
#if defined(_WIN32) || defined(_MSC_VER)
#define LTC_CALL __cdecl
#else
#ifndef LTC_CALL
#define LTC_CALL
#endif
#endif
#ifndef LTC_EXPORT
#define LTC_EXPORT
#endif
/* certain platforms use macros for these, making the prototypes broken */
#ifndef LTC_NO_PROTOTYPES
/* you can change how memory allocation works ... */
LTC_EXPORT void * LTC_CALL XMALLOC(size_t n);
LTC_EXPORT void * LTC_CALL XREALLOC(void *p, size_t n);
LTC_EXPORT void * LTC_CALL XCALLOC(size_t n, size_t s);
LTC_EXPORT void LTC_CALL XFREE(void *p);
LTC_EXPORT void LTC_CALL XQSORT(void *base, size_t nmemb, size_t size, int(*compar)(const void *, const void *));
/* change the clock function too */
LTC_EXPORT clock_t LTC_CALL XCLOCK(void);
/* various other functions */
LTC_EXPORT void * LTC_CALL XMEMCPY(void *dest, const void *src, size_t n);
LTC_EXPORT int LTC_CALL XMEMCMP(const void *s1, const void *s2, size_t n);
LTC_EXPORT void * LTC_CALL XMEMSET(void *s, int c, size_t n);
LTC_EXPORT int LTC_CALL XSTRCMP(const char *s1, const char *s2);
#endif
/* type of argument checking, 0=default, 1=fatal and 2=error+continue, 3=nothing */
#ifndef ARGTYPE
#define ARGTYPE 0
#endif
/* Controls endianess and size of registers. Leave uncommented to get platform neutral [slower] code
*
* Note: in order to use the optimized macros your platform must support unaligned 32 and 64 bit read/writes.
* The x86 platforms allow this but some others [ARM for instance] do not. On those platforms you **MUST**
* use the portable [slower] macros.
*/
/* detect x86-32 machines somewhat */
#if !defined(__STRICT_ANSI__) && (defined(INTEL_CC) || (defined(_MSC_VER) && defined(WIN32)) || (defined(__GNUC__) && (defined(__DJGPP__) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__i386__))))
#define ENDIAN_LITTLE
#define ENDIAN_32BITWORD
#define LTC_FAST
#define LTC_FAST_TYPE unsigned long
#endif
/* detects MIPS R5900 processors (PS2) */
#if (defined(__R5900) || defined(R5900) || defined(__R5900__)) && (defined(_mips) || defined(__mips__) || defined(mips))
#define ENDIAN_LITTLE
#define ENDIAN_64BITWORD
#endif
/* detect amd64 */
#if !defined(__STRICT_ANSI__) && defined(__x86_64__)
#define ENDIAN_LITTLE
#define ENDIAN_64BITWORD
#define LTC_FAST
#define LTC_FAST_TYPE unsigned long
#endif
/* detect PPC32 */
#if !defined(__STRICT_ANSI__) && defined(LTC_PPC32)
#define ENDIAN_BIG
#define ENDIAN_32BITWORD
#define LTC_FAST
#define LTC_FAST_TYPE unsigned long
#endif
/* detect sparc and sparc64 */
#if defined(__sparc__)
#define ENDIAN_BIG
#if defined(__arch64__)
#define ENDIAN_64BITWORD
#else
#define ENDIAN_32BITWORD
#endif
#endif
#ifdef LTC_NO_FAST
#ifdef LTC_FAST
#undef LTC_FAST
#endif
#endif
/* No asm is a quick way to disable anything "not portable" */
#ifdef LTC_NO_ASM
#undef ENDIAN_LITTLE
#undef ENDIAN_BIG
#undef ENDIAN_32BITWORD
#undef ENDIAN_64BITWORD
#undef LTC_FAST
#undef LTC_FAST_TYPE
#define LTC_NO_ROLC
#define LTC_NO_BSWAP
#endif
/* #define ENDIAN_LITTLE */
/* #define ENDIAN_BIG */
/* #define ENDIAN_32BITWORD */
/* #define ENDIAN_64BITWORD */
#if (defined(ENDIAN_BIG) || defined(ENDIAN_LITTLE)) && !(defined(ENDIAN_32BITWORD) || defined(ENDIAN_64BITWORD))
#error You must specify a word size as well as endianess in tomcrypt_cfg.h
#endif
#if !(defined(ENDIAN_BIG) || defined(ENDIAN_LITTLE))
#define ENDIAN_NEUTRAL
#endif
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_cfg.h,v $ */
/* $Revision: 1.19 $ */
/* $Date: 2006/12/04 02:19:48 $ */

View file

@ -0,0 +1,891 @@
/* ---- SYMMETRIC KEY STUFF -----
*
* We put each of the ciphers scheduled keys in their own structs then we put all of
* the key formats in one union. This makes the function prototypes easier to use.
*/
#ifdef LTC_BLOWFISH
struct blowfish_key {
ulong32 S[4][256];
ulong32 K[18];
};
#endif
#ifdef LTC_RC5
struct rc5_key {
int rounds;
ulong32 K[50];
};
#endif
#ifdef LTC_RC6
struct rc6_key {
ulong32 K[44];
};
#endif
#ifdef LTC_SAFERP
struct saferp_key {
unsigned char K[33][16];
long rounds;
};
#endif
#ifdef LTC_RIJNDAEL
struct rijndael_key {
ulong32 eK[60], dK[60];
int Nr;
};
#endif
#ifdef LTC_KSEED
struct kseed_key {
ulong32 K[32], dK[32];
};
#endif
#ifdef LTC_KASUMI
struct kasumi_key {
ulong32 KLi1[8], KLi2[8],
KOi1[8], KOi2[8], KOi3[8],
KIi1[8], KIi2[8], KIi3[8];
};
#endif
#ifdef LTC_XTEA
struct xtea_key {
unsigned long A[32], B[32];
};
#endif
#ifdef LTC_TWOFISH
#ifndef LTC_TWOFISH_SMALL
struct twofish_key {
ulong32 S[4][256], K[40];
};
#else
struct twofish_key {
ulong32 K[40];
unsigned char S[32], start;
};
#endif
#endif
#ifdef LTC_SAFER
#define LTC_SAFER_K64_DEFAULT_NOF_ROUNDS 6
#define LTC_SAFER_K128_DEFAULT_NOF_ROUNDS 10
#define LTC_SAFER_SK64_DEFAULT_NOF_ROUNDS 8
#define LTC_SAFER_SK128_DEFAULT_NOF_ROUNDS 10
#define LTC_SAFER_MAX_NOF_ROUNDS 13
#define LTC_SAFER_BLOCK_LEN 8
#define LTC_SAFER_KEY_LEN (1 + LTC_SAFER_BLOCK_LEN * (1 + 2 * LTC_SAFER_MAX_NOF_ROUNDS))
typedef unsigned char safer_block_t[LTC_SAFER_BLOCK_LEN];
typedef unsigned char safer_key_t[LTC_SAFER_KEY_LEN];
struct safer_key { safer_key_t key; };
#endif
#ifdef LTC_RC2
struct rc2_key { unsigned xkey[64]; };
#endif
#ifdef LTC_DES
struct des_key {
ulong32 ek[32], dk[32];
};
struct des3_key {
ulong32 ek[3][32], dk[3][32];
};
#endif
#ifdef LTC_CAST5
struct cast5_key {
ulong32 K[32], keylen;
};
#endif
#ifdef LTC_NOEKEON
struct noekeon_key {
ulong32 K[4], dK[4];
};
#endif
#ifdef LTC_SKIPJACK
struct skipjack_key {
unsigned char key[10];
};
#endif
#ifdef LTC_KHAZAD
struct khazad_key {
ulong64 roundKeyEnc[8 + 1];
ulong64 roundKeyDec[8 + 1];
};
#endif
#ifdef LTC_ANUBIS
struct anubis_key {
int keyBits;
int R;
ulong32 roundKeyEnc[18 + 1][4];
ulong32 roundKeyDec[18 + 1][4];
};
#endif
#ifdef LTC_MULTI2
struct multi2_key {
int N;
ulong32 uk[8];
};
#endif
typedef union Symmetric_key {
#ifdef LTC_DES
struct des_key des;
struct des3_key des3;
#endif
#ifdef LTC_RC2
struct rc2_key rc2;
#endif
#ifdef LTC_SAFER
struct safer_key safer;
#endif
#ifdef LTC_TWOFISH
struct twofish_key twofish;
#endif
#ifdef LTC_BLOWFISH
struct blowfish_key blowfish;
#endif
#ifdef LTC_RC5
struct rc5_key rc5;
#endif
#ifdef LTC_RC6
struct rc6_key rc6;
#endif
#ifdef LTC_SAFERP
struct saferp_key saferp;
#endif
#ifdef LTC_RIJNDAEL
struct rijndael_key rijndael;
#endif
#ifdef LTC_XTEA
struct xtea_key xtea;
#endif
#ifdef LTC_CAST5
struct cast5_key cast5;
#endif
#ifdef LTC_NOEKEON
struct noekeon_key noekeon;
#endif
#ifdef LTC_SKIPJACK
struct skipjack_key skipjack;
#endif
#ifdef LTC_KHAZAD
struct khazad_key khazad;
#endif
#ifdef LTC_ANUBIS
struct anubis_key anubis;
#endif
#ifdef LTC_KSEED
struct kseed_key kseed;
#endif
#ifdef LTC_KASUMI
struct kasumi_key kasumi;
#endif
#ifdef LTC_MULTI2
struct multi2_key multi2;
#endif
void *data;
} symmetric_key;
#ifdef LTC_ECB_MODE
/** A block cipher ECB structure */
typedef struct {
/** The index of the cipher chosen */
int cipher,
/** The block size of the given cipher */
blocklen;
/** The scheduled key */
symmetric_key key;
} symmetric_ECB;
#endif
#ifdef LTC_CFB_MODE
/** A block cipher CFB structure */
typedef struct {
/** The index of the cipher chosen */
int cipher,
/** The block size of the given cipher */
blocklen,
/** The padding offset */
padlen;
/** The current IV */
unsigned char IV[MAXBLOCKSIZE],
/** The pad used to encrypt/decrypt */
pad[MAXBLOCKSIZE];
/** The scheduled key */
symmetric_key key;
} symmetric_CFB;
#endif
#ifdef LTC_OFB_MODE
/** A block cipher OFB structure */
typedef struct {
/** The index of the cipher chosen */
int cipher,
/** The block size of the given cipher */
blocklen,
/** The padding offset */
padlen;
/** The current IV */
unsigned char IV[MAXBLOCKSIZE];
/** The scheduled key */
symmetric_key key;
} symmetric_OFB;
#endif
#ifdef LTC_CBC_MODE
/** A block cipher CBC structure */
typedef struct {
/** The index of the cipher chosen */
int cipher,
/** The block size of the given cipher */
blocklen;
/** The current IV */
unsigned char IV[MAXBLOCKSIZE];
/** The scheduled key */
symmetric_key key;
} symmetric_CBC;
#endif
#ifdef LTC_CTR_MODE
/** A block cipher CTR structure */
typedef struct {
/** The index of the cipher chosen */
int cipher,
/** The block size of the given cipher */
blocklen,
/** The padding offset */
padlen,
/** The mode (endianess) of the CTR, 0==little, 1==big */
mode,
/** counter width */
ctrlen;
/** The counter */
unsigned char ctr[MAXBLOCKSIZE],
/** The pad used to encrypt/decrypt */
pad[MAXBLOCKSIZE];
/** The scheduled key */
symmetric_key key;
} symmetric_CTR;
#endif
#ifdef LTC_LRW_MODE
/** A LRW structure */
typedef struct {
/** The index of the cipher chosen (must be a 128-bit block cipher) */
int cipher;
/** The current IV */
unsigned char IV[16],
/** the tweak key */
tweak[16],
/** The current pad, it's the product of the first 15 bytes against the tweak key */
pad[16];
/** The scheduled symmetric key */
symmetric_key key;
#ifdef LRW_TABLES
/** The pre-computed multiplication table */
unsigned char PC[16][256][16];
#endif
} symmetric_LRW;
#endif
#ifdef LTC_F8_MODE
/** A block cipher F8 structure */
typedef struct {
/** The index of the cipher chosen */
int cipher,
/** The block size of the given cipher */
blocklen,
/** The padding offset */
padlen;
/** The current IV */
unsigned char IV[MAXBLOCKSIZE],
MIV[MAXBLOCKSIZE];
/** Current block count */
ulong32 blockcnt;
/** The scheduled key */
symmetric_key key;
} symmetric_F8;
#endif
/** cipher descriptor table, last entry has "name == NULL" to mark the end of table */
extern struct ltc_cipher_descriptor {
/** name of cipher */
char *name;
/** internal ID */
unsigned char ID;
/** min keysize (octets) */
int min_key_length,
/** max keysize (octets) */
max_key_length,
/** block size (octets) */
block_length,
/** default number of rounds */
default_rounds;
/** Setup the cipher
@param key The input symmetric key
@param keylen The length of the input key (octets)
@param num_rounds The requested number of rounds (0==default)
@param skey [out] The destination of the scheduled key
@return CRYPT_OK if successful
*/
int (*setup)(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
/** Encrypt a block
@param pt The plaintext
@param ct [out] The ciphertext
@param skey The scheduled key
@return CRYPT_OK if successful
*/
int (*ecb_encrypt)(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
/** Decrypt a block
@param ct The ciphertext
@param pt [out] The plaintext
@param skey The scheduled key
@return CRYPT_OK if successful
*/
int (*ecb_decrypt)(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
/** Test the block cipher
@return CRYPT_OK if successful, CRYPT_NOP if self-testing has been disabled
*/
int (*test)(void);
/** Terminate the context
@param skey The scheduled key
*/
void (*done)(symmetric_key *skey);
/** Determine a key size
@param keysize [in/out] The size of the key desired and the suggested size
@return CRYPT_OK if successful
*/
int (*keysize)(int *keysize);
/** Accelerators **/
/** Accelerated ECB encryption
@param pt Plaintext
@param ct Ciphertext
@param blocks The number of complete blocks to process
@param skey The scheduled key context
@return CRYPT_OK if successful
*/
int (*accel_ecb_encrypt)(const unsigned char *pt, unsigned char *ct, unsigned long blocks, symmetric_key *skey);
/** Accelerated ECB decryption
@param pt Plaintext
@param ct Ciphertext
@param blocks The number of complete blocks to process
@param skey The scheduled key context
@return CRYPT_OK if successful
*/
int (*accel_ecb_decrypt)(const unsigned char *ct, unsigned char *pt, unsigned long blocks, symmetric_key *skey);
/** Accelerated CBC encryption
@param pt Plaintext
@param ct Ciphertext
@param blocks The number of complete blocks to process
@param IV The initial value (input/output)
@param skey The scheduled key context
@return CRYPT_OK if successful
*/
int (*accel_cbc_encrypt)(const unsigned char *pt, unsigned char *ct, unsigned long blocks, unsigned char *IV, symmetric_key *skey);
/** Accelerated CBC decryption
@param pt Plaintext
@param ct Ciphertext
@param blocks The number of complete blocks to process
@param IV The initial value (input/output)
@param skey The scheduled key context
@return CRYPT_OK if successful
*/
int (*accel_cbc_decrypt)(const unsigned char *ct, unsigned char *pt, unsigned long blocks, unsigned char *IV, symmetric_key *skey);
/** Accelerated CTR encryption
@param pt Plaintext
@param ct Ciphertext
@param blocks The number of complete blocks to process
@param IV The initial value (input/output)
@param mode little or big endian counter (mode=0 or mode=1)
@param skey The scheduled key context
@return CRYPT_OK if successful
*/
int (*accel_ctr_encrypt)(const unsigned char *pt, unsigned char *ct, unsigned long blocks, unsigned char *IV, int mode, symmetric_key *skey);
/** Accelerated LRW
@param pt Plaintext
@param ct Ciphertext
@param blocks The number of complete blocks to process
@param IV The initial value (input/output)
@param tweak The LRW tweak
@param skey The scheduled key context
@return CRYPT_OK if successful
*/
int (*accel_lrw_encrypt)(const unsigned char *pt, unsigned char *ct, unsigned long blocks, unsigned char *IV, const unsigned char *tweak, symmetric_key *skey);
/** Accelerated LRW
@param ct Ciphertext
@param pt Plaintext
@param blocks The number of complete blocks to process
@param IV The initial value (input/output)
@param tweak The LRW tweak
@param skey The scheduled key context
@return CRYPT_OK if successful
*/
int (*accel_lrw_decrypt)(const unsigned char *ct, unsigned char *pt, unsigned long blocks, unsigned char *IV, const unsigned char *tweak, symmetric_key *skey);
/** Accelerated CCM packet (one-shot)
@param key The secret key to use
@param keylen The length of the secret key (octets)
@param uskey A previously scheduled key [optional can be NULL]
@param nonce The session nonce [use once]
@param noncelen The length of the nonce
@param header The header for the session
@param headerlen The length of the header (octets)
@param pt [out] The plaintext
@param ptlen The length of the plaintext (octets)
@param ct [out] The ciphertext
@param tag [out] The destination tag
@param taglen [in/out] The max size and resulting size of the authentication tag
@param direction Encrypt or Decrypt direction (0 or 1)
@return CRYPT_OK if successful
*/
int (*accel_ccm_memory)(
const unsigned char *key, unsigned long keylen,
symmetric_key *uskey,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *header, unsigned long headerlen,
unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen,
int direction);
/** Accelerated GCM packet (one shot)
@param key The secret key
@param keylen The length of the secret key
@param IV The initial vector
@param IVlen The length of the initial vector
@param adata The additional authentication data (header)
@param adatalen The length of the adata
@param pt The plaintext
@param ptlen The length of the plaintext (ciphertext length is the same)
@param ct The ciphertext
@param tag [out] The MAC tag
@param taglen [in/out] The MAC tag length
@param direction Encrypt or Decrypt mode (GCM_ENCRYPT or GCM_DECRYPT)
@return CRYPT_OK on success
*/
int (*accel_gcm_memory)(
const unsigned char *key, unsigned long keylen,
const unsigned char *IV, unsigned long IVlen,
const unsigned char *adata, unsigned long adatalen,
unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen,
int direction);
/** Accelerated one shot LTC_OMAC
@param key The secret key
@param keylen The key length (octets)
@param in The message
@param inlen Length of message (octets)
@param out [out] Destination for tag
@param outlen [in/out] Initial and final size of out
@return CRYPT_OK on success
*/
int (*omac_memory)(
const unsigned char *key, unsigned long keylen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
/** Accelerated one shot XCBC
@param key The secret key
@param keylen The key length (octets)
@param in The message
@param inlen Length of message (octets)
@param out [out] Destination for tag
@param outlen [in/out] Initial and final size of out
@return CRYPT_OK on success
*/
int (*xcbc_memory)(
const unsigned char *key, unsigned long keylen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
/** Accelerated one shot F9
@param key The secret key
@param keylen The key length (octets)
@param in The message
@param inlen Length of message (octets)
@param out [out] Destination for tag
@param outlen [in/out] Initial and final size of out
@return CRYPT_OK on success
@remark Requires manual padding
*/
int (*f9_memory)(
const unsigned char *key, unsigned long keylen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
} cipher_descriptor[];
#ifdef LTC_BLOWFISH
int blowfish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int blowfish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int blowfish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int blowfish_test(void);
void blowfish_done(symmetric_key *skey);
int blowfish_keysize(int *keysize);
extern const struct ltc_cipher_descriptor blowfish_desc;
#endif
#ifdef LTC_RC5
int rc5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int rc5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int rc5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int rc5_test(void);
void rc5_done(symmetric_key *skey);
int rc5_keysize(int *keysize);
extern const struct ltc_cipher_descriptor rc5_desc;
#endif
#ifdef LTC_RC6
int rc6_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int rc6_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int rc6_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int rc6_test(void);
void rc6_done(symmetric_key *skey);
int rc6_keysize(int *keysize);
extern const struct ltc_cipher_descriptor rc6_desc;
#endif
#ifdef LTC_RC2
int rc2_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int rc2_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int rc2_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int rc2_test(void);
void rc2_done(symmetric_key *skey);
int rc2_keysize(int *keysize);
extern const struct ltc_cipher_descriptor rc2_desc;
#endif
#ifdef LTC_SAFERP
int saferp_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int saferp_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int saferp_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int saferp_test(void);
void saferp_done(symmetric_key *skey);
int saferp_keysize(int *keysize);
extern const struct ltc_cipher_descriptor saferp_desc;
#endif
#ifdef LTC_SAFER
int safer_k64_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int safer_sk64_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int safer_k128_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int safer_sk128_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int safer_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key);
int safer_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key);
int safer_k64_test(void);
int safer_sk64_test(void);
int safer_sk128_test(void);
void safer_done(symmetric_key *skey);
int safer_64_keysize(int *keysize);
int safer_128_keysize(int *keysize);
extern const struct ltc_cipher_descriptor safer_k64_desc, safer_k128_desc, safer_sk64_desc, safer_sk128_desc;
#endif
#ifdef LTC_RIJNDAEL
/* make aes an alias */
#define aes_setup rijndael_setup
#define aes_ecb_encrypt rijndael_ecb_encrypt
#define aes_ecb_decrypt rijndael_ecb_decrypt
#define aes_test rijndael_test
#define aes_done rijndael_done
#define aes_keysize rijndael_keysize
#define aes_enc_setup rijndael_enc_setup
#define aes_enc_ecb_encrypt rijndael_enc_ecb_encrypt
#define aes_enc_keysize rijndael_enc_keysize
int rijndael_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int rijndael_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int rijndael_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int rijndael_test(void);
void rijndael_done(symmetric_key *skey);
int rijndael_keysize(int *keysize);
int rijndael_enc_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int rijndael_enc_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
void rijndael_enc_done(symmetric_key *skey);
int rijndael_enc_keysize(int *keysize);
extern const struct ltc_cipher_descriptor rijndael_desc, aes_desc;
extern const struct ltc_cipher_descriptor rijndael_enc_desc, aes_enc_desc;
#endif
#ifdef LTC_XTEA
int xtea_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int xtea_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int xtea_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int xtea_test(void);
void xtea_done(symmetric_key *skey);
int xtea_keysize(int *keysize);
extern const struct ltc_cipher_descriptor xtea_desc;
#endif
#ifdef LTC_TWOFISH
int twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int twofish_test(void);
void twofish_done(symmetric_key *skey);
int twofish_keysize(int *keysize);
extern const struct ltc_cipher_descriptor twofish_desc;
#endif
#ifdef LTC_DES
int des_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int des_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int des_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int des_test(void);
void des_done(symmetric_key *skey);
int des_keysize(int *keysize);
int des3_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int des3_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int des3_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int des3_test(void);
void des3_done(symmetric_key *skey);
int des3_keysize(int *keysize);
extern const struct ltc_cipher_descriptor des_desc, des3_desc;
#endif
#ifdef LTC_CAST5
int cast5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int cast5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int cast5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int cast5_test(void);
void cast5_done(symmetric_key *skey);
int cast5_keysize(int *keysize);
extern const struct ltc_cipher_descriptor cast5_desc;
#endif
#ifdef LTC_NOEKEON
int noekeon_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int noekeon_test(void);
void noekeon_done(symmetric_key *skey);
int noekeon_keysize(int *keysize);
extern const struct ltc_cipher_descriptor noekeon_desc;
#endif
#ifdef LTC_SKIPJACK
int skipjack_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int skipjack_test(void);
void skipjack_done(symmetric_key *skey);
int skipjack_keysize(int *keysize);
extern const struct ltc_cipher_descriptor skipjack_desc;
#endif
#ifdef LTC_KHAZAD
int khazad_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int khazad_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int khazad_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int khazad_test(void);
void khazad_done(symmetric_key *skey);
int khazad_keysize(int *keysize);
extern const struct ltc_cipher_descriptor khazad_desc;
#endif
#ifdef LTC_ANUBIS
int anubis_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int anubis_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int anubis_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int anubis_test(void);
void anubis_done(symmetric_key *skey);
int anubis_keysize(int *keysize);
extern const struct ltc_cipher_descriptor anubis_desc;
#endif
#ifdef LTC_KSEED
int kseed_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int kseed_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int kseed_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int kseed_test(void);
void kseed_done(symmetric_key *skey);
int kseed_keysize(int *keysize);
extern const struct ltc_cipher_descriptor kseed_desc;
#endif
#ifdef LTC_KASUMI
int kasumi_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int kasumi_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int kasumi_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int kasumi_test(void);
void kasumi_done(symmetric_key *skey);
int kasumi_keysize(int *keysize);
extern const struct ltc_cipher_descriptor kasumi_desc;
#endif
#ifdef LTC_MULTI2
int multi2_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int multi2_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int multi2_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int multi2_test(void);
void multi2_done(symmetric_key *skey);
int multi2_keysize(int *keysize);
extern const struct ltc_cipher_descriptor multi2_desc;
#endif
#ifdef LTC_ECB_MODE
int ecb_start(int cipher, const unsigned char *key,
int keylen, int num_rounds, symmetric_ECB *ecb);
int ecb_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long len, symmetric_ECB *ecb);
int ecb_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_ECB *ecb);
int ecb_done(symmetric_ECB *ecb);
#endif
#ifdef LTC_CFB_MODE
int cfb_start(int cipher, const unsigned char *IV, const unsigned char *key,
int keylen, int num_rounds, symmetric_CFB *cfb);
int cfb_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long len, symmetric_CFB *cfb);
int cfb_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_CFB *cfb);
int cfb_getiv(unsigned char *IV, unsigned long *len, symmetric_CFB *cfb);
int cfb_setiv(const unsigned char *IV, unsigned long len, symmetric_CFB *cfb);
int cfb_done(symmetric_CFB *cfb);
#endif
#ifdef LTC_OFB_MODE
int ofb_start(int cipher, const unsigned char *IV, const unsigned char *key,
int keylen, int num_rounds, symmetric_OFB *ofb);
int ofb_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long len, symmetric_OFB *ofb);
int ofb_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_OFB *ofb);
int ofb_getiv(unsigned char *IV, unsigned long *len, symmetric_OFB *ofb);
int ofb_setiv(const unsigned char *IV, unsigned long len, symmetric_OFB *ofb);
int ofb_done(symmetric_OFB *ofb);
#endif
#ifdef LTC_CBC_MODE
int cbc_start(int cipher, const unsigned char *IV, const unsigned char *key,
int keylen, int num_rounds, symmetric_CBC *cbc);
int cbc_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long len, symmetric_CBC *cbc);
int cbc_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_CBC *cbc);
int cbc_getiv(unsigned char *IV, unsigned long *len, symmetric_CBC *cbc);
int cbc_setiv(const unsigned char *IV, unsigned long len, symmetric_CBC *cbc);
int cbc_done(symmetric_CBC *cbc);
#endif
#ifdef LTC_CTR_MODE
#define CTR_COUNTER_LITTLE_ENDIAN 0x0000
#define CTR_COUNTER_BIG_ENDIAN 0x1000
#define LTC_CTR_RFC3686 0x2000
int ctr_start( int cipher,
const unsigned char *IV,
const unsigned char *key, int keylen,
int num_rounds, int ctr_mode,
symmetric_CTR *ctr);
int ctr_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long len, symmetric_CTR *ctr);
int ctr_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_CTR *ctr);
int ctr_getiv(unsigned char *IV, unsigned long *len, symmetric_CTR *ctr);
int ctr_setiv(const unsigned char *IV, unsigned long len, symmetric_CTR *ctr);
int ctr_done(symmetric_CTR *ctr);
int ctr_test(void);
#endif
#ifdef LTC_LRW_MODE
#define LRW_ENCRYPT 0
#define LRW_DECRYPT 1
int lrw_start( int cipher,
const unsigned char *IV,
const unsigned char *key, int keylen,
const unsigned char *tweak,
int num_rounds,
symmetric_LRW *lrw);
int lrw_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long len, symmetric_LRW *lrw);
int lrw_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_LRW *lrw);
int lrw_getiv(unsigned char *IV, unsigned long *len, symmetric_LRW *lrw);
int lrw_setiv(const unsigned char *IV, unsigned long len, symmetric_LRW *lrw);
int lrw_done(symmetric_LRW *lrw);
int lrw_test(void);
/* don't call */
int lrw_process(const unsigned char *pt, unsigned char *ct, unsigned long len, int mode, symmetric_LRW *lrw);
#endif
#ifdef LTC_F8_MODE
int f8_start( int cipher, const unsigned char *IV,
const unsigned char *key, int keylen,
const unsigned char *salt_key, int skeylen,
int num_rounds, symmetric_F8 *f8);
int f8_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long len, symmetric_F8 *f8);
int f8_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_F8 *f8);
int f8_getiv(unsigned char *IV, unsigned long *len, symmetric_F8 *f8);
int f8_setiv(const unsigned char *IV, unsigned long len, symmetric_F8 *f8);
int f8_done(symmetric_F8 *f8);
int f8_test_mode(void);
#endif
#ifdef LTC_XTS_MODE
typedef struct {
symmetric_key key1, key2;
int cipher;
} symmetric_xts;
int xts_start( int cipher,
const unsigned char *key1,
const unsigned char *key2,
unsigned long keylen,
int num_rounds,
symmetric_xts *xts);
int xts_encrypt(
const unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
const unsigned char *tweak,
symmetric_xts *xts);
int xts_decrypt(
const unsigned char *ct, unsigned long ptlen,
unsigned char *pt,
const unsigned char *tweak,
symmetric_xts *xts);
void xts_done(symmetric_xts *xts);
int xts_test(void);
void xts_mult_x(unsigned char *I);
#endif
int find_cipher(const char *name);
int find_cipher_any(const char *name, int blocklen, int keylen);
int find_cipher_id(unsigned char ID);
int register_cipher(const struct ltc_cipher_descriptor *cipher);
int unregister_cipher(const struct ltc_cipher_descriptor *cipher);
int cipher_is_valid(int idx);
LTC_MUTEX_PROTO(ltc_cipher_mutex)
/* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_cipher.h,v $ */
/* $Revision: 1.54 $ */
/* $Date: 2007/05/12 14:37:41 $ */

View file

@ -0,0 +1,424 @@
#ifndef TOMCRYPT_CUSTOM_H_
#define TOMCRYPT_CUSTOM_H_
#define LTC_NO_CIPHERS
#define LTC_NO_HASHES
#define LTC_NO_MACS
#define LTC_NO_PRNGS
#define LTC_NO_CURVES
#define LTC_NO_MODES
#define LTC_NO_PKCS
#define LTC_NO_ROLC
#define LTC_SOURCE
#define LTC_SHA1
#define LTC_MD5
#define LTC_DER
#define LTC_RC4
#define USE_LTM
#define LTM_DESC
/* macros for various libc functions you can change for embedded targets */
#ifndef XMALLOC
#ifdef malloc
#define LTC_NO_PROTOTYPES
#endif
#define XMALLOC LibTomMalloc
#endif
#ifndef XREALLOC
#ifdef realloc
#define LTC_NO_PROTOTYPES
#endif
#define XREALLOC LibTomRealloc
#endif
#ifndef XCALLOC
#ifdef calloc
#define LTC_NO_PROTOTYPES
#endif
#define XCALLOC LibTomCalloc
#endif
#ifndef XFREE
#ifdef free
#define LTC_NO_PROTOTYPES
#endif
#define XFREE LibTomFree
#endif
#ifndef XMEMSET
#ifdef memset
#define LTC_NO_PROTOTYPES
#endif
#define XMEMSET memset
#endif
#ifndef XMEMCPY
#ifdef memcpy
#define LTC_NO_PROTOTYPES
#endif
#define XMEMCPY memcpy
#endif
#ifndef XMEMCMP
#ifdef memcmp
#define LTC_NO_PROTOTYPES
#endif
#define XMEMCMP memcmp
#endif
#ifndef XSTRCMP
#ifdef strcmp
#define LTC_NO_PROTOTYPES
#endif
#define XSTRCMP strcmp
#endif
#ifndef XCLOCK
#define XCLOCK LibTomClock
#endif
#ifndef XCLOCKS_PER_SEC
#define XCLOCKS_PER_SEC CLOCKS_PER_SEC
#endif
#ifndef XQSORT
#ifdef qsort
#define LTC_NO_PROTOTYPES
#endif
#define XQSORT LibTomQsort
#endif
/* Easy button? */
#ifdef LTC_EASY
#define LTC_NO_CIPHERS
#define LTC_RIJNDAEL
#define LTC_BLOWFISH
#define LTC_DES
#define LTC_CAST5
#define LTC_NO_MODES
#define LTC_ECB_MODE
#define LTC_CBC_MODE
#define LTC_CTR_MODE
#define LTC_NO_HASHES
#define LTC_SHA1
#define LTC_SHA512
#define LTC_SHA384
#define LTC_SHA256
#define LTC_SHA224
#define LTC_NO_MACS
#define LTC_HMAC
#define LTC_OMAC
#define LTC_CCM_MODE
#define LTC_NO_PRNGS
#define LTC_SPRNG
#define LTC_YARROW
#define LTC_DEVRANDOM
#define TRY_URANDOM_FIRST
#define LTC_NO_PK
#define LTC_MRSA
#define LTC_MECC
#endif
/* Use small code where possible */
/* #define LTC_SMALL_CODE */
/* Enable self-test test vector checking */
#ifndef LTC_NO_TEST
#define LTC_TEST
#endif
/* clean the stack of functions which put private information on stack */
/* #define LTC_CLEAN_STACK */
/* disable all file related functions */
/* #define LTC_NO_FILE */
/* disable all forms of ASM */
/* #define LTC_NO_ASM */
/* disable FAST mode */
/* #define LTC_NO_FAST */
/* disable BSWAP on x86 */
/* #define LTC_NO_BSWAP */
/* ---> Symmetric Block Ciphers <--- */
#ifndef LTC_NO_CIPHERS
#define LTC_BLOWFISH
#define LTC_RC2
#define LTC_RC5
#define LTC_RC6
#define LTC_SAFERP
#define LTC_RIJNDAEL
#define LTC_XTEA
/* _TABLES tells it to use tables during setup, _SMALL means to use the smaller scheduled key format
* (saves 4KB of ram), _ALL_TABLES enables all tables during setup */
#define LTC_TWOFISH
#ifndef LTC_NO_TABLES
#define LTC_TWOFISH_TABLES
/* #define LTC_TWOFISH_ALL_TABLES */
#else
#define LTC_TWOFISH_SMALL
#endif
/* #define LTC_TWOFISH_SMALL */
/* LTC_DES includes EDE triple-LTC_DES */
#define LTC_DES
#define LTC_CAST5
#define LTC_NOEKEON
#define LTC_SKIPJACK
#define LTC_SAFER
#define LTC_KHAZAD
#define LTC_ANUBIS
#define LTC_ANUBIS_TWEAK
#define LTC_KSEED
#define LTC_KASUMI
#endif /* LTC_NO_CIPHERS */
/* ---> Block Cipher Modes of Operation <--- */
#ifndef LTC_NO_MODES
#define LTC_CFB_MODE
#define LTC_OFB_MODE
#define LTC_ECB_MODE
#define LTC_CBC_MODE
#define LTC_CTR_MODE
/* F8 chaining mode */
#define LTC_F8_MODE
/* LRW mode */
#define LTC_LRW_MODE
#ifndef LTC_NO_TABLES
/* like GCM mode this will enable 16 8x128 tables [64KB] that make
* seeking very fast.
*/
#define LRW_TABLES
#endif
/* XTS mode */
#define LTC_XTS_MODE
#endif /* LTC_NO_MODES */
/* ---> One-Way Hash Functions <--- */
#ifndef LTC_NO_HASHES
#define LTC_CHC_HASH
#define LTC_WHIRLPOOL
#define LTC_SHA512
#define LTC_SHA384
#define LTC_SHA256
#define LTC_SHA224
#define LTC_TIGER
#define LTC_SHA1
#define LTC_MD5
#define LTC_MD4
#define LTC_MD2
#define LTC_RIPEMD128
#define LTC_RIPEMD160
#define LTC_RIPEMD256
#define LTC_RIPEMD320
#endif /* LTC_NO_HASHES */
/* ---> MAC functions <--- */
#ifndef LTC_NO_MACS
#define LTC_HMAC
#define LTC_OMAC
#define LTC_PMAC
#define LTC_XCBC
#define LTC_F9_MODE
#define LTC_PELICAN
#if defined(LTC_PELICAN) && !defined(LTC_RIJNDAEL)
#error Pelican-MAC requires LTC_RIJNDAEL
#endif
/* ---> Encrypt + Authenticate Modes <--- */
#define LTC_EAX_MODE
#if defined(LTC_EAX_MODE) && !(defined(LTC_CTR_MODE) && defined(LTC_OMAC))
#error LTC_EAX_MODE requires CTR and LTC_OMAC mode
#endif
#define LTC_OCB_MODE
#define LTC_CCM_MODE
#define LTC_GCM_MODE
/* Use 64KiB tables */
#ifndef LTC_NO_TABLES
#define LTC_GCM_TABLES
#endif
/* USE SSE2? requires GCC works on x86_32 and x86_64*/
#ifdef LTC_GCM_TABLES
/* #define LTC_GCM_TABLES_SSE2 */
#endif
#endif /* LTC_NO_MACS */
/* Various tidbits of modern neatoness */
#define LTC_BASE64
/* --> Pseudo Random Number Generators <--- */
#ifndef LTC_NO_PRNGS
/* Yarrow */
#define LTC_YARROW
/* which descriptor of AES to use? */
/* 0 = rijndael_enc 1 = aes_enc, 2 = rijndael [full], 3 = aes [full] */
#define LTC_YARROW_AES 0
#if defined(LTC_YARROW) && !defined(LTC_CTR_MODE)
#error LTC_YARROW requires LTC_CTR_MODE chaining mode to be defined!
#endif
/* a PRNG that simply reads from an available system source */
#define LTC_SPRNG
/* The LTC_RC4 stream cipher */
#define LTC_RC4
/* Fortuna PRNG */
#define LTC_FORTUNA
/* reseed every N calls to the read function */
#define LTC_FORTUNA_WD 10
/* number of pools (4..32) can save a bit of ram by lowering the count */
#define LTC_FORTUNA_POOLS 32
/* Greg's LTC_SOBER128 PRNG ;-0 */
#define LTC_SOBER128
/* the *nix style /dev/random device */
#define LTC_DEVRANDOM
/* try /dev/urandom before trying /dev/random */
#define TRY_URANDOM_FIRST
#endif /* LTC_NO_PRNGS */
/* ---> math provider? <--- */
#ifndef LTC_NO_MATH
/* LibTomMath */
#define LTM_LTC_DESC
/* TomsFastMath */
//#define TFM_LTC_DESC
#endif /* LTC_NO_MATH */
/* ---> Public Key Crypto <--- */
#ifndef LTC_NO_PK
/* Include RSA support */
#define LTC_MRSA
/* Include Katja (a Rabin variant like RSA) */
/* #define MKAT */
/* Digital Signature Algorithm */
#define LTC_MDSA
/* ECC */
#define LTC_MECC
/* use Shamir's trick for point mul (speeds up signature verification) */
#define LTC_ECC_SHAMIR
#if defined(TFM_LTC_DESC) && defined(LTC_MECC)
#define LTC_MECC_ACCEL
#endif
/* do we want fixed point ECC */
/* #define LTC_MECC_FP */
/* Timing Resistant? */
/* #define LTC_ECC_TIMING_RESISTANT */
#endif /* LTC_NO_PK */
/* LTC_PKCS #1 (RSA) and #5 (Password Handling) stuff */
#ifndef LTC_NO_PKCS
#define LTC_PKCS_1
#define LTC_PKCS_5
/* Include ASN.1 DER (required by DSA/RSA) */
#define LTC_DER
#endif /* LTC_NO_PKCS */
/* cleanup */
#ifdef LTC_MECC
/* Supported ECC Key Sizes */
#ifndef LTC_NO_CURVES
#define ECC112
#define ECC128
#define ECC160
#define ECC192
#define ECC224
#define ECC256
#define ECC384
#define ECC521
#endif
#endif
#if defined(LTC_MECC) || defined(LTC_MRSA) || defined(LTC_MDSA) || defined(MKATJA)
/* Include the MPI functionality? (required by the PK algorithms) */
#define MPI
#endif
#ifdef LTC_MRSA
#define LTC_PKCS_1
#endif
#if defined(LTC_DER) && !defined(MPI)
#error ASN.1 DER requires MPI functionality
#endif
#if (defined(LTC_MDSA) || defined(LTC_MRSA) || defined(LTC_MECC) || defined(MKATJA)) && !defined(LTC_DER)
#error PK requires ASN.1 DER functionality, make sure LTC_DER is enabled
#endif
/* THREAD management */
#ifdef LTC_PTHREAD
#include <pthread.h>
#define LTC_MUTEX_GLOBAL(x) pthread_mutex_t x = PTHREAD_MUTEX_INITIALIZER;
#define LTC_MUTEX_PROTO(x) extern pthread_mutex_t x;
#define LTC_MUTEX_TYPE(x) pthread_mutex_t x;
#define LTC_MUTEX_INIT(x) pthread_mutex_init(x, NULL);
#define LTC_MUTEX_LOCK(x) pthread_mutex_lock(x);
#define LTC_MUTEX_UNLOCK(x) pthread_mutex_unlock(x);
#else
/* default no functions */
#define LTC_MUTEX_GLOBAL(x)
#define LTC_MUTEX_PROTO(x)
#define LTC_MUTEX_TYPE(x)
#define LTC_MUTEX_INIT(x)
#define LTC_MUTEX_LOCK(x)
#define LTC_MUTEX_UNLOCK(x)
#endif
/* Debuggers */
/* define this if you use Valgrind, note: it CHANGES the way SOBER-128 and LTC_RC4 work (see the code) */
/* #define LTC_VALGRIND */
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_custom.h,v $ */
/* $Revision: 1.73 $ */
/* $Date: 2007/05/12 14:37:41 $ */

View file

@ -0,0 +1,378 @@
/* ---- HASH FUNCTIONS ---- */
#ifdef LTC_SHA512
struct sha512_state {
ulong64 length, state[8];
unsigned long curlen;
unsigned char buf[128];
};
#endif
#ifdef LTC_SHA256
struct sha256_state {
ulong64 length;
ulong32 state[8], curlen;
unsigned char buf[64];
};
#endif
#ifdef LTC_SHA1
struct sha1_state {
ulong64 length;
ulong32 state[5], curlen;
unsigned char buf[64];
};
#endif
#ifdef LTC_MD5
struct md5_state {
ulong64 length;
ulong32 state[4], curlen;
unsigned char buf[64];
};
#endif
#ifdef LTC_MD4
struct md4_state {
ulong64 length;
ulong32 state[4], curlen;
unsigned char buf[64];
};
#endif
#ifdef LTC_TIGER
struct tiger_state {
ulong64 state[3], length;
unsigned long curlen;
unsigned char buf[64];
};
#endif
#ifdef LTC_MD2
struct md2_state {
unsigned char chksum[16], X[48], buf[16];
unsigned long curlen;
};
#endif
#ifdef LTC_RIPEMD128
struct rmd128_state {
ulong64 length;
unsigned char buf[64];
ulong32 curlen, state[4];
};
#endif
#ifdef LTC_RIPEMD160
struct rmd160_state {
ulong64 length;
unsigned char buf[64];
ulong32 curlen, state[5];
};
#endif
#ifdef LTC_RIPEMD256
struct rmd256_state {
ulong64 length;
unsigned char buf[64];
ulong32 curlen, state[8];
};
#endif
#ifdef LTC_RIPEMD320
struct rmd320_state {
ulong64 length;
unsigned char buf[64];
ulong32 curlen, state[10];
};
#endif
#ifdef LTC_WHIRLPOOL
struct whirlpool_state {
ulong64 length, state[8];
unsigned char buf[64];
ulong32 curlen;
};
#endif
#ifdef LTC_CHC_HASH
struct chc_state {
ulong64 length;
unsigned char state[MAXBLOCKSIZE], buf[MAXBLOCKSIZE];
ulong32 curlen;
};
#endif
typedef union Hash_state {
#ifdef LTC_CHC_HASH
struct chc_state chc;
#endif
#ifdef LTC_WHIRLPOOL
struct whirlpool_state whirlpool;
#endif
#ifdef LTC_SHA512
struct sha512_state sha512;
#endif
#ifdef LTC_SHA256
struct sha256_state sha256;
#endif
#ifdef LTC_SHA1
struct sha1_state sha1;
#endif
#ifdef LTC_MD5
struct md5_state md5;
#endif
#ifdef LTC_MD4
struct md4_state md4;
#endif
#ifdef LTC_MD2
struct md2_state md2;
#endif
#ifdef LTC_TIGER
struct tiger_state tiger;
#endif
#ifdef LTC_RIPEMD128
struct rmd128_state rmd128;
#endif
#ifdef LTC_RIPEMD160
struct rmd160_state rmd160;
#endif
#ifdef LTC_RIPEMD256
struct rmd256_state rmd256;
#endif
#ifdef LTC_RIPEMD320
struct rmd320_state rmd320;
#endif
void *data;
} hash_state;
/** hash descriptor */
extern struct ltc_hash_descriptor {
/** name of hash */
char *name;
/** internal ID */
unsigned char ID;
/** Size of digest in octets */
unsigned long hashsize;
/** Input block size in octets */
unsigned long blocksize;
/** ASN.1 OID */
unsigned long OID[16];
/** Length of DER encoding */
unsigned long OIDlen;
/** Init a hash state
@param hash The hash to initialize
@return CRYPT_OK if successful
*/
int (*init)(hash_state *hash);
/** Process a block of data
@param hash The hash state
@param in The data to hash
@param inlen The length of the data (octets)
@return CRYPT_OK if successful
*/
int (*process)(hash_state *hash, const unsigned char *in, unsigned long inlen);
/** Produce the digest and store it
@param hash The hash state
@param out [out] The destination of the digest
@return CRYPT_OK if successful
*/
int (*done)(hash_state *hash, unsigned char *out);
/** Self-test
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int (*test)(void);
/* accelerated hmac callback: if you need to-do multiple packets just use the generic hmac_memory and provide a hash callback */
int (*hmac_block)(const unsigned char *key, unsigned long keylen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
} hash_descriptor[];
#ifdef LTC_CHC_HASH
int chc_register(int cipher);
int chc_init(hash_state * md);
int chc_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int chc_done(hash_state * md, unsigned char *hash);
int chc_test(void);
extern const struct ltc_hash_descriptor chc_desc;
#endif
#ifdef LTC_WHIRLPOOL
int whirlpool_init(hash_state * md);
int whirlpool_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int whirlpool_done(hash_state * md, unsigned char *hash);
int whirlpool_test(void);
extern const struct ltc_hash_descriptor whirlpool_desc;
#endif
#ifdef LTC_SHA512
int sha512_init(hash_state * md);
int sha512_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int sha512_done(hash_state * md, unsigned char *hash);
int sha512_test(void);
extern const struct ltc_hash_descriptor sha512_desc;
#endif
#ifdef LTC_SHA384
#ifndef LTC_SHA512
#error LTC_SHA512 is required for LTC_SHA384
#endif
int sha384_init(hash_state * md);
#define sha384_process sha512_process
int sha384_done(hash_state * md, unsigned char *hash);
int sha384_test(void);
extern const struct ltc_hash_descriptor sha384_desc;
#endif
#ifdef LTC_SHA256
int sha256_init(hash_state * md);
int sha256_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int sha256_done(hash_state * md, unsigned char *hash);
int sha256_test(void);
extern const struct ltc_hash_descriptor sha256_desc;
#ifdef LTC_SHA224
#ifndef LTC_SHA256
#error LTC_SHA256 is required for LTC_SHA224
#endif
int sha224_init(hash_state * md);
#define sha224_process sha256_process
int sha224_done(hash_state * md, unsigned char *hash);
int sha224_test(void);
extern const struct ltc_hash_descriptor sha224_desc;
#endif
#endif
#ifdef LTC_SHA1
int sha1_init(hash_state * md);
int sha1_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int sha1_done(hash_state * md, unsigned char *hash);
int sha1_test(void);
extern const struct ltc_hash_descriptor sha1_desc;
#endif
#ifdef LTC_MD5
int md5_init(hash_state * md);
int md5_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int md5_done(hash_state * md, unsigned char *hash);
int md5_test(void);
extern const struct ltc_hash_descriptor md5_desc;
#endif
#ifdef LTC_MD4
int md4_init(hash_state * md);
int md4_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int md4_done(hash_state * md, unsigned char *hash);
int md4_test(void);
extern const struct ltc_hash_descriptor md4_desc;
#endif
#ifdef LTC_MD2
int md2_init(hash_state * md);
int md2_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int md2_done(hash_state * md, unsigned char *hash);
int md2_test(void);
extern const struct ltc_hash_descriptor md2_desc;
#endif
#ifdef LTC_TIGER
int tiger_init(hash_state * md);
int tiger_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int tiger_done(hash_state * md, unsigned char *hash);
int tiger_test(void);
extern const struct ltc_hash_descriptor tiger_desc;
#endif
#ifdef LTC_RIPEMD128
int rmd128_init(hash_state * md);
int rmd128_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int rmd128_done(hash_state * md, unsigned char *hash);
int rmd128_test(void);
extern const struct ltc_hash_descriptor rmd128_desc;
#endif
#ifdef LTC_RIPEMD160
int rmd160_init(hash_state * md);
int rmd160_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int rmd160_done(hash_state * md, unsigned char *hash);
int rmd160_test(void);
extern const struct ltc_hash_descriptor rmd160_desc;
#endif
#ifdef LTC_RIPEMD256
int rmd256_init(hash_state * md);
int rmd256_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int rmd256_done(hash_state * md, unsigned char *hash);
int rmd256_test(void);
extern const struct ltc_hash_descriptor rmd256_desc;
#endif
#ifdef LTC_RIPEMD320
int rmd320_init(hash_state * md);
int rmd320_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int rmd320_done(hash_state * md, unsigned char *hash);
int rmd320_test(void);
extern const struct ltc_hash_descriptor rmd320_desc;
#endif
int find_hash(const char *name);
int find_hash_id(unsigned char ID);
int find_hash_oid(const unsigned long *ID, unsigned long IDlen);
int find_hash_any(const char *name, int digestlen);
int register_hash(const struct ltc_hash_descriptor *hash);
int unregister_hash(const struct ltc_hash_descriptor *hash);
int hash_is_valid(int idx);
LTC_MUTEX_PROTO(ltc_hash_mutex)
int hash_memory(int hash,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int hash_memory_multi(int hash, unsigned char *out, unsigned long *outlen,
const unsigned char *in, unsigned long inlen, ...);
int hash_filehandle(int hash, FILE *in, unsigned char *out, unsigned long *outlen);
int hash_file(int hash, const char *fname, unsigned char *out, unsigned long *outlen);
/* a simple macro for making hash "process" functions */
#define HASH_PROCESS(func_name, compress_name, state_var, block_size) \
int func_name (hash_state * md, const unsigned char *in, unsigned long inlen) \
{ \
unsigned long n; \
int err; \
LTC_ARGCHK(md != NULL); \
LTC_ARGCHK(in != NULL); \
if (md-> state_var .curlen > sizeof(md-> state_var .buf)) { \
return CRYPT_INVALID_ARG; \
} \
while (inlen > 0) { \
if (md-> state_var .curlen == 0 && inlen >= block_size) { \
if ((err = compress_name (md, (unsigned char *)in)) != CRYPT_OK) { \
return err; \
} \
md-> state_var .length += block_size * 8; \
in += block_size; \
inlen -= block_size; \
} else { \
n = MIN(inlen, (block_size - md-> state_var .curlen)); \
memcpy(md-> state_var .buf + md-> state_var.curlen, in, (size_t)n); \
md-> state_var .curlen += n; \
in += n; \
inlen -= n; \
if (md-> state_var .curlen == block_size) { \
if ((err = compress_name (md, md-> state_var .buf)) != CRYPT_OK) { \
return err; \
} \
md-> state_var .length += 8*block_size; \
md-> state_var .curlen = 0; \
} \
} \
} \
return CRYPT_OK; \
}
/* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_hash.h,v $ */
/* $Revision: 1.22 $ */
/* $Date: 2007/05/12 14:32:35 $ */

View file

@ -0,0 +1,384 @@
#ifdef LTC_HMAC
typedef struct Hmac_state {
hash_state md;
int hash;
hash_state hashstate;
unsigned char *key;
} hmac_state;
int hmac_init(hmac_state *hmac, int hash, const unsigned char *key, unsigned long keylen);
int hmac_process(hmac_state *hmac, const unsigned char *in, unsigned long inlen);
int hmac_done(hmac_state *hmac, unsigned char *out, unsigned long *outlen);
int hmac_test(void);
int hmac_memory(int hash,
const unsigned char *key, unsigned long keylen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int hmac_memory_multi(int hash,
const unsigned char *key, unsigned long keylen,
unsigned char *out, unsigned long *outlen,
const unsigned char *in, unsigned long inlen, ...);
int hmac_file(int hash, const char *fname, const unsigned char *key,
unsigned long keylen,
unsigned char *dst, unsigned long *dstlen);
#endif
#ifdef LTC_OMAC
typedef struct {
int cipher_idx,
buflen,
blklen;
unsigned char block[MAXBLOCKSIZE],
prev[MAXBLOCKSIZE],
Lu[2][MAXBLOCKSIZE];
symmetric_key key;
} omac_state;
int omac_init(omac_state *omac, int cipher, const unsigned char *key, unsigned long keylen);
int omac_process(omac_state *omac, const unsigned char *in, unsigned long inlen);
int omac_done(omac_state *omac, unsigned char *out, unsigned long *outlen);
int omac_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int omac_memory_multi(int cipher,
const unsigned char *key, unsigned long keylen,
unsigned char *out, unsigned long *outlen,
const unsigned char *in, unsigned long inlen, ...);
int omac_file(int cipher,
const unsigned char *key, unsigned long keylen,
const char *filename,
unsigned char *out, unsigned long *outlen);
int omac_test(void);
#endif /* LTC_OMAC */
#ifdef LTC_PMAC
typedef struct {
unsigned char Ls[32][MAXBLOCKSIZE], /* L shifted by i bits to the left */
Li[MAXBLOCKSIZE], /* value of Li [current value, we calc from previous recall] */
Lr[MAXBLOCKSIZE], /* L * x^-1 */
block[MAXBLOCKSIZE], /* currently accumulated block */
checksum[MAXBLOCKSIZE]; /* current checksum */
symmetric_key key; /* scheduled key for cipher */
unsigned long block_index; /* index # for current block */
int cipher_idx, /* cipher idx */
block_len, /* length of block */
buflen; /* number of bytes in the buffer */
} pmac_state;
int pmac_init(pmac_state *pmac, int cipher, const unsigned char *key, unsigned long keylen);
int pmac_process(pmac_state *pmac, const unsigned char *in, unsigned long inlen);
int pmac_done(pmac_state *pmac, unsigned char *out, unsigned long *outlen);
int pmac_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *msg, unsigned long msglen,
unsigned char *out, unsigned long *outlen);
int pmac_memory_multi(int cipher,
const unsigned char *key, unsigned long keylen,
unsigned char *out, unsigned long *outlen,
const unsigned char *in, unsigned long inlen, ...);
int pmac_file(int cipher,
const unsigned char *key, unsigned long keylen,
const char *filename,
unsigned char *out, unsigned long *outlen);
int pmac_test(void);
/* internal functions */
int pmac_ntz(unsigned long x);
void pmac_shift_xor(pmac_state *pmac);
#endif /* PMAC */
#ifdef LTC_EAX_MODE
#if !(defined(LTC_OMAC) && defined(LTC_CTR_MODE))
#error LTC_EAX_MODE requires LTC_OMAC and CTR
#endif
typedef struct {
unsigned char N[MAXBLOCKSIZE];
symmetric_CTR ctr;
omac_state headeromac, ctomac;
} eax_state;
int eax_init(eax_state *eax, int cipher, const unsigned char *key, unsigned long keylen,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *header, unsigned long headerlen);
int eax_encrypt(eax_state *eax, const unsigned char *pt, unsigned char *ct, unsigned long length);
int eax_decrypt(eax_state *eax, const unsigned char *ct, unsigned char *pt, unsigned long length);
int eax_addheader(eax_state *eax, const unsigned char *header, unsigned long length);
int eax_done(eax_state *eax, unsigned char *tag, unsigned long *taglen);
int eax_encrypt_authenticate_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *header, unsigned long headerlen,
const unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen);
int eax_decrypt_verify_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *header, unsigned long headerlen,
const unsigned char *ct, unsigned long ctlen,
unsigned char *pt,
unsigned char *tag, unsigned long taglen,
int *stat);
int eax_test(void);
#endif /* EAX MODE */
#ifdef LTC_OCB_MODE
typedef struct {
unsigned char L[MAXBLOCKSIZE], /* L value */
Ls[32][MAXBLOCKSIZE], /* L shifted by i bits to the left */
Li[MAXBLOCKSIZE], /* value of Li [current value, we calc from previous recall] */
Lr[MAXBLOCKSIZE], /* L * x^-1 */
R[MAXBLOCKSIZE], /* R value */
checksum[MAXBLOCKSIZE]; /* current checksum */
symmetric_key key; /* scheduled key for cipher */
unsigned long block_index; /* index # for current block */
int cipher, /* cipher idx */
block_len; /* length of block */
} ocb_state;
int ocb_init(ocb_state *ocb, int cipher,
const unsigned char *key, unsigned long keylen, const unsigned char *nonce);
int ocb_encrypt(ocb_state *ocb, const unsigned char *pt, unsigned char *ct);
int ocb_decrypt(ocb_state *ocb, const unsigned char *ct, unsigned char *pt);
int ocb_done_encrypt(ocb_state *ocb,
const unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen);
int ocb_done_decrypt(ocb_state *ocb,
const unsigned char *ct, unsigned long ctlen,
unsigned char *pt,
const unsigned char *tag, unsigned long taglen, int *stat);
int ocb_encrypt_authenticate_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *nonce,
const unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen);
int ocb_decrypt_verify_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *nonce,
const unsigned char *ct, unsigned long ctlen,
unsigned char *pt,
const unsigned char *tag, unsigned long taglen,
int *stat);
int ocb_test(void);
/* internal functions */
void ocb_shift_xor(ocb_state *ocb, unsigned char *Z);
int ocb_ntz(unsigned long x);
int s_ocb_done(ocb_state *ocb, const unsigned char *pt, unsigned long ptlen,
unsigned char *ct, unsigned char *tag, unsigned long *taglen, int mode);
#endif /* LTC_OCB_MODE */
#ifdef LTC_CCM_MODE
#define CCM_ENCRYPT 0
#define CCM_DECRYPT 1
int ccm_memory(int cipher,
const unsigned char *key, unsigned long keylen,
symmetric_key *uskey,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *header, unsigned long headerlen,
unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen,
int direction);
int ccm_test(void);
#endif /* LTC_CCM_MODE */
#if defined(LRW_MODE) || defined(LTC_GCM_MODE)
void gcm_gf_mult(const unsigned char *a, const unsigned char *b, unsigned char *c);
#endif
/* table shared between GCM and LRW */
#if defined(LTC_GCM_TABLES) || defined(LRW_TABLES) || ((defined(LTC_GCM_MODE) || defined(LTC_GCM_MODE)) && defined(LTC_FAST))
extern const unsigned char gcm_shift_table[];
#endif
#ifdef LTC_GCM_MODE
#define GCM_ENCRYPT 0
#define GCM_DECRYPT 1
#define LTC_GCM_MODE_IV 0
#define LTC_GCM_MODE_AAD 1
#define LTC_GCM_MODE_TEXT 2
typedef struct {
symmetric_key K;
unsigned char H[16], /* multiplier */
X[16], /* accumulator */
Y[16], /* counter */
Y_0[16], /* initial counter */
buf[16]; /* buffer for stuff */
int cipher, /* which cipher */
ivmode, /* Which mode is the IV in? */
mode, /* mode the GCM code is in */
buflen; /* length of data in buf */
ulong64 totlen, /* 64-bit counter used for IV and AAD */
pttotlen; /* 64-bit counter for the PT */
#ifdef LTC_GCM_TABLES
unsigned char PC[16][256][16] /* 16 tables of 8x128 */
#ifdef LTC_GCM_TABLES_SSE2
__attribute__ ((aligned (16)))
#endif
;
#endif
} gcm_state;
void gcm_mult_h(gcm_state *gcm, unsigned char *I);
int gcm_init(gcm_state *gcm, int cipher,
const unsigned char *key, int keylen);
int gcm_reset(gcm_state *gcm);
int gcm_add_iv(gcm_state *gcm,
const unsigned char *IV, unsigned long IVlen);
int gcm_add_aad(gcm_state *gcm,
const unsigned char *adata, unsigned long adatalen);
int gcm_process(gcm_state *gcm,
unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
int direction);
int gcm_done(gcm_state *gcm,
unsigned char *tag, unsigned long *taglen);
int gcm_memory( int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *IV, unsigned long IVlen,
const unsigned char *adata, unsigned long adatalen,
unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen,
int direction);
int gcm_test(void);
#endif /* LTC_GCM_MODE */
#ifdef LTC_PELICAN
typedef struct pelican_state
{
symmetric_key K;
unsigned char state[16];
int buflen;
} pelican_state;
int pelican_init(pelican_state *pelmac, const unsigned char *key, unsigned long keylen);
int pelican_process(pelican_state *pelmac, const unsigned char *in, unsigned long inlen);
int pelican_done(pelican_state *pelmac, unsigned char *out);
int pelican_test(void);
int pelican_memory(const unsigned char *key, unsigned long keylen,
const unsigned char *in, unsigned long inlen,
unsigned char *out);
#endif
#ifdef LTC_XCBC
/* add this to "keylen" to xcbc_init to use a pure three-key XCBC MAC */
#define LTC_XCBC_PURE 0x8000UL
typedef struct {
unsigned char K[3][MAXBLOCKSIZE],
IV[MAXBLOCKSIZE];
symmetric_key key;
int cipher,
buflen,
blocksize;
} xcbc_state;
int xcbc_init(xcbc_state *xcbc, int cipher, const unsigned char *key, unsigned long keylen);
int xcbc_process(xcbc_state *xcbc, const unsigned char *in, unsigned long inlen);
int xcbc_done(xcbc_state *xcbc, unsigned char *out, unsigned long *outlen);
int xcbc_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int xcbc_memory_multi(int cipher,
const unsigned char *key, unsigned long keylen,
unsigned char *out, unsigned long *outlen,
const unsigned char *in, unsigned long inlen, ...);
int xcbc_file(int cipher,
const unsigned char *key, unsigned long keylen,
const char *filename,
unsigned char *out, unsigned long *outlen);
int xcbc_test(void);
#endif
#ifdef LTC_F9_MODE
typedef struct {
unsigned char akey[MAXBLOCKSIZE],
ACC[MAXBLOCKSIZE],
IV[MAXBLOCKSIZE];
symmetric_key key;
int cipher,
buflen,
keylen,
blocksize;
} f9_state;
int f9_init(f9_state *f9, int cipher, const unsigned char *key, unsigned long keylen);
int f9_process(f9_state *f9, const unsigned char *in, unsigned long inlen);
int f9_done(f9_state *f9, unsigned char *out, unsigned long *outlen);
int f9_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int f9_memory_multi(int cipher,
const unsigned char *key, unsigned long keylen,
unsigned char *out, unsigned long *outlen,
const unsigned char *in, unsigned long inlen, ...);
int f9_file(int cipher,
const unsigned char *key, unsigned long keylen,
const char *filename,
unsigned char *out, unsigned long *outlen);
int f9_test(void);
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_mac.h,v $ */
/* $Revision: 1.23 $ */
/* $Date: 2007/05/12 14:37:41 $ */

View file

@ -0,0 +1,424 @@
/* fix for MSVC ...evil! */
#ifdef _MSC_VER
#define CONST64(n) n ## ui64
typedef unsigned __int64 ulong64;
#else
#define CONST64(n) n ## ULL
typedef unsigned long long ulong64;
#endif
/* this is the "32-bit at least" data type
* Re-define it to suit your platform but it must be at least 32-bits
*/
#if defined(__x86_64__) || (defined(__sparc__) && defined(__arch64__))
typedef unsigned ulong32;
#else
typedef unsigned long ulong32;
#endif
/* ---- HELPER MACROS ---- */
#ifdef ENDIAN_NEUTRAL
#define STORE32L(x, y) \
{ (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
#define LOAD32L(x, y) \
{ x = ((unsigned long)((y)[3] & 255)<<24) | \
((unsigned long)((y)[2] & 255)<<16) | \
((unsigned long)((y)[1] & 255)<<8) | \
((unsigned long)((y)[0] & 255)); }
#define STORE64L(x, y) \
{ (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255); \
(y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255); \
(y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
#define LOAD64L(x, y) \
{ x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48)| \
(((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32)| \
(((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16)| \
(((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); }
#define STORE32H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \
(y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); }
#define LOAD32H(x, y) \
{ x = ((unsigned long)((y)[0] & 255)<<24) | \
((unsigned long)((y)[1] & 255)<<16) | \
((unsigned long)((y)[2] & 255)<<8) | \
((unsigned long)((y)[3] & 255)); }
#define STORE64H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \
(y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \
(y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \
(y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
#define LOAD64H(x, y) \
{ x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48) | \
(((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32) | \
(((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16) | \
(((ulong64)((y)[6] & 255))<<8)|(((ulong64)((y)[7] & 255))); }
#endif /* ENDIAN_NEUTRAL */
#ifdef ENDIAN_LITTLE
#if !defined(LTC_NO_BSWAP) && (defined(INTEL_CC) || (defined(__GNUC__) && (defined(__DJGPP__) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__i386__) || defined(__x86_64__))))
#define STORE32H(x, y) \
asm __volatile__ ( \
"bswapl %0 \n\t" \
"movl %0,(%1)\n\t" \
"bswapl %0 \n\t" \
::"r"(x), "r"(y));
#define LOAD32H(x, y) \
asm __volatile__ ( \
"movl (%1),%0\n\t" \
"bswapl %0\n\t" \
:"=r"(x): "r"(y));
#else
#define STORE32H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \
(y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); }
#define LOAD32H(x, y) \
{ x = ((unsigned long)((y)[0] & 255)<<24) | \
((unsigned long)((y)[1] & 255)<<16) | \
((unsigned long)((y)[2] & 255)<<8) | \
((unsigned long)((y)[3] & 255)); }
#endif
/* x86_64 processor */
#if !defined(LTC_NO_BSWAP) && (defined(__GNUC__) && defined(__x86_64__))
#define STORE64H(x, y) \
asm __volatile__ ( \
"bswapq %0 \n\t" \
"movq %0,(%1)\n\t" \
"bswapq %0 \n\t" \
::"r"(x), "r"(y));
#define LOAD64H(x, y) \
asm __volatile__ ( \
"movq (%1),%0\n\t" \
"bswapq %0\n\t" \
:"=r"(x): "r"(y));
#else
#define STORE64H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \
(y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \
(y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \
(y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
#define LOAD64H(x, y) \
{ x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48) | \
(((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32) | \
(((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16) | \
(((ulong64)((y)[6] & 255))<<8)|(((ulong64)((y)[7] & 255))); }
#endif
#ifdef ENDIAN_32BITWORD
#define STORE32L(x, y) \
{ ulong32 __t = (x); XMEMCPY(y, &__t, 4); }
#define LOAD32L(x, y) \
XMEMCPY(&(x), y, 4);
#define STORE64L(x, y) \
{ (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255); \
(y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255); \
(y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
#define LOAD64L(x, y) \
{ x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48)| \
(((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32)| \
(((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16)| \
(((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); }
#else /* 64-bit words then */
#define STORE32L(x, y) \
{ ulong32 __t = (x); XMEMCPY(y, &__t, 4); }
#define LOAD32L(x, y) \
{ XMEMCPY(&(x), y, 4); x &= 0xFFFFFFFF; }
#define STORE64L(x, y) \
{ ulong64 __t = (x); XMEMCPY(y, &__t, 8); }
#define LOAD64L(x, y) \
{ XMEMCPY(&(x), y, 8); }
#endif /* ENDIAN_64BITWORD */
#endif /* ENDIAN_LITTLE */
#ifdef ENDIAN_BIG
#define STORE32L(x, y) \
{ (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
#define LOAD32L(x, y) \
{ x = ((unsigned long)((y)[3] & 255)<<24) | \
((unsigned long)((y)[2] & 255)<<16) | \
((unsigned long)((y)[1] & 255)<<8) | \
((unsigned long)((y)[0] & 255)); }
#define STORE64L(x, y) \
{ (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255); \
(y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255); \
(y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); }
#define LOAD64L(x, y) \
{ x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48) | \
(((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32) | \
(((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16) | \
(((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); }
#ifdef ENDIAN_32BITWORD
#define STORE32H(x, y) \
{ ulong32 __t = (x); XMEMCPY(y, &__t, 4); }
#define LOAD32H(x, y) \
XMEMCPY(&(x), y, 4);
#define STORE64H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \
(y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \
(y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \
(y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
#define LOAD64H(x, y) \
{ x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48)| \
(((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32)| \
(((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16)| \
(((ulong64)((y)[6] & 255))<<8)| (((ulong64)((y)[7] & 255))); }
#else /* 64-bit words then */
#define STORE32H(x, y) \
{ ulong32 __t = (x); XMEMCPY(y, &__t, 4); }
#define LOAD32H(x, y) \
{ XMEMCPY(&(x), y, 4); x &= 0xFFFFFFFF; }
#define STORE64H(x, y) \
{ ulong64 __t = (x); XMEMCPY(y, &__t, 8); }
#define LOAD64H(x, y) \
{ XMEMCPY(&(x), y, 8); }
#endif /* ENDIAN_64BITWORD */
#endif /* ENDIAN_BIG */
#define BSWAP(x) ( ((x>>24)&0x000000FFUL) | ((x<<24)&0xFF000000UL) | \
((x>>8)&0x0000FF00UL) | ((x<<8)&0x00FF0000UL) )
/* 32-bit Rotates */
#if defined(_MSC_VER)
/* instrinsic rotate */
#include <stdlib.h>
#pragma intrinsic(_lrotr,_lrotl)
#define ROR(x,n) _lrotr(x,n)
#define ROL(x,n) _lrotl(x,n)
#define RORc(x,n) _lrotr(x,n)
#define ROLc(x,n) _lrotl(x,n)
#elif !defined(__STRICT_ANSI__) && defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && !defined(INTEL_CC) && !defined(LTC_NO_ASM)
static inline unsigned ROL(unsigned word, int i)
{
asm ("roll %%cl,%0"
:"=r" (word)
:"0" (word),"c" (i));
return word;
}
static inline unsigned ROR(unsigned word, int i)
{
asm ("rorl %%cl,%0"
:"=r" (word)
:"0" (word),"c" (i));
return word;
}
#ifndef LTC_NO_ROLC
static inline unsigned ROLc(unsigned word, const int i)
{
asm ("roll %2,%0"
:"=r" (word)
:"0" (word),"I" (i));
return word;
}
static inline unsigned RORc(unsigned word, const int i)
{
asm ("rorl %2,%0"
:"=r" (word)
:"0" (word),"I" (i));
return word;
}
#else
#define ROLc ROL
#define RORc ROR
#endif
#elif !defined(__STRICT_ANSI__) && defined(LTC_PPC32)
static inline unsigned ROL(unsigned word, int i)
{
asm ("rotlw %0,%0,%2"
:"=r" (word)
:"0" (word),"r" (i));
return word;
}
static inline unsigned ROR(unsigned word, int i)
{
asm ("rotlw %0,%0,%2"
:"=r" (word)
:"0" (word),"r" (32-i));
return word;
}
#ifndef LTC_NO_ROLC
static inline unsigned ROLc(unsigned word, const int i)
{
asm ("rotlwi %0,%0,%2"
:"=r" (word)
:"0" (word),"I" (i));
return word;
}
static inline unsigned RORc(unsigned word, const int i)
{
asm ("rotrwi %0,%0,%2"
:"=r" (word)
:"0" (word),"I" (i));
return word;
}
#else
#define ROLc ROL
#define RORc ROR
#endif
#else
/* rotates the hard way */
#define ROL(x, y) ( (((unsigned long)(x)<<(unsigned long)((y)&31)) | (((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
#define ROR(x, y) ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | ((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
#define ROLc(x, y) ( (((unsigned long)(x)<<(unsigned long)((y)&31)) | (((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
#define RORc(x, y) ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | ((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
#endif
/* 64-bit Rotates */
#if !defined(__STRICT_ANSI__) && defined(__GNUC__) && defined(__x86_64__) && !defined(LTC_NO_ASM)
static inline unsigned long ROL64(unsigned long word, int i)
{
asm("rolq %%cl,%0"
:"=r" (word)
:"0" (word),"c" (i));
return word;
}
static inline unsigned long ROR64(unsigned long word, int i)
{
asm("rorq %%cl,%0"
:"=r" (word)
:"0" (word),"c" (i));
return word;
}
#ifndef LTC_NO_ROLC
static inline unsigned long ROL64c(unsigned long word, const int i)
{
asm("rolq %2,%0"
:"=r" (word)
:"0" (word),"J" (i));
return word;
}
static inline unsigned long ROR64c(unsigned long word, const int i)
{
asm("rorq %2,%0"
:"=r" (word)
:"0" (word),"J" (i));
return word;
}
#else /* LTC_NO_ROLC */
#define ROL64c ROL64
#define ROR64c ROR64
#endif
#else /* Not x86_64 */
#define ROL64(x, y) \
( (((x)<<((ulong64)(y)&63)) | \
(((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>((ulong64)64-((y)&63)))) & CONST64(0xFFFFFFFFFFFFFFFF))
#define ROR64(x, y) \
( ((((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>((ulong64)(y)&CONST64(63))) | \
((x)<<((ulong64)(64-((y)&CONST64(63)))))) & CONST64(0xFFFFFFFFFFFFFFFF))
#define ROL64c(x, y) \
( (((x)<<((ulong64)(y)&63)) | \
(((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>((ulong64)64-((y)&63)))) & CONST64(0xFFFFFFFFFFFFFFFF))
#define ROR64c(x, y) \
( ((((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>((ulong64)(y)&CONST64(63))) | \
((x)<<((ulong64)(64-((y)&CONST64(63)))))) & CONST64(0xFFFFFFFFFFFFFFFF))
#endif
#ifndef MAX
#define MAX(x, y) ( ((x)>(y))?(x):(y) )
#endif
#ifndef MIN
#define MIN(x, y) ( ((x)<(y))?(x):(y) )
#endif
/* extract a byte portably */
#ifdef _MSC_VER
#define byte(x, n) ((unsigned char)((x) >> (8 * (n))))
#else
#define byte(x, n) (((x) >> (8 * (n))) & 255)
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_macros.h,v $ */
/* $Revision: 1.15 $ */
/* $Date: 2006/11/29 23:43:57 $ */

View file

@ -0,0 +1,500 @@
/** math functions **/
#define LTC_MP_LT -1
#define LTC_MP_EQ 0
#define LTC_MP_GT 1
#define LTC_MP_NO 0
#define LTC_MP_YES 1
#ifndef LTC_MECC
typedef void ecc_point;
#endif
#ifndef LTC_MRSA
typedef void rsa_key;
#endif
/** math descriptor */
typedef struct {
/** Name of the math provider */
char *name;
/** Bits per digit, amount of bits must fit in an unsigned long */
int bits_per_digit;
/* ---- init/deinit functions ---- */
/** initialize a bignum
@param a The number to initialize
@return CRYPT_OK on success
*/
int (*init)(void **a);
/** init copy
@param dst The number to initialize and write to
@param src The number to copy from
@return CRYPT_OK on success
*/
int (*init_copy)(void **dst, void *src);
/** deinit
@param a The number to free
@return CRYPT_OK on success
*/
void (*deinit)(void *a);
/* ---- data movement ---- */
/** negate
@param src The number to negate
@param dst The destination
@return CRYPT_OK on success
*/
int (*neg)(void *src, void *dst);
/** copy
@param src The number to copy from
@param dst The number to write to
@return CRYPT_OK on success
*/
int (*copy)(void *src, void *dst);
/* ---- trivial low level functions ---- */
/** set small constant
@param a Number to write to
@param n Source upto bits_per_digit (actually meant for very small constants)
@return CRYPT_OK on succcess
*/
int (*set_int)(void *a, unsigned long n);
/** get small constant
@param a Number to read, only fetches upto bits_per_digit from the number
@return The lower bits_per_digit of the integer (unsigned)
*/
unsigned long (*get_int)(void *a);
/** get digit n
@param a The number to read from
@param n The number of the digit to fetch
@return The bits_per_digit sized n'th digit of a
*/
unsigned long (*get_digit)(void *a, int n);
/** Get the number of digits that represent the number
@param a The number to count
@return The number of digits used to represent the number
*/
int (*get_digit_count)(void *a);
/** compare two integers
@param a The left side integer
@param b The right side integer
@return LTC_MP_LT if a < b, LTC_MP_GT if a > b and LTC_MP_EQ otherwise. (signed comparison)
*/
int (*compare)(void *a, void *b);
/** compare against int
@param a The left side integer
@param b The right side integer (upto bits_per_digit)
@return LTC_MP_LT if a < b, LTC_MP_GT if a > b and LTC_MP_EQ otherwise. (signed comparison)
*/
int (*compare_d)(void *a, unsigned long n);
/** Count the number of bits used to represent the integer
@param a The integer to count
@return The number of bits required to represent the integer
*/
int (*count_bits)(void * a);
/** Count the number of LSB bits which are zero
@param a The integer to count
@return The number of contiguous zero LSB bits
*/
int (*count_lsb_bits)(void *a);
/** Compute a power of two
@param a The integer to store the power in
@param n The power of two you want to store (a = 2^n)
@return CRYPT_OK on success
*/
int (*twoexpt)(void *a , int n);
/* ---- radix conversions ---- */
/** read ascii string
@param a The integer to store into
@param str The string to read
@param radix The radix the integer has been represented in (2-64)
@return CRYPT_OK on success
*/
int (*read_radix)(void *a, const char *str, int radix);
/** write number to string
@param a The integer to store
@param str The destination for the string
@param radix The radix the integer is to be represented in (2-64)
@return CRYPT_OK on success
*/
int (*write_radix)(void *a, char *str, int radix);
/** get size as unsigned char string
@param a The integer to get the size (when stored in array of octets)
@return The length of the integer
*/
unsigned long (*unsigned_size)(void *a);
/** store an integer as an array of octets
@param src The integer to store
@param dst The buffer to store the integer in
@return CRYPT_OK on success
*/
int (*unsigned_write)(void *src, unsigned char *dst);
/** read an array of octets and store as integer
@param dst The integer to load
@param src The array of octets
@param len The number of octets
@return CRYPT_OK on success
*/
int (*unsigned_read)(void *dst, unsigned char *src, unsigned long len);
/* ---- basic math ---- */
/** add two integers
@param a The first source integer
@param b The second source integer
@param c The destination of "a + b"
@return CRYPT_OK on success
*/
int (*add)(void *a, void *b, void *c);
/** add two integers
@param a The first source integer
@param b The second source integer (single digit of upto bits_per_digit in length)
@param c The destination of "a + b"
@return CRYPT_OK on success
*/
int (*addi)(void *a, unsigned long b, void *c);
/** subtract two integers
@param a The first source integer
@param b The second source integer
@param c The destination of "a - b"
@return CRYPT_OK on success
*/
int (*sub)(void *a, void *b, void *c);
/** subtract two integers
@param a The first source integer
@param b The second source integer (single digit of upto bits_per_digit in length)
@param c The destination of "a - b"
@return CRYPT_OK on success
*/
int (*subi)(void *a, unsigned long b, void *c);
/** multiply two integers
@param a The first source integer
@param b The second source integer (single digit of upto bits_per_digit in length)
@param c The destination of "a * b"
@return CRYPT_OK on success
*/
int (*mul)(void *a, void *b, void *c);
/** multiply two integers
@param a The first source integer
@param b The second source integer (single digit of upto bits_per_digit in length)
@param c The destination of "a * b"
@return CRYPT_OK on success
*/
int (*muli)(void *a, unsigned long b, void *c);
/** Square an integer
@param a The integer to square
@param b The destination
@return CRYPT_OK on success
*/
int (*sqr)(void *a, void *b);
/** Divide an integer
@param a The dividend
@param b The divisor
@param c The quotient (can be NULL to signify don't care)
@param d The remainder (can be NULL to signify don't care)
@return CRYPT_OK on success
*/
int (*mpdiv)(void *a, void *b, void *c, void *d);
/** divide by two
@param a The integer to divide (shift right)
@param b The destination
@return CRYPT_OK on success
*/
int (*div_2)(void *a, void *b);
/** Get remainder (small value)
@param a The integer to reduce
@param b The modulus (upto bits_per_digit in length)
@param c The destination for the residue
@return CRYPT_OK on success
*/
int (*modi)(void *a, unsigned long b, unsigned long *c);
/** gcd
@param a The first integer
@param b The second integer
@param c The destination for (a, b)
@return CRYPT_OK on success
*/
int (*gcd)(void *a, void *b, void *c);
/** lcm
@param a The first integer
@param b The second integer
@param c The destination for [a, b]
@return CRYPT_OK on success
*/
int (*lcm)(void *a, void *b, void *c);
/** Modular multiplication
@param a The first source
@param b The second source
@param c The modulus
@param d The destination (a*b mod c)
@return CRYPT_OK on success
*/
int (*mulmod)(void *a, void *b, void *c, void *d);
/** Modular squaring
@param a The first source
@param b The modulus
@param c The destination (a*a mod b)
@return CRYPT_OK on success
*/
int (*sqrmod)(void *a, void *b, void *c);
/** Modular inversion
@param a The value to invert
@param b The modulus
@param c The destination (1/a mod b)
@return CRYPT_OK on success
*/
int (*invmod)(void *, void *, void *);
/* ---- reduction ---- */
/** setup montgomery
@param a The modulus
@param b The destination for the reduction digit
@return CRYPT_OK on success
*/
int (*montgomery_setup)(void *a, void **b);
/** get normalization value
@param a The destination for the normalization value
@param b The modulus
@return CRYPT_OK on success
*/
int (*montgomery_normalization)(void *a, void *b);
/** reduce a number
@param a The number [and dest] to reduce
@param b The modulus
@param c The value "b" from montgomery_setup()
@return CRYPT_OK on success
*/
int (*montgomery_reduce)(void *a, void *b, void *c);
/** clean up (frees memory)
@param a The value "b" from montgomery_setup()
@return CRYPT_OK on success
*/
void (*montgomery_deinit)(void *a);
/* ---- exponentiation ---- */
/** Modular exponentiation
@param a The base integer
@param b The power (can be negative) integer
@param c The modulus integer
@param d The destination
@return CRYPT_OK on success
*/
int (*exptmod)(void *a, void *b, void *c, void *d);
/** Primality testing
@param a The integer to test
@param b The destination of the result (FP_YES if prime)
@return CRYPT_OK on success
*/
int (*isprime)(void *a, int *b);
/* ---- (optional) ecc point math ---- */
/** ECC GF(p) point multiplication (from the NIST curves)
@param k The integer to multiply the point by
@param G The point to multiply
@param R The destination for kG
@param modulus The modulus for the field
@param map Boolean indicated whether to map back to affine or not (can be ignored if you work in affine only)
@return CRYPT_OK on success
*/
int (*ecc_ptmul)(void *k, ecc_point *G, ecc_point *R, void *modulus, int map);
/** ECC GF(p) point addition
@param P The first point
@param Q The second point
@param R The destination of P + Q
@param modulus The modulus
@param mp The "b" value from montgomery_setup()
@return CRYPT_OK on success
*/
int (*ecc_ptadd)(ecc_point *P, ecc_point *Q, ecc_point *R, void *modulus, void *mp);
/** ECC GF(p) point double
@param P The first point
@param R The destination of 2P
@param modulus The modulus
@param mp The "b" value from montgomery_setup()
@return CRYPT_OK on success
*/
int (*ecc_ptdbl)(ecc_point *P, ecc_point *R, void *modulus, void *mp);
/** ECC mapping from projective to affine, currently uses (x,y,z) => (x/z^2, y/z^3, 1)
@param P The point to map
@param modulus The modulus
@param mp The "b" value from montgomery_setup()
@return CRYPT_OK on success
@remark The mapping can be different but keep in mind a ecc_point only has three
integers (x,y,z) so if you use a different mapping you have to make it fit.
*/
int (*ecc_map)(ecc_point *P, void *modulus, void *mp);
/** Computes kA*A + kB*B = C using Shamir's Trick
@param A First point to multiply
@param kA What to multiple A by
@param B Second point to multiply
@param kB What to multiple B by
@param C [out] Destination point (can overlap with A or B
@param modulus Modulus for curve
@return CRYPT_OK on success
*/
int (*ecc_mul2add)(ecc_point *A, void *kA,
ecc_point *B, void *kB,
ecc_point *C,
void *modulus);
/* ---- (optional) rsa optimized math (for internal CRT) ---- */
/** RSA Key Generation
@param prng An active PRNG state
@param wprng The index of the PRNG desired
@param size The size of the modulus (key size) desired (octets)
@param e The "e" value (public key). e==65537 is a good choice
@param key [out] Destination of a newly created private key pair
@return CRYPT_OK if successful, upon error all allocated ram is freed
*/
int (*rsa_keygen)(prng_state *prng, int wprng, int size, long e, rsa_key *key);
/** RSA exponentiation
@param in The octet array representing the base
@param inlen The length of the input
@param out The destination (to be stored in an octet array format)
@param outlen The length of the output buffer and the resulting size (zero padded to the size of the modulus)
@param which PK_PUBLIC for public RSA and PK_PRIVATE for private RSA
@param key The RSA key to use
@return CRYPT_OK on success
*/
int (*rsa_me)(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen, int which,
rsa_key *key);
} ltc_math_descriptor;
extern ltc_math_descriptor ltc_mp;
int ltc_init_multi(void **a, ...);
void ltc_deinit_multi(void *a, ...);
#ifdef LTM_DESC
extern const ltc_math_descriptor ltm_desc;
#endif
#ifdef TFM_DESC
extern const ltc_math_descriptor tfm_desc;
#endif
#ifdef GMP_DESC
extern const ltc_math_descriptor gmp_desc;
#endif
#if !defined(DESC_DEF_ONLY) && defined(LTC_SOURCE)
#define MP_DIGIT_BIT ltc_mp.bits_per_digit
/* some handy macros */
#define mp_init(a) ltc_mp.init(a)
#define mp_init_multi ltc_init_multi
#define mp_clear(a) ltc_mp.deinit(a)
#define mp_clear_multi ltc_deinit_multi
#define mp_init_copy(a, b) ltc_mp.init_copy(a, b)
#define mp_neg(a, b) ltc_mp.neg(a, b)
#define mp_copy(a, b) ltc_mp.copy(a, b)
#define mp_set(a, b) ltc_mp.set_int(a, b)
#define mp_set_int(a, b) ltc_mp.set_int(a, b)
#define mp_get_int(a) ltc_mp.get_int(a)
#define mp_get_digit(a, n) ltc_mp.get_digit(a, n)
#define mp_get_digit_count(a) ltc_mp.get_digit_count(a)
#define mp_cmp(a, b) ltc_mp.compare(a, b)
#define mp_cmp_d(a, b) ltc_mp.compare_d(a, b)
#define mp_count_bits(a) ltc_mp.count_bits(a)
#define mp_cnt_lsb(a) ltc_mp.count_lsb_bits(a)
#define mp_2expt(a, b) ltc_mp.twoexpt(a, b)
#define mp_read_radix(a, b, c) ltc_mp.read_radix(a, b, c)
#define mp_toradix(a, b, c) ltc_mp.write_radix(a, b, c)
#define mp_unsigned_bin_size(a) ltc_mp.unsigned_size(a)
#define mp_to_unsigned_bin(a, b) ltc_mp.unsigned_write(a, b)
#define mp_read_unsigned_bin(a, b, c) ltc_mp.unsigned_read(a, b, c)
#define mp_add(a, b, c) ltc_mp.add(a, b, c)
#define mp_add_d(a, b, c) ltc_mp.addi(a, b, c)
#define mp_sub(a, b, c) ltc_mp.sub(a, b, c)
#define mp_sub_d(a, b, c) ltc_mp.subi(a, b, c)
#define mp_mul(a, b, c) ltc_mp.mul(a, b, c)
#define mp_mul_d(a, b, c) ltc_mp.muli(a, b, c)
#define mp_sqr(a, b) ltc_mp.sqr(a, b)
#define mp_div(a, b, c, d) ltc_mp.mpdiv(a, b, c, d)
#define mp_div_2(a, b) ltc_mp.div_2(a, b)
#define mp_mod(a, b, c) ltc_mp.mpdiv(a, b, NULL, c)
#define mp_mod_d(a, b, c) ltc_mp.modi(a, b, c)
#define mp_gcd(a, b, c) ltc_mp.gcd(a, b, c)
#define mp_lcm(a, b, c) ltc_mp.lcm(a, b, c)
#define mp_mulmod(a, b, c, d) ltc_mp.mulmod(a, b, c, d)
#define mp_sqrmod(a, b, c) ltc_mp.sqrmod(a, b, c)
#define mp_invmod(a, b, c) ltc_mp.invmod(a, b, c)
#define mp_montgomery_setup(a, b) ltc_mp.montgomery_setup(a, b)
#define mp_montgomery_normalization(a, b) ltc_mp.montgomery_normalization(a, b)
#define mp_montgomery_reduce(a, b, c) ltc_mp.montgomery_reduce(a, b, c)
#define mp_montgomery_free(a) ltc_mp.montgomery_deinit(a)
#define mp_exptmod(a,b,c,d) ltc_mp.exptmod(a,b,c,d)
#define mp_prime_is_prime(a, b, c) ltc_mp.isprime(a, c)
#define mp_iszero(a) (mp_cmp_d(a, 0) == LTC_MP_EQ ? LTC_MP_YES : LTC_MP_NO)
#define mp_isodd(a) (mp_get_digit_count(a) > 0 ? (mp_get_digit(a, 0) & 1 ? LTC_MP_YES : LTC_MP_NO) : LTC_MP_NO)
#define mp_exch(a, b) do { void *ABC__tmp = a; a = b; b = ABC__tmp; } while(0);
#define mp_tohex(a, b) mp_toradix(a, b, 16)
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_math.h,v $ */
/* $Revision: 1.44 $ */
/* $Date: 2007/05/12 14:32:35 $ */

View file

@ -0,0 +1,23 @@
/* ---- LTC_BASE64 Routines ---- */
#ifdef LTC_BASE64
int base64_encode(const unsigned char *in, unsigned long len,
unsigned char *out, unsigned long *outlen);
int base64_decode(const unsigned char *in, unsigned long len,
unsigned char *out, unsigned long *outlen);
#endif
/* ---- MEM routines ---- */
void zeromem(void *dst, size_t len);
void burn_stack(unsigned long len);
const char *error_to_string(int err);
extern const char *crypt_build_settings;
/* ---- HMM ---- */
int crypt_fsa(void *mp, ...);
/* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_misc.h,v $ */
/* $Revision: 1.5 $ */
/* $Date: 2007/05/12 14:32:35 $ */

View file

@ -0,0 +1,558 @@
/* ---- NUMBER THEORY ---- */
enum {
PK_PUBLIC=0,
PK_PRIVATE=1
};
int rand_prime(void *N, long len, prng_state *prng, int wprng);
/* ---- RSA ---- */
#ifdef LTC_MRSA
/* Min and Max RSA key sizes (in bits) */
#define MIN_RSA_SIZE 1024
#define MAX_RSA_SIZE 4096
/** RSA LTC_PKCS style key */
typedef struct Rsa_key {
/** Type of key, PK_PRIVATE or PK_PUBLIC */
int type;
/** The public exponent */
void *e;
/** The private exponent */
void *d;
/** The modulus */
void *N;
/** The p factor of N */
void *p;
/** The q factor of N */
void *q;
/** The 1/q mod p CRT param */
void *qP;
/** The d mod (p - 1) CRT param */
void *dP;
/** The d mod (q - 1) CRT param */
void *dQ;
} rsa_key;
int rsa_make_key(prng_state *prng, int wprng, int size, long e, rsa_key *key);
int rsa_exptmod(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen, int which,
rsa_key *key);
void rsa_free(rsa_key *key);
/* These use LTC_PKCS #1 v2.0 padding */
#define rsa_encrypt_key(_in, _inlen, _out, _outlen, _lparam, _lparamlen, _prng, _prng_idx, _hash_idx, _key) \
rsa_encrypt_key_ex(_in, _inlen, _out, _outlen, _lparam, _lparamlen, _prng, _prng_idx, _hash_idx, LTC_LTC_PKCS_1_OAEP, _key)
#define rsa_decrypt_key(_in, _inlen, _out, _outlen, _lparam, _lparamlen, _hash_idx, _stat, _key) \
rsa_decrypt_key_ex(_in, _inlen, _out, _outlen, _lparam, _lparamlen, _hash_idx, LTC_LTC_PKCS_1_OAEP, _stat, _key)
#define rsa_sign_hash(_in, _inlen, _out, _outlen, _prng, _prng_idx, _hash_idx, _saltlen, _key) \
rsa_sign_hash_ex(_in, _inlen, _out, _outlen, LTC_LTC_PKCS_1_PSS, _prng, _prng_idx, _hash_idx, _saltlen, _key)
#define rsa_verify_hash(_sig, _siglen, _hash, _hashlen, _hash_idx, _saltlen, _stat, _key) \
rsa_verify_hash_ex(_sig, _siglen, _hash, _hashlen, LTC_LTC_PKCS_1_PSS, _hash_idx, _saltlen, _stat, _key)
/* These can be switched between LTC_PKCS #1 v2.x and LTC_PKCS #1 v1.5 paddings */
int rsa_encrypt_key_ex(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
const unsigned char *lparam, unsigned long lparamlen,
prng_state *prng, int prng_idx, int hash_idx, int padding, rsa_key *key);
int rsa_decrypt_key_ex(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
const unsigned char *lparam, unsigned long lparamlen,
int hash_idx, int padding,
int *stat, rsa_key *key);
int rsa_sign_hash_ex(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
int padding,
prng_state *prng, int prng_idx,
int hash_idx, unsigned long saltlen,
rsa_key *key);
int rsa_verify_hash_ex(const unsigned char *sig, unsigned long siglen,
const unsigned char *hash, unsigned long hashlen,
int padding,
int hash_idx, unsigned long saltlen,
int *stat, rsa_key *key);
/* LTC_PKCS #1 import/export */
int rsa_export(unsigned char *out, unsigned long *outlen, int type, rsa_key *key);
int rsa_import(const unsigned char *in, unsigned long inlen, rsa_key *key);
/* Ladik: Added for verifying Blizzard strong signature verification */
int rsa_verify_simple(const unsigned char *sig, unsigned long siglen,
const unsigned char *hash, unsigned long hashlen,
int *stat,
rsa_key *key);
#endif
/* ---- Katja ---- */
#ifdef MKAT
/* Min and Max KAT key sizes (in bits) */
#define MIN_KAT_SIZE 1024
#define MAX_KAT_SIZE 4096
/** Katja LTC_PKCS style key */
typedef struct KAT_key {
/** Type of key, PK_PRIVATE or PK_PUBLIC */
int type;
/** The private exponent */
void *d;
/** The modulus */
void *N;
/** The p factor of N */
void *p;
/** The q factor of N */
void *q;
/** The 1/q mod p CRT param */
void *qP;
/** The d mod (p - 1) CRT param */
void *dP;
/** The d mod (q - 1) CRT param */
void *dQ;
/** The pq param */
void *pq;
} katja_key;
int katja_make_key(prng_state *prng, int wprng, int size, katja_key *key);
int katja_exptmod(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen, int which,
katja_key *key);
void katja_free(katja_key *key);
/* These use LTC_PKCS #1 v2.0 padding */
int katja_encrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
const unsigned char *lparam, unsigned long lparamlen,
prng_state *prng, int prng_idx, int hash_idx, katja_key *key);
int katja_decrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
const unsigned char *lparam, unsigned long lparamlen,
int hash_idx, int *stat,
katja_key *key);
/* LTC_PKCS #1 import/export */
int katja_export(unsigned char *out, unsigned long *outlen, int type, katja_key *key);
int katja_import(const unsigned char *in, unsigned long inlen, katja_key *key);
#endif
/* ---- ECC Routines ---- */
#ifdef LTC_MECC
/* size of our temp buffers for exported keys */
#define ECC_BUF_SIZE 256
/* max private key size */
#define ECC_MAXSIZE 66
/** Structure defines a NIST GF(p) curve */
typedef struct {
/** The size of the curve in octets */
int size;
/** name of curve */
char *name;
/** The prime that defines the field the curve is in (encoded in hex) */
char *prime;
/** The fields B param (hex) */
char *B;
/** The order of the curve (hex) */
char *order;
/** The x co-ordinate of the base point on the curve (hex) */
char *Gx;
/** The y co-ordinate of the base point on the curve (hex) */
char *Gy;
} ltc_ecc_set_type;
/** A point on a ECC curve, stored in Jacbobian format such that (x,y,z) => (x/z^2, y/z^3, 1) when interpretted as affine */
typedef struct {
/** The x co-ordinate */
void *x;
/** The y co-ordinate */
void *y;
/** The z co-ordinate */
void *z;
} ecc_point;
/** An ECC key */
typedef struct {
/** Type of key, PK_PRIVATE or PK_PUBLIC */
int type;
/** Index into the ltc_ecc_sets[] for the parameters of this curve; if -1, then this key is using user supplied curve in dp */
int idx;
/** pointer to domain parameters; either points to NIST curves (identified by idx >= 0) or user supplied curve */
const ltc_ecc_set_type *dp;
/** The public key */
ecc_point pubkey;
/** The private key */
void *k;
} ecc_key;
/** the ECC params provided */
extern const ltc_ecc_set_type ltc_ecc_sets[];
int ecc_test(void);
void ecc_sizes(int *low, int *high);
int ecc_get_size(ecc_key *key);
int ecc_make_key(prng_state *prng, int wprng, int keysize, ecc_key *key);
int ecc_make_key_ex(prng_state *prng, int wprng, ecc_key *key, const ltc_ecc_set_type *dp);
void ecc_free(ecc_key *key);
int ecc_export(unsigned char *out, unsigned long *outlen, int type, ecc_key *key);
int ecc_import(const unsigned char *in, unsigned long inlen, ecc_key *key);
int ecc_import_ex(const unsigned char *in, unsigned long inlen, ecc_key *key, const ltc_ecc_set_type *dp);
int ecc_ansi_x963_export(ecc_key *key, unsigned char *out, unsigned long *outlen);
int ecc_ansi_x963_import(const unsigned char *in, unsigned long inlen, ecc_key *key);
int ecc_ansi_x963_import_ex(const unsigned char *in, unsigned long inlen, ecc_key *key, ltc_ecc_set_type *dp);
int ecc_shared_secret(ecc_key *private_key, ecc_key *public_key,
unsigned char *out, unsigned long *outlen);
int ecc_encrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng, int hash,
ecc_key *key);
int ecc_decrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
ecc_key *key);
int ecc_sign_hash(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng, ecc_key *key);
int ecc_verify_hash(const unsigned char *sig, unsigned long siglen,
const unsigned char *hash, unsigned long hashlen,
int *stat, ecc_key *key);
/* low level functions */
ecc_point *ltc_ecc_new_point(void);
void ltc_ecc_del_point(ecc_point *p);
int ltc_ecc_is_valid_idx(int n);
/* point ops (mp == montgomery digit) */
#if !defined(LTC_MECC_ACCEL) || defined(LTM_LTC_DESC) || defined(GMP_LTC_DESC)
/* R = 2P */
int ltc_ecc_projective_dbl_point(ecc_point *P, ecc_point *R, void *modulus, void *mp);
/* R = P + Q */
int ltc_ecc_projective_add_point(ecc_point *P, ecc_point *Q, ecc_point *R, void *modulus, void *mp);
#endif
#if defined(LTC_MECC_FP)
/* optimized point multiplication using fixed point cache (HAC algorithm 14.117) */
int ltc_ecc_fp_mulmod(void *k, ecc_point *G, ecc_point *R, void *modulus, int map);
/* functions for saving/loading/freeing/adding to fixed point cache */
int ltc_ecc_fp_save_state(unsigned char **out, unsigned long *outlen);
int ltc_ecc_fp_restore_state(unsigned char *in, unsigned long inlen);
void ltc_ecc_fp_free(void);
int ltc_ecc_fp_add_point(ecc_point *g, void *modulus, int lock);
/* lock/unlock all points currently in fixed point cache */
void ltc_ecc_fp_tablelock(int lock);
#endif
/* R = kG */
int ltc_ecc_mulmod(void *k, ecc_point *G, ecc_point *R, void *modulus, int map);
#ifdef LTC_ECC_SHAMIR
/* kA*A + kB*B = C */
int ltc_ecc_mul2add(ecc_point *A, void *kA,
ecc_point *B, void *kB,
ecc_point *C,
void *modulus);
#ifdef LTC_MECC_FP
/* Shamir's trick with optimized point multiplication using fixed point cache */
int ltc_ecc_fp_mul2add(ecc_point *A, void *kA,
ecc_point *B, void *kB,
ecc_point *C, void *modulus);
#endif
#endif
/* map P to affine from projective */
int ltc_ecc_map(ecc_point *P, void *modulus, void *mp);
#endif
#ifdef LTC_MDSA
/* Max diff between group and modulus size in bytes */
#define LTC_MDSA_DELTA 512
/* Max DSA group size in bytes (default allows 4k-bit groups) */
#define LTC_MDSA_MAX_GROUP 512
/** DSA key structure */
typedef struct {
/** The key type, PK_PRIVATE or PK_PUBLIC */
int type;
/** The order of the sub-group used in octets */
int qord;
/** The generator */
void *g;
/** The prime used to generate the sub-group */
void *q;
/** The large prime that generats the field the contains the sub-group */
void *p;
/** The private key */
void *x;
/** The public key */
void *y;
} dsa_key;
int dsa_make_key(prng_state *prng, int wprng, int group_size, int modulus_size, dsa_key *key);
void dsa_free(dsa_key *key);
int dsa_sign_hash_raw(const unsigned char *in, unsigned long inlen,
void *r, void *s,
prng_state *prng, int wprng, dsa_key *key);
int dsa_sign_hash(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng, dsa_key *key);
int dsa_verify_hash_raw( void *r, void *s,
const unsigned char *hash, unsigned long hashlen,
int *stat, dsa_key *key);
int dsa_verify_hash(const unsigned char *sig, unsigned long siglen,
const unsigned char *hash, unsigned long hashlen,
int *stat, dsa_key *key);
int dsa_encrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng, int hash,
dsa_key *key);
int dsa_decrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
dsa_key *key);
int dsa_import(const unsigned char *in, unsigned long inlen, dsa_key *key);
int dsa_export(unsigned char *out, unsigned long *outlen, int type, dsa_key *key);
int dsa_verify_key(dsa_key *key, int *stat);
int dsa_shared_secret(void *private_key, void *base,
dsa_key *public_key,
unsigned char *out, unsigned long *outlen);
#endif
#ifdef LTC_DER
/* DER handling */
enum {
LTC_ASN1_EOL,
LTC_ASN1_BOOLEAN,
LTC_ASN1_INTEGER,
LTC_ASN1_SHORT_INTEGER,
LTC_ASN1_BIT_STRING,
LTC_ASN1_OCTET_STRING,
LTC_ASN1_NULL,
LTC_ASN1_OBJECT_IDENTIFIER,
LTC_ASN1_IA5_STRING,
LTC_ASN1_PRINTABLE_STRING,
LTC_ASN1_UTF8_STRING,
LTC_ASN1_UTCTIME,
LTC_ASN1_CHOICE,
LTC_ASN1_SEQUENCE,
LTC_ASN1_SET,
LTC_ASN1_SETOF
};
/** A LTC ASN.1 list type */
typedef struct ltc_asn1_list_ {
/** The LTC ASN.1 enumerated type identifier */
int type;
/** The data to encode or place for decoding */
void *data;
/** The size of the input or resulting output */
unsigned long size;
/** The used flag, this is used by the CHOICE ASN.1 type to indicate which choice was made */
int used;
/** prev/next entry in the list */
struct ltc_asn1_list_ *prev, *next, *child, *parent;
} ltc_asn1_list;
#define LTC_SET_ASN1(list, index, Type, Data, Size) \
do { \
int LTC_MACRO_temp = (index); \
ltc_asn1_list *LTC_MACRO_list = (list); \
LTC_MACRO_list[LTC_MACRO_temp].type = (Type); \
LTC_MACRO_list[LTC_MACRO_temp].data = (void*)(Data); \
LTC_MACRO_list[LTC_MACRO_temp].size = (Size); \
LTC_MACRO_list[LTC_MACRO_temp].used = 0; \
} while (0);
/* SEQUENCE */
int der_encode_sequence_ex(ltc_asn1_list *list, unsigned long inlen,
unsigned char *out, unsigned long *outlen, int type_of);
#define der_encode_sequence(list, inlen, out, outlen) der_encode_sequence_ex(list, inlen, out, outlen, LTC_ASN1_SEQUENCE)
int der_decode_sequence_ex(const unsigned char *in, unsigned long inlen,
ltc_asn1_list *list, unsigned long outlen, int ordered);
#define der_decode_sequence(in, inlen, list, outlen) der_decode_sequence_ex(in, inlen, list, outlen, 1)
int der_length_sequence(ltc_asn1_list *list, unsigned long inlen,
unsigned long *outlen);
/* SET */
#define der_decode_set(in, inlen, list, outlen) der_decode_sequence_ex(in, inlen, list, outlen, 0)
#define der_length_set der_length_sequence
int der_encode_set(ltc_asn1_list *list, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int der_encode_setof(ltc_asn1_list *list, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
/* VA list handy helpers with triplets of <type, size, data> */
int der_encode_sequence_multi(unsigned char *out, unsigned long *outlen, ...);
int der_decode_sequence_multi(const unsigned char *in, unsigned long inlen, ...);
/* FLEXI DECODER handle unknown list decoder */
int der_decode_sequence_flexi(const unsigned char *in, unsigned long *inlen, ltc_asn1_list **out);
void der_free_sequence_flexi(ltc_asn1_list *list);
void der_sequence_free(ltc_asn1_list *in);
/* BOOLEAN */
int der_length_boolean(unsigned long *outlen);
int der_encode_boolean(int in,
unsigned char *out, unsigned long *outlen);
int der_decode_boolean(const unsigned char *in, unsigned long inlen,
int *out);
/* INTEGER */
int der_encode_integer(void *num, unsigned char *out, unsigned long *outlen);
int der_decode_integer(const unsigned char *in, unsigned long inlen, void *num);
int der_length_integer(void *num, unsigned long *len);
/* INTEGER -- handy for 0..2^32-1 values */
int der_decode_short_integer(const unsigned char *in, unsigned long inlen, unsigned long *num);
int der_encode_short_integer(unsigned long num, unsigned char *out, unsigned long *outlen);
int der_length_short_integer(unsigned long num, unsigned long *outlen);
/* BIT STRING */
int der_encode_bit_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int der_decode_bit_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int der_length_bit_string(unsigned long nbits, unsigned long *outlen);
/* OCTET STRING */
int der_encode_octet_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int der_decode_octet_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int der_length_octet_string(unsigned long noctets, unsigned long *outlen);
/* OBJECT IDENTIFIER */
int der_encode_object_identifier(unsigned long *words, unsigned long nwords,
unsigned char *out, unsigned long *outlen);
int der_decode_object_identifier(const unsigned char *in, unsigned long inlen,
unsigned long *words, unsigned long *outlen);
int der_length_object_identifier(unsigned long *words, unsigned long nwords, unsigned long *outlen);
unsigned long der_object_identifier_bits(unsigned long x);
/* IA5 STRING */
int der_encode_ia5_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int der_decode_ia5_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int der_length_ia5_string(const unsigned char *octets, unsigned long noctets, unsigned long *outlen);
int der_ia5_char_encode(int c);
int der_ia5_value_decode(int v);
/* Printable STRING */
int der_encode_printable_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int der_decode_printable_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int der_length_printable_string(const unsigned char *octets, unsigned long noctets, unsigned long *outlen);
int der_printable_char_encode(int c);
int der_printable_value_decode(int v);
/* UTF-8 */
#if (defined(SIZE_MAX) || __STDC_VERSION__ >= 199901L || defined(WCHAR_MAX) || defined(_WCHAR_T) || defined(_WCHAR_T_DEFINED) || defined (__WCHAR_TYPE__)) && !defined(LTC_NO_WCHAR)
#include <wchar.h>
#else
typedef ulong32 wchar_t;
#endif
int der_encode_utf8_string(const wchar_t *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int der_decode_utf8_string(const unsigned char *in, unsigned long inlen,
wchar_t *out, unsigned long *outlen);
unsigned long der_utf8_charsize(const wchar_t c);
int der_length_utf8_string(const wchar_t *in, unsigned long noctets, unsigned long *outlen);
/* CHOICE */
int der_decode_choice(const unsigned char *in, unsigned long *inlen,
ltc_asn1_list *list, unsigned long outlen);
/* UTCTime */
typedef struct {
unsigned YY, /* year */
MM, /* month */
DD, /* day */
hh, /* hour */
mm, /* minute */
ss, /* second */
off_dir, /* timezone offset direction 0 == +, 1 == - */
off_hh, /* timezone offset hours */
off_mm; /* timezone offset minutes */
} ltc_utctime;
int der_encode_utctime(ltc_utctime *utctime,
unsigned char *out, unsigned long *outlen);
int der_decode_utctime(const unsigned char *in, unsigned long *inlen,
ltc_utctime *out);
int der_length_utctime(ltc_utctime *utctime, unsigned long *outlen);
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_pk.h,v $ */
/* $Revision: 1.81 $ */
/* $Date: 2007/05/12 14:32:35 $ */

View file

@ -0,0 +1,89 @@
/* LTC_PKCS Header Info */
/* ===> LTC_PKCS #1 -- RSA Cryptography <=== */
#ifdef LTC_PKCS_1
enum ltc_pkcs_1_v1_5_blocks
{
LTC_LTC_PKCS_1_EMSA = 1, /* Block type 1 (LTC_PKCS #1 v1.5 signature padding) */
LTC_LTC_PKCS_1_EME = 2 /* Block type 2 (LTC_PKCS #1 v1.5 encryption padding) */
};
enum ltc_pkcs_1_paddings
{
LTC_LTC_PKCS_1_V1_5 = 1, /* LTC_PKCS #1 v1.5 padding (\sa ltc_pkcs_1_v1_5_blocks) */
LTC_LTC_PKCS_1_OAEP = 2, /* LTC_PKCS #1 v2.0 encryption padding */
LTC_LTC_PKCS_1_PSS = 3 /* LTC_PKCS #1 v2.1 signature padding */
};
int pkcs_1_mgf1( int hash_idx,
const unsigned char *seed, unsigned long seedlen,
unsigned char *mask, unsigned long masklen);
int pkcs_1_i2osp(void *n, unsigned long modulus_len, unsigned char *out);
int pkcs_1_os2ip(void *n, unsigned char *in, unsigned long inlen);
/* *** v1.5 padding */
int pkcs_1_v1_5_encode(const unsigned char *msg,
unsigned long msglen,
int block_type,
unsigned long modulus_bitlen,
prng_state *prng,
int prng_idx,
unsigned char *out,
unsigned long *outlen);
int pkcs_1_v1_5_decode(const unsigned char *msg,
unsigned long msglen,
int block_type,
unsigned long modulus_bitlen,
unsigned char *out,
unsigned long *outlen,
int *is_valid);
/* *** v2.1 padding */
int pkcs_1_oaep_encode(const unsigned char *msg, unsigned long msglen,
const unsigned char *lparam, unsigned long lparamlen,
unsigned long modulus_bitlen, prng_state *prng,
int prng_idx, int hash_idx,
unsigned char *out, unsigned long *outlen);
int pkcs_1_oaep_decode(const unsigned char *msg, unsigned long msglen,
const unsigned char *lparam, unsigned long lparamlen,
unsigned long modulus_bitlen, int hash_idx,
unsigned char *out, unsigned long *outlen,
int *res);
int pkcs_1_pss_encode(const unsigned char *msghash, unsigned long msghashlen,
unsigned long saltlen, prng_state *prng,
int prng_idx, int hash_idx,
unsigned long modulus_bitlen,
unsigned char *out, unsigned long *outlen);
int pkcs_1_pss_decode(const unsigned char *msghash, unsigned long msghashlen,
const unsigned char *sig, unsigned long siglen,
unsigned long saltlen, int hash_idx,
unsigned long modulus_bitlen, int *res);
#endif /* LTC_PKCS_1 */
/* ===> LTC_PKCS #5 -- Password Based Cryptography <=== */
#ifdef LTC_PKCS_5
/* Algorithm #1 (old) */
int pkcs_5_alg1(const unsigned char *password, unsigned long password_len,
const unsigned char *salt,
int iteration_count, int hash_idx,
unsigned char *out, unsigned long *outlen);
/* Algorithm #2 (new) */
int pkcs_5_alg2(const unsigned char *password, unsigned long password_len,
const unsigned char *salt, unsigned long salt_len,
int iteration_count, int hash_idx,
unsigned char *out, unsigned long *outlen);
#endif /* LTC_PKCS_5 */
/* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_pkcs.h,v $ */
/* $Revision: 1.8 $ */
/* $Date: 2007/05/12 14:32:35 $ */

View file

@ -0,0 +1,199 @@
/* ---- PRNG Stuff ---- */
#ifdef LTC_YARROW
struct yarrow_prng {
int cipher, hash;
unsigned char pool[MAXBLOCKSIZE];
symmetric_CTR ctr;
LTC_MUTEX_TYPE(prng_lock)
};
#endif
#ifdef LTC_RC4
struct rc4_prng {
int x, y;
unsigned char buf[256];
};
#endif
#ifdef LTC_FORTUNA
struct fortuna_prng {
hash_state pool[LTC_FORTUNA_POOLS]; /* the pools */
symmetric_key skey;
unsigned char K[32], /* the current key */
IV[16]; /* IV for CTR mode */
unsigned long pool_idx, /* current pool we will add to */
pool0_len, /* length of 0'th pool */
wd;
ulong64 reset_cnt; /* number of times we have reset */
LTC_MUTEX_TYPE(prng_lock)
};
#endif
#ifdef LTC_SOBER128
struct sober128_prng {
ulong32 R[17], /* Working storage for the shift register */
initR[17], /* saved register contents */
konst, /* key dependent constant */
sbuf; /* partial word encryption buffer */
int nbuf, /* number of part-word stream bits buffered */
flag, /* first add_entropy call or not? */
set; /* did we call add_entropy to set key? */
};
#endif
typedef union Prng_state {
char dummy[1];
#ifdef LTC_YARROW
struct yarrow_prng yarrow;
#endif
#ifdef LTC_RC4
struct rc4_prng rc4;
#endif
#ifdef LTC_FORTUNA
struct fortuna_prng fortuna;
#endif
#ifdef LTC_SOBER128
struct sober128_prng sober128;
#endif
} prng_state;
/** PRNG descriptor */
extern struct ltc_prng_descriptor {
/** Name of the PRNG */
char *name;
/** size in bytes of exported state */
int export_size;
/** Start a PRNG state
@param prng [out] The state to initialize
@return CRYPT_OK if successful
*/
int (*start)(prng_state *prng);
/** Add entropy to the PRNG
@param in The entropy
@param inlen Length of the entropy (octets)\
@param prng The PRNG state
@return CRYPT_OK if successful
*/
int (*add_entropy)(const unsigned char *in, unsigned long inlen, prng_state *prng);
/** Ready a PRNG state to read from
@param prng The PRNG state to ready
@return CRYPT_OK if successful
*/
int (*ready)(prng_state *prng);
/** Read from the PRNG
@param out [out] Where to store the data
@param outlen Length of data desired (octets)
@param prng The PRNG state to read from
@return Number of octets read
*/
unsigned long (*read)(unsigned char *out, unsigned long outlen, prng_state *prng);
/** Terminate a PRNG state
@param prng The PRNG state to terminate
@return CRYPT_OK if successful
*/
int (*done)(prng_state *prng);
/** Export a PRNG state
@param out [out] The destination for the state
@param outlen [in/out] The max size and resulting size of the PRNG state
@param prng The PRNG to export
@return CRYPT_OK if successful
*/
int (*pexport)(unsigned char *out, unsigned long *outlen, prng_state *prng);
/** Import a PRNG state
@param in The data to import
@param inlen The length of the data to import (octets)
@param prng The PRNG to initialize/import
@return CRYPT_OK if successful
*/
int (*pimport)(const unsigned char *in, unsigned long inlen, prng_state *prng);
/** Self-test the PRNG
@return CRYPT_OK if successful, CRYPT_NOP if self-testing has been disabled
*/
int (*test)(void);
} prng_descriptor[];
#ifdef LTC_YARROW
int yarrow_start(prng_state *prng);
int yarrow_add_entropy(const unsigned char *in, unsigned long inlen, prng_state *prng);
int yarrow_ready(prng_state *prng);
unsigned long yarrow_read(unsigned char *out, unsigned long outlen, prng_state *prng);
int yarrow_done(prng_state *prng);
int yarrow_export(unsigned char *out, unsigned long *outlen, prng_state *prng);
int yarrow_import(const unsigned char *in, unsigned long inlen, prng_state *prng);
int yarrow_test(void);
extern const struct ltc_prng_descriptor yarrow_desc;
#endif
#ifdef LTC_FORTUNA
int fortuna_start(prng_state *prng);
int fortuna_add_entropy(const unsigned char *in, unsigned long inlen, prng_state *prng);
int fortuna_ready(prng_state *prng);
unsigned long fortuna_read(unsigned char *out, unsigned long outlen, prng_state *prng);
int fortuna_done(prng_state *prng);
int fortuna_export(unsigned char *out, unsigned long *outlen, prng_state *prng);
int fortuna_import(const unsigned char *in, unsigned long inlen, prng_state *prng);
int fortuna_test(void);
extern const struct ltc_prng_descriptor fortuna_desc;
#endif
#ifdef LTC_RC4
int rc4_start(prng_state *prng);
int rc4_add_entropy(const unsigned char *in, unsigned long inlen, prng_state *prng);
int rc4_ready(prng_state *prng);
unsigned long rc4_read(unsigned char *out, unsigned long outlen, prng_state *prng);
int rc4_done(prng_state *prng);
int rc4_export(unsigned char *out, unsigned long *outlen, prng_state *prng);
int rc4_import(const unsigned char *in, unsigned long inlen, prng_state *prng);
int rc4_test(void);
extern const struct ltc_prng_descriptor rc4_desc;
#endif
#ifdef LTC_SPRNG
int sprng_start(prng_state *prng);
int sprng_add_entropy(const unsigned char *in, unsigned long inlen, prng_state *prng);
int sprng_ready(prng_state *prng);
unsigned long sprng_read(unsigned char *out, unsigned long outlen, prng_state *prng);
int sprng_done(prng_state *prng);
int sprng_export(unsigned char *out, unsigned long *outlen, prng_state *prng);
int sprng_import(const unsigned char *in, unsigned long inlen, prng_state *prng);
int sprng_test(void);
extern const struct ltc_prng_descriptor sprng_desc;
#endif
#ifdef LTC_SOBER128
int sober128_start(prng_state *prng);
int sober128_add_entropy(const unsigned char *in, unsigned long inlen, prng_state *prng);
int sober128_ready(prng_state *prng);
unsigned long sober128_read(unsigned char *out, unsigned long outlen, prng_state *prng);
int sober128_done(prng_state *prng);
int sober128_export(unsigned char *out, unsigned long *outlen, prng_state *prng);
int sober128_import(const unsigned char *in, unsigned long inlen, prng_state *prng);
int sober128_test(void);
extern const struct ltc_prng_descriptor sober128_desc;
#endif
int find_prng(const char *name);
int register_prng(const struct ltc_prng_descriptor *prng);
int unregister_prng(const struct ltc_prng_descriptor *prng);
int prng_is_valid(int idx);
LTC_MUTEX_PROTO(ltc_prng_mutex)
/* Slow RNG you **might** be able to use to seed a PRNG with. Be careful as this
* might not work on all platforms as planned
*/
unsigned long rng_get_bytes(unsigned char *out,
unsigned long outlen,
void (*callback)(void));
int rng_make_prng(int bits, int wprng, prng_state *prng, void (*callback)(void));
/* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_prng.h,v $ */
/* $Revision: 1.9 $ */
/* $Date: 2007/05/12 14:32:35 $ */

View file

@ -0,0 +1,483 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#define DESC_DEF_ONLY
#include "../headers/tomcrypt.h"
#ifdef LTM_DESC
#include "../../../libtommath/tommath.h"
static const struct {
int mpi_code, ltc_code;
} mpi_to_ltc_codes[] = {
{ MP_OKAY , CRYPT_OK},
{ MP_MEM , CRYPT_MEM},
{ MP_VAL , CRYPT_INVALID_ARG},
};
/**
Convert a MPI error to a LTC error (Possibly the most powerful function ever! Oh wait... no)
@param err The error to convert
@return The equivalent LTC error code or CRYPT_ERROR if none found
*/
static int mpi_to_ltc_error(int err)
{
int x;
for (x = 0; x < (int)(sizeof(mpi_to_ltc_codes)/sizeof(mpi_to_ltc_codes[0])); x++) {
if (err == mpi_to_ltc_codes[x].mpi_code) {
return mpi_to_ltc_codes[x].ltc_code;
}
}
return CRYPT_ERROR;
}
static int init(void **a)
{
int err;
LTC_ARGCHK(a != NULL);
*a = XCALLOC(1, sizeof(mp_int));
if (*a == NULL) {
return CRYPT_MEM;
}
if ((err = mpi_to_ltc_error(mp_init(*a))) != CRYPT_OK) {
XFREE(*a);
}
return err;
}
static void deinit(void *a)
{
LTC_ARGCHKVD(a != NULL);
mp_clear(a);
XFREE(a);
}
static int neg(void *a, void *b)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
return mpi_to_ltc_error(mp_neg(a, b));
}
static int copy(void *a, void *b)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
return mpi_to_ltc_error(mp_copy(a, b));
}
static int init_copy(void **a, void *b)
{
if (init(a) != CRYPT_OK) {
return CRYPT_MEM;
}
return copy(b, *a);
}
/* ---- trivial ---- */
static int set_int(void *a, unsigned long b)
{
LTC_ARGCHK(a != NULL);
return mpi_to_ltc_error(mp_set_int(a, b));
}
static unsigned long get_int(void *a)
{
LTC_ARGCHK(a != NULL);
return mp_get_int(a);
}
static unsigned long get_digit(void *a, int n)
{
mp_int *A;
LTC_ARGCHK(a != NULL);
A = a;
return (n >= A->used || n < 0) ? 0 : A->dp[n];
}
static int get_digit_count(void *a)
{
mp_int *A;
LTC_ARGCHK(a != NULL);
A = a;
return A->used;
}
static int compare(void *a, void *b)
{
int ret;
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
ret = mp_cmp(a, b);
switch (ret) {
case MP_LT: return LTC_MP_LT;
case MP_EQ: return LTC_MP_EQ;
case MP_GT: return LTC_MP_GT;
}
return 0;
}
static int compare_d(void *a, unsigned long b)
{
int ret;
LTC_ARGCHK(a != NULL);
ret = mp_cmp_d(a, b);
switch (ret) {
case MP_LT: return LTC_MP_LT;
case MP_EQ: return LTC_MP_EQ;
case MP_GT: return LTC_MP_GT;
}
return 0;
}
static int count_bits(void *a)
{
LTC_ARGCHK(a != NULL);
return mp_count_bits(a);
}
static int count_lsb_bits(void *a)
{
LTC_ARGCHK(a != NULL);
return mp_cnt_lsb(a);
}
static int twoexpt(void *a, int n)
{
LTC_ARGCHK(a != NULL);
return mpi_to_ltc_error(mp_2expt(a, n));
}
/* ---- conversions ---- */
/* read ascii string */
static int read_radix(void *a, const char *b, int radix)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
return mpi_to_ltc_error(mp_read_radix(a, b, radix));
}
/* write one */
static int write_radix(void *a, char *b, int radix)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
return mpi_to_ltc_error(mp_toradix(a, b, radix));
}
/* get size as unsigned char string */
static unsigned long unsigned_size(void *a)
{
LTC_ARGCHK(a != NULL);
return mp_unsigned_bin_size(a);
}
/* store */
static int unsigned_write(void *a, unsigned char *b)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
return mpi_to_ltc_error(mp_to_unsigned_bin(a, b));
}
/* read */
static int unsigned_read(void *a, unsigned char *b, unsigned long len)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
return mpi_to_ltc_error(mp_read_unsigned_bin(a, b, len));
}
/* add */
static int add(void *a, void *b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
return mpi_to_ltc_error(mp_add(a, b, c));
}
static int addi(void *a, unsigned long b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(c != NULL);
return mpi_to_ltc_error(mp_add_d(a, b, c));
}
/* sub */
static int sub(void *a, void *b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
return mpi_to_ltc_error(mp_sub(a, b, c));
}
static int subi(void *a, unsigned long b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(c != NULL);
return mpi_to_ltc_error(mp_sub_d(a, b, c));
}
/* mul */
static int mul(void *a, void *b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
return mpi_to_ltc_error(mp_mul(a, b, c));
}
static int muli(void *a, unsigned long b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(c != NULL);
return mpi_to_ltc_error(mp_mul_d(a, b, c));
}
/* sqr */
static int sqr(void *a, void *b)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
return mpi_to_ltc_error(mp_sqr(a, b));
}
/* div */
static int divide(void *a, void *b, void *c, void *d)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
return mpi_to_ltc_error(mp_div(a, b, c, d));
}
static int div_2(void *a, void *b)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
return mpi_to_ltc_error(mp_div_2(a, b));
}
/* modi */
static int modi(void *a, unsigned long b, unsigned long *c)
{
mp_digit tmp;
int err;
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(c != NULL);
if ((err = mpi_to_ltc_error(mp_mod_d(a, b, &tmp))) != CRYPT_OK) {
return err;
}
*c = tmp;
return CRYPT_OK;
}
/* gcd */
static int gcd(void *a, void *b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
return mpi_to_ltc_error(mp_gcd(a, b, c));
}
/* lcm */
static int lcm(void *a, void *b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
return mpi_to_ltc_error(mp_lcm(a, b, c));
}
static int mulmod(void *a, void *b, void *c, void *d)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
LTC_ARGCHK(d != NULL);
return mpi_to_ltc_error(mp_mulmod(a,b,c,d));
}
static int sqrmod(void *a, void *b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
return mpi_to_ltc_error(mp_sqrmod(a,b,c));
}
/* invmod */
static int invmod(void *a, void *b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
return mpi_to_ltc_error(mp_invmod(a, b, c));
}
/* setup */
static int montgomery_setup(void *a, void **b)
{
int err;
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
*b = XCALLOC(1, sizeof(mp_digit));
if (*b == NULL) {
return CRYPT_MEM;
}
if ((err = mpi_to_ltc_error(mp_montgomery_setup(a, (mp_digit *)*b))) != CRYPT_OK) {
XFREE(*b);
}
return err;
}
/* get normalization value */
static int montgomery_normalization(void *a, void *b)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
return mpi_to_ltc_error(mp_montgomery_calc_normalization(a, b));
}
/* reduce */
static int montgomery_reduce(void *a, void *b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
return mpi_to_ltc_error(mp_montgomery_reduce(a, b, *((mp_digit *)c)));
}
/* clean up */
static void montgomery_deinit(void *a)
{
XFREE(a);
}
static int exptmod(void *a, void *b, void *c, void *d)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
LTC_ARGCHK(d != NULL);
return mpi_to_ltc_error(mp_exptmod(a,b,c,d));
}
static int isprime(void *a, int *b)
{
int err;
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
err = mpi_to_ltc_error(mp_prime_is_prime(a, 8, b));
*b = (*b == MP_YES) ? LTC_MP_YES : LTC_MP_NO;
return err;
}
const ltc_math_descriptor ltm_desc = {
"LibTomMath",
(int)DIGIT_BIT,
&init,
&init_copy,
&deinit,
&neg,
&copy,
&set_int,
&get_int,
&get_digit,
&get_digit_count,
&compare,
&compare_d,
&count_bits,
&count_lsb_bits,
&twoexpt,
&read_radix,
&write_radix,
&unsigned_size,
&unsigned_write,
&unsigned_read,
&add,
&addi,
&sub,
&subi,
&mul,
&muli,
&sqr,
&divide,
&div_2,
&modi,
&gcd,
&lcm,
&mulmod,
&sqrmod,
&invmod,
&montgomery_setup,
&montgomery_normalization,
&montgomery_reduce,
&montgomery_deinit,
&exptmod,
&isprime,
#ifdef LTC_MECC
#ifdef LTC_MECC_FP
&ltc_ecc_fp_mulmod,
#else
&ltc_ecc_mulmod,
#endif
&ltc_ecc_projective_add_point,
&ltc_ecc_projective_dbl_point,
&ltc_ecc_map,
#ifdef LTC_ECC_SHAMIR
#ifdef LTC_MECC_FP
&ltc_ecc_fp_mul2add,
#else
&ltc_ecc_mul2add,
#endif /* LTC_MECC_FP */
#else
NULL,
#endif /* LTC_ECC_SHAMIR */
#else
NULL, NULL, NULL, NULL, NULL,
#endif /* LTC_MECC */
#ifdef LTC_MRSA
&rsa_make_key,
&rsa_exptmod,
#else
NULL, NULL
#endif
};
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/math/ltm_desc.c,v $ */
/* $Revision: 1.31 $ */
/* $Date: 2007/05/12 14:32:35 $ */

View file

@ -0,0 +1,61 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../headers/tomcrypt.h"
#ifdef MPI
#include <stdarg.h>
int ltc_init_multi(void **a, ...)
{
void **cur = a;
int np = 0;
va_list args;
va_start(args, a);
while (cur != NULL) {
if (mp_init(cur) != CRYPT_OK) {
/* failed */
va_list clean_list;
va_start(clean_list, a);
cur = a;
while (np--) {
mp_clear(*cur);
cur = va_arg(clean_list, void**);
}
va_end(clean_list);
return CRYPT_MEM;
}
++np;
cur = va_arg(args, void**);
}
va_end(args);
return CRYPT_OK;
}
void ltc_deinit_multi(void *a, ...)
{
void *cur = a;
va_list args;
va_start(args, a);
while (cur != NULL) {
mp_clear(cur);
cur = va_arg(args, void *);
}
va_end(args);
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/math/multi.c,v $ */
/* $Revision: 1.6 $ */
/* $Date: 2006/12/28 01:27:23 $ */

View file

@ -0,0 +1,87 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../headers/tomcrypt.h"
/**
@file rand_prime.c
Generate a random prime, Tom St Denis
*/
#define USE_BBS 1
int rand_prime(void *N, long len, prng_state *prng, int wprng)
{
int err, res, type;
unsigned char *buf;
LTC_ARGCHK(N != NULL);
/* get type */
if (len < 0) {
type = USE_BBS;
len = -len;
} else {
type = 0;
}
/* allow sizes between 2 and 512 bytes for a prime size */
if (len < 2 || len > 512) {
return CRYPT_INVALID_PRIME_SIZE;
}
/* valid PRNG? Better be! */
if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
return err;
}
/* allocate buffer to work with */
buf = XCALLOC(1, len);
if (buf == NULL) {
return CRYPT_MEM;
}
do {
/* generate value */
if (prng_descriptor[wprng].read(buf, len, prng) != (unsigned long)len) {
XFREE(buf);
return CRYPT_ERROR_READPRNG;
}
/* munge bits */
buf[0] |= 0x80 | 0x40;
buf[len-1] |= 0x01 | ((type & USE_BBS) ? 0x02 : 0x00);
/* load value */
if ((err = mp_read_unsigned_bin(N, buf, len)) != CRYPT_OK) {
XFREE(buf);
return err;
}
/* test */
if ((err = mp_prime_is_prime(N, 8, &res)) != CRYPT_OK) {
XFREE(buf);
return err;
}
} while (res == LTC_MP_NO);
#ifdef LTC_CLEAN_STACK
zeromem(buf, len);
#endif
XFREE(buf);
return CRYPT_OK;
}
/* $Source: /cvs/libtom/libtomcrypt/src/math/rand_prime.c,v $ */
/* $Revision: 1.7 $ */
/* $Date: 2006/12/28 01:27:23 $ */

View file

@ -0,0 +1,104 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../headers/tomcrypt.h"
/**
@file base64_decode.c
Compliant base64 code donated by Wayne Scott (wscott@bitmover.com)
*/
#ifdef LTC_BASE64
static const unsigned char map[256] = {
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 62, 255, 255, 255, 63,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 255, 255,
255, 254, 255, 255, 255, 0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 255, 255, 255, 255, 255,
255, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255 };
/**
base64 decode a block of memory
@param in The base64 data to decode
@param inlen The length of the base64 data
@param out [out] The destination of the binary decoded data
@param outlen [in/out] The max size and resulting size of the decoded data
@return CRYPT_OK if successful
*/
int base64_decode(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen)
{
unsigned long t, x, y, z;
unsigned char c;
int g;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
g = 3;
for (x = y = z = t = 0; x < inlen; x++) {
c = map[in[x]&0xFF];
if (c == 255) continue;
/* the final = symbols are read and used to trim the remaining bytes */
if (c == 254) {
c = 0;
/* prevent g < 0 which would potentially allow an overflow later */
if (--g < 0) {
return CRYPT_INVALID_PACKET;
}
} else if (g != 3) {
/* we only allow = to be at the end */
return CRYPT_INVALID_PACKET;
}
t = (t<<6)|c;
if (++y == 4) {
if (z + g > *outlen) {
return CRYPT_BUFFER_OVERFLOW;
}
out[z++] = (unsigned char)((t>>16)&255);
if (g > 1) out[z++] = (unsigned char)((t>>8)&255);
if (g > 2) out[z++] = (unsigned char)(t&255);
y = t = 0;
}
}
if (y != 0) {
return CRYPT_INVALID_PACKET;
}
*outlen = z;
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/misc/base64/base64_decode.c,v $ */
/* $Revision: 1.6 $ */
/* $Date: 2007/05/12 14:32:35 $ */

View file

@ -0,0 +1,30 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../headers/tomcrypt.h"
#include <signal.h>
/**
@file crypt_argchk.c
Perform argument checking, Tom St Denis
*/
#if (ARGTYPE == 0)
void crypt_argchk(char *v, char *s, int d)
{
fprintf(stderr, "LTC_ARGCHK '%s' failure on line %d of file %s\n",
v, d, s);
(void)raise(SIGABRT);
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_argchk.c,v $ */
/* $Revision: 1.5 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,40 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../headers/tomcrypt.h"
/**
@file crypt_find_hash.c
Find a hash, Tom St Denis
*/
/**
Find a registered hash by name
@param name The name of the hash to look for
@return >= 0 if found, -1 if not present
*/
int find_hash(const char *name)
{
int x;
LTC_ARGCHK(name != NULL);
LTC_MUTEX_LOCK(&ltc_hash_mutex);
for (x = 0; x < TAB_SIZE; x++) {
if (hash_descriptor[x].name != NULL && XSTRCMP(hash_descriptor[x].name, name) == 0) {
LTC_MUTEX_UNLOCK(&ltc_hash_mutex);
return x;
}
}
LTC_MUTEX_UNLOCK(&ltc_hash_mutex);
return -1;
}
/* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_find_hash.c,v $ */
/* $Revision: 1.7 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,41 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../headers/tomcrypt.h"
/**
@file crypt_find_prng.c
Find a PRNG, Tom St Denis
*/
/**
Find a registered PRNG by name
@param name The name of the PRNG to look for
@return >= 0 if found, -1 if not present
*/
int find_prng(const char *name)
{
int x;
LTC_ARGCHK(name != NULL);
LTC_MUTEX_LOCK(&ltc_prng_mutex);
for (x = 0; x < TAB_SIZE; x++) {
if ((prng_descriptor[x].name != NULL) && XSTRCMP(prng_descriptor[x].name, name) == 0) {
LTC_MUTEX_UNLOCK(&ltc_prng_mutex);
return x;
}
}
LTC_MUTEX_UNLOCK(&ltc_prng_mutex);
return -1;
}
/* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_find_prng.c,v $ */
/* $Revision: 1.7 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,27 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../headers/tomcrypt.h"
/**
@file crypt_hash_descriptor.c
Stores the hash descriptor table, Tom St Denis
*/
struct ltc_hash_descriptor hash_descriptor[TAB_SIZE] = {
{ NULL, 0, 0, 0, { 0 }, 0, NULL, NULL, NULL, NULL, NULL }
};
LTC_MUTEX_GLOBAL(ltc_hash_mutex)
/* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_hash_descriptor.c,v $ */
/* $Revision: 1.10 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,36 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../headers/tomcrypt.h"
/**
@file crypt_hash_is_valid.c
Determine if hash is valid, Tom St Denis
*/
/*
Test if a hash index is valid
@param idx The index of the hash to search for
@return CRYPT_OK if valid
*/
int hash_is_valid(int idx)
{
LTC_MUTEX_LOCK(&ltc_hash_mutex);
if (idx < 0 || idx >= TAB_SIZE || hash_descriptor[idx].name == NULL) {
LTC_MUTEX_UNLOCK(&ltc_hash_mutex);
return CRYPT_INVALID_HASH;
}
LTC_MUTEX_UNLOCK(&ltc_hash_mutex);
return CRYPT_OK;
}
/* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_hash_is_valid.c,v $ */
/* $Revision: 1.6 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,43 @@
/*****************************************************************************/
/* crypt_libc.c Copyright (c) Ladislav Zezula 2010 */
/*---------------------------------------------------------------------------*/
/* Description: */
/*---------------------------------------------------------------------------*/
/* Date Ver Who Comment */
/* -------- ---- --- ------- */
/* 05.05.10 1.00 Lad The first version of crypt_libc.c */
/*****************************************************************************/
// LibTomCrypt header
#include <stdlib.h>
#include "../headers/tomcrypt.h"
void * LibTomMalloc(size_t n)
{
return malloc(n);
}
void * LibTomCalloc(size_t n, size_t s)
{
return calloc(n, s);
}
void * LibTomRealloc(void *p, size_t n)
{
return realloc(p, n);
}
void LibTomFree(void * p)
{
free(p);
}
clock_t LibTomClock(void)
{
return clock();
}
void LibTomQsort(void *base, size_t nmemb, size_t size, int(*compar)(const void *, const void *))
{
qsort(base, nmemb, size, compar);
}

View file

@ -0,0 +1,13 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../headers/tomcrypt.h"
ltc_math_descriptor ltc_mp;

View file

@ -0,0 +1,26 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../headers/tomcrypt.h"
/**
@file crypt_prng_descriptor.c
Stores the PRNG descriptors, Tom St Denis
*/
struct ltc_prng_descriptor prng_descriptor[TAB_SIZE] = {
{ NULL, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }
};
LTC_MUTEX_GLOBAL(ltc_prng_mutex)
/* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_prng_descriptor.c,v $ */
/* $Revision: 1.8 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,36 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../headers/tomcrypt.h"
/**
@file crypt_prng_is_valid.c
Determine if PRNG is valid, Tom St Denis
*/
/*
Test if a PRNG index is valid
@param idx The index of the PRNG to search for
@return CRYPT_OK if valid
*/
int prng_is_valid(int idx)
{
LTC_MUTEX_LOCK(&ltc_prng_mutex);
if (idx < 0 || idx >= TAB_SIZE || prng_descriptor[idx].name == NULL) {
LTC_MUTEX_UNLOCK(&ltc_prng_mutex);
return CRYPT_INVALID_PRNG;
}
LTC_MUTEX_UNLOCK(&ltc_prng_mutex);
return CRYPT_OK;
}
/* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_prng_is_valid.c,v $ */
/* $Revision: 1.6 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,54 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../headers/tomcrypt.h"
/**
@file crypt_register_hash.c
Register a HASH, Tom St Denis
*/
/**
Register a hash with the descriptor table
@param hash The hash you wish to register
@return value >= 0 if successfully added (or already present), -1 if unsuccessful
*/
int register_hash(const struct ltc_hash_descriptor *hash)
{
int x;
LTC_ARGCHK(hash != NULL);
/* is it already registered? */
LTC_MUTEX_LOCK(&ltc_hash_mutex);
for (x = 0; x < TAB_SIZE; x++) {
if (XMEMCMP(&hash_descriptor[x], hash, sizeof(struct ltc_hash_descriptor)) == 0) {
LTC_MUTEX_UNLOCK(&ltc_hash_mutex);
return x;
}
}
/* find a blank spot */
for (x = 0; x < TAB_SIZE; x++) {
if (hash_descriptor[x].name == NULL) {
XMEMCPY(&hash_descriptor[x], hash, sizeof(struct ltc_hash_descriptor));
LTC_MUTEX_UNLOCK(&ltc_hash_mutex);
return x;
}
}
/* no spot */
LTC_MUTEX_UNLOCK(&ltc_hash_mutex);
return -1;
}
/* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_register_hash.c,v $ */
/* $Revision: 1.7 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,54 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../headers/tomcrypt.h"
/**
@file crypt_register_prng.c
Register a PRNG, Tom St Denis
*/
/**
Register a PRNG with the descriptor table
@param prng The PRNG you wish to register
@return value >= 0 if successfully added (or already present), -1 if unsuccessful
*/
int register_prng(const struct ltc_prng_descriptor *prng)
{
int x;
LTC_ARGCHK(prng != NULL);
/* is it already registered? */
LTC_MUTEX_LOCK(&ltc_prng_mutex);
for (x = 0; x < TAB_SIZE; x++) {
if (XMEMCMP(&prng_descriptor[x], prng, sizeof(struct ltc_prng_descriptor)) == 0) {
LTC_MUTEX_UNLOCK(&ltc_prng_mutex);
return x;
}
}
/* find a blank spot */
for (x = 0; x < TAB_SIZE; x++) {
if (prng_descriptor[x].name == NULL) {
XMEMCPY(&prng_descriptor[x], prng, sizeof(struct ltc_prng_descriptor));
LTC_MUTEX_UNLOCK(&ltc_prng_mutex);
return x;
}
}
/* no spot */
LTC_MUTEX_UNLOCK(&ltc_prng_mutex);
return -1;
}
/* $Source: /cvs/libtom/libtomcrypt/src/misc/crypt/crypt_register_prng.c,v $ */
/* $Revision: 1.8 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,34 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../headers/tomcrypt.h"
/**
@file zeromem.c
Zero a block of memory, Tom St Denis
*/
/**
Zero a block of memory
@param out The destination of the area to zero
@param outlen The length of the area to zero (octets)
*/
void zeromem(void *out, size_t outlen)
{
unsigned char *mem = out;
LTC_ARGCHKVD(out != NULL);
while (outlen-- > 0) {
*mem++ = 0;
}
}
/* $Source: /cvs/libtom/libtomcrypt/src/misc/zeromem.c,v $ */
/* $Revision: 1.7 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,102 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_decode_bit_string.c
ASN.1 DER, encode a BIT STRING, Tom St Denis
*/
#ifdef LTC_DER
/**
Store a BIT STRING
@param in The DER encoded BIT STRING
@param inlen The size of the DER BIT STRING
@param out [out] The array of bits stored (one per char)
@param outlen [in/out] The number of bits stored
@return CRYPT_OK if successful
*/
int der_decode_bit_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen)
{
unsigned long dlen, blen, x, y;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
/* packet must be at least 4 bytes */
if (inlen < 4) {
return CRYPT_INVALID_ARG;
}
/* check for 0x03 */
if ((in[0]&0x1F) != 0x03) {
return CRYPT_INVALID_PACKET;
}
/* offset in the data */
x = 1;
/* get the length of the data */
if (in[x] & 0x80) {
/* long format get number of length bytes */
y = in[x++] & 0x7F;
/* invalid if 0 or > 2 */
if (y == 0 || y > 2) {
return CRYPT_INVALID_PACKET;
}
/* read the data len */
dlen = 0;
while (y--) {
dlen = (dlen << 8) | (unsigned long)in[x++];
}
} else {
/* short format */
dlen = in[x++] & 0x7F;
}
/* is the data len too long or too short? */
if ((dlen == 0) || (dlen + x > inlen)) {
return CRYPT_INVALID_PACKET;
}
/* get padding count */
blen = ((dlen - 1) << 3) - (in[x++] & 7);
/* too many bits? */
if (blen > *outlen) {
*outlen = blen;
return CRYPT_BUFFER_OVERFLOW;
}
/* decode/store the bits */
for (y = 0; y < blen; y++) {
out[y] = (in[x] & (1 << (7 - (y & 7)))) ? 1 : 0;
if ((y & 7) == 7) {
++x;
}
}
/* we done */
*outlen = blen;
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/bit/der_decode_bit_string.c,v $ */
/* $Revision: 1.5 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,47 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_decode_boolean.c
ASN.1 DER, decode a BOOLEAN, Tom St Denis
*/
#ifdef LTC_DER
/**
Read a BOOLEAN
@param in The destination for the DER encoded BOOLEAN
@param inlen The size of the DER BOOLEAN
@param out [out] The boolean to decode
@return CRYPT_OK if successful
*/
int der_decode_boolean(const unsigned char *in, unsigned long inlen,
int *out)
{
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
if (inlen != 3 || in[0] != 0x01 || in[1] != 0x01 || (in[2] != 0x00 && in[2] != 0xFF)) {
return CRYPT_INVALID_ARG;
}
*out = (in[2]==0xFF) ? 1 : 0;
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/boolean/der_decode_boolean.c,v $ */
/* $Revision: 1.2 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,182 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_decode_choice.c
ASN.1 DER, decode a CHOICE, Tom St Denis
*/
#ifdef LTC_DER
/**
Decode a CHOICE
@param in The DER encoded input
@param inlen [in/out] The size of the input and resulting size of read type
@param list The list of items to decode
@param outlen The number of items in the list
@return CRYPT_OK on success
*/
int der_decode_choice(const unsigned char *in, unsigned long *inlen,
ltc_asn1_list *list, unsigned long outlen)
{
unsigned long size, x, z;
void *data;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(inlen != NULL);
LTC_ARGCHK(list != NULL);
/* get blk size */
if (*inlen < 2) {
return CRYPT_INVALID_PACKET;
}
/* set all of the "used" flags to zero */
for (x = 0; x < outlen; x++) {
list[x].used = 0;
}
/* now scan until we have a winner */
for (x = 0; x < outlen; x++) {
size = list[x].size;
data = list[x].data;
switch (list[x].type) {
case LTC_ASN1_INTEGER:
if (der_decode_integer(in, *inlen, data) == CRYPT_OK) {
if (der_length_integer(data, &z) == CRYPT_OK) {
list[x].used = 1;
*inlen = z;
return CRYPT_OK;
}
}
break;
case LTC_ASN1_SHORT_INTEGER:
if (der_decode_short_integer(in, *inlen, data) == CRYPT_OK) {
if (der_length_short_integer(size, &z) == CRYPT_OK) {
list[x].used = 1;
*inlen = z;
return CRYPT_OK;
}
}
break;
case LTC_ASN1_BIT_STRING:
if (der_decode_bit_string(in, *inlen, data, &size) == CRYPT_OK) {
if (der_length_bit_string(size, &z) == CRYPT_OK) {
list[x].used = 1;
list[x].size = size;
*inlen = z;
return CRYPT_OK;
}
}
break;
case LTC_ASN1_OCTET_STRING:
if (der_decode_octet_string(in, *inlen, data, &size) == CRYPT_OK) {
if (der_length_octet_string(size, &z) == CRYPT_OK) {
list[x].used = 1;
list[x].size = size;
*inlen = z;
return CRYPT_OK;
}
}
break;
case LTC_ASN1_NULL:
if (*inlen == 2 && in[x] == 0x05 && in[x+1] == 0x00) {
*inlen = 2;
list[x].used = 1;
return CRYPT_OK;
}
break;
case LTC_ASN1_OBJECT_IDENTIFIER:
if (der_decode_object_identifier(in, *inlen, data, &size) == CRYPT_OK) {
if (der_length_object_identifier(data, size, &z) == CRYPT_OK) {
list[x].used = 1;
list[x].size = size;
*inlen = z;
return CRYPT_OK;
}
}
break;
case LTC_ASN1_IA5_STRING:
if (der_decode_ia5_string(in, *inlen, data, &size) == CRYPT_OK) {
if (der_length_ia5_string(data, size, &z) == CRYPT_OK) {
list[x].used = 1;
list[x].size = size;
*inlen = z;
return CRYPT_OK;
}
}
break;
case LTC_ASN1_PRINTABLE_STRING:
if (der_decode_printable_string(in, *inlen, data, &size) == CRYPT_OK) {
if (der_length_printable_string(data, size, &z) == CRYPT_OK) {
list[x].used = 1;
list[x].size = size;
*inlen = z;
return CRYPT_OK;
}
}
break;
case LTC_ASN1_UTF8_STRING:
if (der_decode_utf8_string(in, *inlen, data, &size) == CRYPT_OK) {
if (der_length_utf8_string(data, size, &z) == CRYPT_OK) {
list[x].used = 1;
list[x].size = size;
*inlen = z;
return CRYPT_OK;
}
}
break;
case LTC_ASN1_UTCTIME:
z = *inlen;
if (der_decode_utctime(in, &z, data) == CRYPT_OK) {
list[x].used = 1;
*inlen = z;
return CRYPT_OK;
}
break;
case LTC_ASN1_SET:
case LTC_ASN1_SETOF:
case LTC_ASN1_SEQUENCE:
if (der_decode_sequence(in, *inlen, data, size) == CRYPT_OK) {
if (der_length_sequence(data, size, &z) == CRYPT_OK) {
list[x].used = 1;
*inlen = z;
return CRYPT_OK;
}
}
break;
default:
return CRYPT_INVALID_ARG;
}
}
return CRYPT_INVALID_PACKET;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/choice/der_decode_choice.c,v $ */
/* $Revision: 1.9 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,96 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_decode_ia5_string.c
ASN.1 DER, encode a IA5 STRING, Tom St Denis
*/
#ifdef LTC_DER
/**
Store a IA5 STRING
@param in The DER encoded IA5 STRING
@param inlen The size of the DER IA5 STRING
@param out [out] The array of octets stored (one per char)
@param outlen [in/out] The number of octets stored
@return CRYPT_OK if successful
*/
int der_decode_ia5_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen)
{
unsigned long x, y, len;
int t;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
/* must have header at least */
if (inlen < 2) {
return CRYPT_INVALID_PACKET;
}
/* check for 0x16 */
if ((in[0] & 0x1F) != 0x16) {
return CRYPT_INVALID_PACKET;
}
x = 1;
/* decode the length */
if (in[x] & 0x80) {
/* valid # of bytes in length are 1,2,3 */
y = in[x] & 0x7F;
if ((y == 0) || (y > 3) || ((x + y) > inlen)) {
return CRYPT_INVALID_PACKET;
}
/* read the length in */
len = 0;
++x;
while (y--) {
len = (len << 8) | in[x++];
}
} else {
len = in[x++] & 0x7F;
}
/* is it too long? */
if (len > *outlen) {
*outlen = len;
return CRYPT_BUFFER_OVERFLOW;
}
if (len + x > inlen) {
return CRYPT_INVALID_PACKET;
}
/* read the data */
for (y = 0; y < len; y++) {
t = der_ia5_value_decode(in[x++]);
if (t == -1) {
return CRYPT_INVALID_ARG;
}
out[y] = t;
}
*outlen = y;
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/ia5/der_decode_ia5_string.c,v $ */
/* $Revision: 1.4 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,110 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_decode_integer.c
ASN.1 DER, decode an integer, Tom St Denis
*/
#ifdef LTC_DER
/**
Read a mp_int integer
@param in The DER encoded data
@param inlen Size of DER encoded data
@param num The first mp_int to decode
@return CRYPT_OK if successful
*/
int der_decode_integer(const unsigned char *in, unsigned long inlen, void *num)
{
unsigned long x, y, z;
int err;
LTC_ARGCHK(num != NULL);
LTC_ARGCHK(in != NULL);
/* min DER INTEGER is 0x02 01 00 == 0 */
if (inlen < (1 + 1 + 1)) {
return CRYPT_INVALID_PACKET;
}
/* ok expect 0x02 when we AND with 0001 1111 [1F] */
x = 0;
if ((in[x++] & 0x1F) != 0x02) {
return CRYPT_INVALID_PACKET;
}
/* now decode the len stuff */
z = in[x++];
if ((z & 0x80) == 0x00) {
/* short form */
/* will it overflow? */
if (x + z > inlen) {
return CRYPT_INVALID_PACKET;
}
/* no so read it */
if ((err = mp_read_unsigned_bin(num, (unsigned char *)in + x, z)) != CRYPT_OK) {
return err;
}
} else {
/* long form */
z &= 0x7F;
/* will number of length bytes overflow? (or > 4) */
if (((x + z) > inlen) || (z > 4) || (z == 0)) {
return CRYPT_INVALID_PACKET;
}
/* now read it in */
y = 0;
while (z--) {
y = ((unsigned long)(in[x++])) | (y << 8);
}
/* now will reading y bytes overrun? */
if ((x + y) > inlen) {
return CRYPT_INVALID_PACKET;
}
/* no so read it */
if ((err = mp_read_unsigned_bin(num, (unsigned char *)in + x, y)) != CRYPT_OK) {
return err;
}
}
/* see if it's negative */
if (in[x] & 0x80) {
void *tmp;
if (mp_init(&tmp) != CRYPT_OK) {
return CRYPT_MEM;
}
if (mp_2expt(tmp, mp_count_bits(num)) != CRYPT_OK || mp_sub(num, tmp, num) != CRYPT_OK) {
mp_clear(tmp);
return CRYPT_MEM;
}
mp_clear(tmp);
}
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/integer/der_decode_integer.c,v $ */
/* $Revision: 1.5 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,99 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_decode_object_identifier.c
ASN.1 DER, Decode Object Identifier, Tom St Denis
*/
#ifdef LTC_DER
/**
Decode OID data and store the array of integers in words
@param in The OID DER encoded data
@param inlen The length of the OID data
@param words [out] The destination of the OID words
@param outlen [in/out] The number of OID words
@return CRYPT_OK if successful
*/
int der_decode_object_identifier(const unsigned char *in, unsigned long inlen,
unsigned long *words, unsigned long *outlen)
{
unsigned long x, y, t, len;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(words != NULL);
LTC_ARGCHK(outlen != NULL);
/* header is at least 3 bytes */
if (inlen < 3) {
return CRYPT_INVALID_PACKET;
}
/* must be room for at least two words */
if (*outlen < 2) {
return CRYPT_BUFFER_OVERFLOW;
}
/* decode the packet header */
x = 0;
if ((in[x++] & 0x1F) != 0x06) {
return CRYPT_INVALID_PACKET;
}
/* get the length */
if (in[x] < 128) {
len = in[x++];
} else {
if (in[x] < 0x81 || in[x] > 0x82) {
return CRYPT_INVALID_PACKET;
}
y = in[x++] & 0x7F;
len = 0;
while (y--) {
len = (len << 8) | (unsigned long)in[x++];
}
}
if (len < 1 || (len + x) > inlen) {
return CRYPT_INVALID_PACKET;
}
/* decode words */
y = 0;
t = 0;
while (len--) {
t = (t << 7) | (in[x] & 0x7F);
if (!(in[x++] & 0x80)) {
/* store t */
if (y >= *outlen) {
return CRYPT_BUFFER_OVERFLOW;
}
if (y == 0) {
words[0] = t / 40;
words[1] = t % 40;
y = 2;
} else {
words[y++] = t;
}
t = 0;
}
}
*outlen = y;
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/object_identifier/der_decode_object_identifier.c,v $ */
/* $Revision: 1.6 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,91 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_decode_octet_string.c
ASN.1 DER, encode a OCTET STRING, Tom St Denis
*/
#ifdef LTC_DER
/**
Store a OCTET STRING
@param in The DER encoded OCTET STRING
@param inlen The size of the DER OCTET STRING
@param out [out] The array of octets stored (one per char)
@param outlen [in/out] The number of octets stored
@return CRYPT_OK if successful
*/
int der_decode_octet_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen)
{
unsigned long x, y, len;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
/* must have header at least */
if (inlen < 2) {
return CRYPT_INVALID_PACKET;
}
/* check for 0x04 */
if ((in[0] & 0x1F) != 0x04) {
return CRYPT_INVALID_PACKET;
}
x = 1;
/* decode the length */
if (in[x] & 0x80) {
/* valid # of bytes in length are 1,2,3 */
y = in[x] & 0x7F;
if ((y == 0) || (y > 3) || ((x + y) > inlen)) {
return CRYPT_INVALID_PACKET;
}
/* read the length in */
len = 0;
++x;
while (y--) {
len = (len << 8) | in[x++];
}
} else {
len = in[x++] & 0x7F;
}
/* is it too long? */
if (len > *outlen) {
*outlen = len;
return CRYPT_BUFFER_OVERFLOW;
}
if (len + x > inlen) {
return CRYPT_INVALID_PACKET;
}
/* read the data */
for (y = 0; y < len; y++) {
out[y] = in[x++];
}
*outlen = y;
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/octet/der_decode_octet_string.c,v $ */
/* $Revision: 1.4 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,96 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_decode_printable_string.c
ASN.1 DER, encode a printable STRING, Tom St Denis
*/
#ifdef LTC_DER
/**
Store a printable STRING
@param in The DER encoded printable STRING
@param inlen The size of the DER printable STRING
@param out [out] The array of octets stored (one per char)
@param outlen [in/out] The number of octets stored
@return CRYPT_OK if successful
*/
int der_decode_printable_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen)
{
unsigned long x, y, len;
int t;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
/* must have header at least */
if (inlen < 2) {
return CRYPT_INVALID_PACKET;
}
/* check for 0x13 */
if ((in[0] & 0x1F) != 0x13) {
return CRYPT_INVALID_PACKET;
}
x = 1;
/* decode the length */
if (in[x] & 0x80) {
/* valid # of bytes in length are 1,2,3 */
y = in[x] & 0x7F;
if ((y == 0) || (y > 3) || ((x + y) > inlen)) {
return CRYPT_INVALID_PACKET;
}
/* read the length in */
len = 0;
++x;
while (y--) {
len = (len << 8) | in[x++];
}
} else {
len = in[x++] & 0x7F;
}
/* is it too long? */
if (len > *outlen) {
*outlen = len;
return CRYPT_BUFFER_OVERFLOW;
}
if (len + x > inlen) {
return CRYPT_INVALID_PACKET;
}
/* read the data */
for (y = 0; y < len; y++) {
t = der_printable_value_decode(in[x++]);
if (t == -1) {
return CRYPT_INVALID_ARG;
}
out[y] = t;
}
*outlen = y;
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/printable_string/der_decode_printable_string.c,v $ */
/* $Revision: 1.4 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,287 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
#include <stdarg.h>
/**
@file der_decode_sequence_ex.c
ASN.1 DER, decode a SEQUENCE, Tom St Denis
*/
#ifdef LTC_DER
/**
Decode a SEQUENCE
@param in The DER encoded input
@param inlen The size of the input
@param list The list of items to decode
@param outlen The number of items in the list
@param ordered Search an unordeded or ordered list
@return CRYPT_OK on success
*/
int der_decode_sequence_ex(const unsigned char *in, unsigned long inlen,
ltc_asn1_list *list, unsigned long outlen, int ordered)
{
int err, type;
unsigned long size, x, y, z, i, blksize;
void *data;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(list != NULL);
/* get blk size */
if (inlen < 2) {
return CRYPT_INVALID_PACKET;
}
/* sequence type? We allow 0x30 SEQUENCE and 0x31 SET since fundamentally they're the same structure */
x = 0;
if (in[x] != 0x30 && in[x] != 0x31) {
return CRYPT_INVALID_PACKET;
}
++x;
if (in[x] < 128) {
blksize = in[x++];
} else if (in[x] & 0x80) {
if (in[x] < 0x81 || in[x] > 0x83) {
return CRYPT_INVALID_PACKET;
}
y = in[x++] & 0x7F;
/* would reading the len bytes overrun? */
if (x + y > inlen) {
return CRYPT_INVALID_PACKET;
}
/* read len */
blksize = 0;
while (y--) {
blksize = (blksize << 8) | (unsigned long)in[x++];
}
}
/* would this blksize overflow? */
if (x + blksize > inlen) {
return CRYPT_INVALID_PACKET;
}
/* mark all as unused */
for (i = 0; i < outlen; i++) {
list[i].used = 0;
}
/* ok read data */
inlen = blksize;
for (i = 0; i < outlen; i++) {
z = 0;
type = list[i].type;
size = list[i].size;
data = list[i].data;
if (!ordered && list[i].used == 1) { continue; }
if (type == LTC_ASN1_EOL) {
break;
}
switch (type) {
case LTC_ASN1_BOOLEAN:
z = inlen;
if ((err = der_decode_boolean(in + x, z, ((int *)data))) != CRYPT_OK) {
goto LBL_ERR;
}
if ((err = der_length_boolean(&z)) != CRYPT_OK) {
goto LBL_ERR;
}
break;
case LTC_ASN1_INTEGER:
z = inlen;
if ((err = der_decode_integer(in + x, z, data)) != CRYPT_OK) {
if (!ordered) { continue; }
goto LBL_ERR;
}
if ((err = der_length_integer(data, &z)) != CRYPT_OK) {
goto LBL_ERR;
}
break;
case LTC_ASN1_SHORT_INTEGER:
z = inlen;
if ((err = der_decode_short_integer(in + x, z, data)) != CRYPT_OK) {
if (!ordered) { continue; }
goto LBL_ERR;
}
if ((err = der_length_short_integer(((unsigned long*)data)[0], &z)) != CRYPT_OK) {
goto LBL_ERR;
}
break;
case LTC_ASN1_BIT_STRING:
z = inlen;
if ((err = der_decode_bit_string(in + x, z, data, &size)) != CRYPT_OK) {
if (!ordered) { continue; }
goto LBL_ERR;
}
list[i].size = size;
if ((err = der_length_bit_string(size, &z)) != CRYPT_OK) {
goto LBL_ERR;
}
break;
case LTC_ASN1_OCTET_STRING:
z = inlen;
if ((err = der_decode_octet_string(in + x, z, data, &size)) != CRYPT_OK) {
if (!ordered) { continue; }
goto LBL_ERR;
}
list[i].size = size;
if ((err = der_length_octet_string(size, &z)) != CRYPT_OK) {
goto LBL_ERR;
}
break;
case LTC_ASN1_NULL:
if (inlen < 2 || in[x] != 0x05 || in[x+1] != 0x00) {
if (!ordered) { continue; }
err = CRYPT_INVALID_PACKET;
goto LBL_ERR;
}
z = 2;
break;
case LTC_ASN1_OBJECT_IDENTIFIER:
z = inlen;
if ((err = der_decode_object_identifier(in + x, z, data, &size)) != CRYPT_OK) {
if (!ordered) { continue; }
goto LBL_ERR;
}
list[i].size = size;
if ((err = der_length_object_identifier(data, size, &z)) != CRYPT_OK) {
goto LBL_ERR;
}
break;
case LTC_ASN1_IA5_STRING:
z = inlen;
if ((err = der_decode_ia5_string(in + x, z, data, &size)) != CRYPT_OK) {
if (!ordered) { continue; }
goto LBL_ERR;
}
list[i].size = size;
if ((err = der_length_ia5_string(data, size, &z)) != CRYPT_OK) {
goto LBL_ERR;
}
break;
case LTC_ASN1_PRINTABLE_STRING:
z = inlen;
if ((err = der_decode_printable_string(in + x, z, data, &size)) != CRYPT_OK) {
if (!ordered) { continue; }
goto LBL_ERR;
}
list[i].size = size;
if ((err = der_length_printable_string(data, size, &z)) != CRYPT_OK) {
goto LBL_ERR;
}
break;
case LTC_ASN1_UTF8_STRING:
z = inlen;
if ((err = der_decode_utf8_string(in + x, z, data, &size)) != CRYPT_OK) {
if (!ordered) { continue; }
goto LBL_ERR;
}
list[i].size = size;
if ((err = der_length_utf8_string(data, size, &z)) != CRYPT_OK) {
goto LBL_ERR;
}
break;
case LTC_ASN1_UTCTIME:
z = inlen;
if ((err = der_decode_utctime(in + x, &z, data)) != CRYPT_OK) {
if (!ordered) { continue; }
goto LBL_ERR;
}
break;
case LTC_ASN1_SET:
z = inlen;
if ((err = der_decode_set(in + x, z, data, size)) != CRYPT_OK) {
if (!ordered) { continue; }
goto LBL_ERR;
}
if ((err = der_length_sequence(data, size, &z)) != CRYPT_OK) {
goto LBL_ERR;
}
break;
case LTC_ASN1_SETOF:
case LTC_ASN1_SEQUENCE:
/* detect if we have the right type */
if ((type == LTC_ASN1_SETOF && (in[x] & 0x3F) != 0x31) || (type == LTC_ASN1_SEQUENCE && (in[x] & 0x3F) != 0x30)) {
err = CRYPT_INVALID_PACKET;
goto LBL_ERR;
}
z = inlen;
if ((err = der_decode_sequence(in + x, z, data, size)) != CRYPT_OK) {
if (!ordered) { continue; }
goto LBL_ERR;
}
if ((err = der_length_sequence(data, size, &z)) != CRYPT_OK) {
goto LBL_ERR;
}
break;
case LTC_ASN1_CHOICE:
z = inlen;
if ((err = der_decode_choice(in + x, &z, data, size)) != CRYPT_OK) {
if (!ordered) { continue; }
goto LBL_ERR;
}
break;
default:
err = CRYPT_INVALID_ARG;
goto LBL_ERR;
}
x += z;
inlen -= z;
list[i].used = 1;
if (!ordered) {
/* restart the decoder */
i = -1;
}
}
for (i = 0; i < outlen; i++) {
if (list[i].used == 0) {
err = CRYPT_INVALID_PACKET;
goto LBL_ERR;
}
}
err = CRYPT_OK;
LBL_ERR:
return err;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/sequence/der_decode_sequence_ex.c,v $ */
/* $Revision: 1.16 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,386 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_decode_sequence_flexi.c
ASN.1 DER, decode an array of ASN.1 types with a flexi parser, Tom St Denis
*/
#ifdef LTC_DER
static unsigned long fetch_length(const unsigned char *in, unsigned long inlen)
{
unsigned long x, y, z;
y = 0;
/* skip type and read len */
if (inlen < 2) {
return 0xFFFFFFFF;
}
++in; ++y;
/* read len */
x = *in++; ++y;
/* <128 means literal */
if (x < 128) {
return x+y;
}
x &= 0x7F; /* the lower 7 bits are the length of the length */
inlen -= 2;
/* len means len of len! */
if (x == 0 || x > 4 || x > inlen) {
return 0xFFFFFFFF;
}
y += x;
z = 0;
while (x--) {
z = (z<<8) | ((unsigned long)*in);
++in;
}
return z+y;
}
/**
ASN.1 DER Flexi(ble) decoder will decode arbitrary DER packets and create a linked list of the decoded elements.
@param in The input buffer
@param inlen [in/out] The length of the input buffer and on output the amount of decoded data
@param out [out] A pointer to the linked list
@return CRYPT_OK on success.
*/
int der_decode_sequence_flexi(const unsigned char *in, unsigned long *inlen, ltc_asn1_list **out)
{
ltc_asn1_list *l;
unsigned long err, type, len, totlen, x, y;
void *realloc_tmp;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(inlen != NULL);
LTC_ARGCHK(out != NULL);
l = NULL;
totlen = 0;
/* scan the input and and get lengths and what not */
while (*inlen) {
/* read the type byte */
type = *in;
/* fetch length */
len = fetch_length(in, *inlen);
if (len > *inlen) {
err = CRYPT_INVALID_PACKET;
goto error;
}
/* alloc new link */
if (l == NULL) {
l = XCALLOC(1, sizeof(*l));
if (l == NULL) {
err = CRYPT_MEM;
goto error;
}
} else {
l->next = XCALLOC(1, sizeof(*l));
if (l->next == NULL) {
err = CRYPT_MEM;
goto error;
}
l->next->prev = l;
l = l->next;
}
/* now switch on type */
switch (type) {
case 0x01: /* BOOLEAN */
l->type = LTC_ASN1_BOOLEAN;
l->size = 1;
l->data = XCALLOC(1, sizeof(int));
if ((err = der_decode_boolean(in, *inlen, l->data)) != CRYPT_OK) {
goto error;
}
if ((err = der_length_boolean(&len)) != CRYPT_OK) {
goto error;
}
break;
case 0x02: /* INTEGER */
/* init field */
l->type = LTC_ASN1_INTEGER;
l->size = 1;
if ((err = mp_init(&l->data)) != CRYPT_OK) {
goto error;
}
/* decode field */
if ((err = der_decode_integer(in, *inlen, l->data)) != CRYPT_OK) {
goto error;
}
/* calc length of object */
if ((err = der_length_integer(l->data, &len)) != CRYPT_OK) {
goto error;
}
break;
case 0x03: /* BIT */
/* init field */
l->type = LTC_ASN1_BIT_STRING;
l->size = len * 8; /* *8 because we store decoded bits one per char and they are encoded 8 per char. */
if ((l->data = XCALLOC(1, l->size)) == NULL) {
err = CRYPT_MEM;
goto error;
}
if ((err = der_decode_bit_string(in, *inlen, l->data, &l->size)) != CRYPT_OK) {
goto error;
}
if ((err = der_length_bit_string(l->size, &len)) != CRYPT_OK) {
goto error;
}
break;
case 0x04: /* OCTET */
/* init field */
l->type = LTC_ASN1_OCTET_STRING;
l->size = len;
if ((l->data = XCALLOC(1, l->size)) == NULL) {
err = CRYPT_MEM;
goto error;
}
if ((err = der_decode_octet_string(in, *inlen, l->data, &l->size)) != CRYPT_OK) {
goto error;
}
if ((err = der_length_octet_string(l->size, &len)) != CRYPT_OK) {
goto error;
}
break;
case 0x05: /* NULL */
/* valid NULL is 0x05 0x00 */
if (in[0] != 0x05 || in[1] != 0x00) {
err = CRYPT_INVALID_PACKET;
goto error;
}
/* simple to store ;-) */
l->type = LTC_ASN1_NULL;
l->data = NULL;
l->size = 0;
len = 2;
break;
case 0x06: /* OID */
/* init field */
l->type = LTC_ASN1_OBJECT_IDENTIFIER;
l->size = len;
if ((l->data = XCALLOC(len, sizeof(unsigned long))) == NULL) {
err = CRYPT_MEM;
goto error;
}
if ((err = der_decode_object_identifier(in, *inlen, l->data, &l->size)) != CRYPT_OK) {
goto error;
}
if ((err = der_length_object_identifier(l->data, l->size, &len)) != CRYPT_OK) {
goto error;
}
/* resize it to save a bunch of mem */
if ((realloc_tmp = XREALLOC(l->data, l->size * sizeof(unsigned long))) == NULL) {
/* out of heap but this is not an error */
break;
}
l->data = realloc_tmp;
break;
case 0x0C: /* UTF8 */
/* init field */
l->type = LTC_ASN1_UTF8_STRING;
l->size = len;
if ((l->data = XCALLOC(sizeof(wchar_t), l->size)) == NULL) {
err = CRYPT_MEM;
goto error;
}
if ((err = der_decode_utf8_string(in, *inlen, l->data, &l->size)) != CRYPT_OK) {
goto error;
}
if ((err = der_length_utf8_string(l->data, l->size, &len)) != CRYPT_OK) {
goto error;
}
break;
case 0x13: /* PRINTABLE */
/* init field */
l->type = LTC_ASN1_PRINTABLE_STRING;
l->size = len;
if ((l->data = XCALLOC(1, l->size)) == NULL) {
err = CRYPT_MEM;
goto error;
}
if ((err = der_decode_printable_string(in, *inlen, l->data, &l->size)) != CRYPT_OK) {
goto error;
}
if ((err = der_length_printable_string(l->data, l->size, &len)) != CRYPT_OK) {
goto error;
}
break;
case 0x16: /* IA5 */
/* init field */
l->type = LTC_ASN1_IA5_STRING;
l->size = len;
if ((l->data = XCALLOC(1, l->size)) == NULL) {
err = CRYPT_MEM;
goto error;
}
if ((err = der_decode_ia5_string(in, *inlen, l->data, &l->size)) != CRYPT_OK) {
goto error;
}
if ((err = der_length_ia5_string(l->data, l->size, &len)) != CRYPT_OK) {
goto error;
}
break;
case 0x17: /* UTC TIME */
/* init field */
l->type = LTC_ASN1_UTCTIME;
l->size = 1;
if ((l->data = XCALLOC(1, sizeof(ltc_utctime))) == NULL) {
err = CRYPT_MEM;
goto error;
}
len = *inlen;
if ((err = der_decode_utctime(in, &len, l->data)) != CRYPT_OK) {
goto error;
}
if ((err = der_length_utctime(l->data, &len)) != CRYPT_OK) {
goto error;
}
break;
case 0x30: /* SEQUENCE */
case 0x31: /* SET */
/* init field */
l->type = (type == 0x30) ? LTC_ASN1_SEQUENCE : LTC_ASN1_SET;
/* we have to decode the SEQUENCE header and get it's length */
/* move past type */
++in; --(*inlen);
/* read length byte */
x = *in++; --(*inlen);
/* smallest SEQUENCE/SET header */
y = 2;
/* now if it's > 127 the next bytes are the length of the length */
if (x > 128) {
x &= 0x7F;
in += x;
*inlen -= x;
/* update sequence header len */
y += x;
}
/* Sequence elements go as child */
len = len - y;
if ((err = der_decode_sequence_flexi(in, &len, &(l->child))) != CRYPT_OK) {
goto error;
}
/* len update */
totlen += y;
/* link them up y0 */
l->child->parent = l;
break;
default:
/* invalid byte ... this is a soft error */
/* remove link */
l = l->prev;
XFREE(l->next);
l->next = NULL;
goto outside;
}
/* advance pointers */
totlen += len;
in += len;
*inlen -= len;
}
outside:
/* rewind l please */
while (l->prev != NULL || l->parent != NULL) {
if (l->parent != NULL) {
l = l->parent;
} else {
l = l->prev;
}
}
/* return */
*out = l;
*inlen = totlen;
return CRYPT_OK;
error:
/* free list */
der_sequence_free(l);
return err;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/sequence/der_decode_sequence_flexi.c,v $ */
/* $Revision: 1.26 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,139 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
#include <stdarg.h>
/**
@file der_decode_sequence_multi.c
ASN.1 DER, decode a SEQUENCE, Tom St Denis
*/
#ifdef LTC_DER
/**
Decode a SEQUENCE type using a VA list
@param in Input buffer
@param inlen Length of input in octets
@remark <...> is of the form <type, size, data> (int, unsigned long, void*)
@return CRYPT_OK on success
*/
int der_decode_sequence_multi(const unsigned char *in, unsigned long inlen, ...)
{
int err, type;
unsigned long size, x;
void *data;
va_list args;
ltc_asn1_list *list;
LTC_ARGCHK(in != NULL);
/* get size of output that will be required */
va_start(args, inlen);
x = 0;
for (;;) {
type = va_arg(args, int);
size = va_arg(args, unsigned long);
data = va_arg(args, void*);
if (type == LTC_ASN1_EOL) {
break;
}
switch (type) {
case LTC_ASN1_BOOLEAN:
case LTC_ASN1_INTEGER:
case LTC_ASN1_SHORT_INTEGER:
case LTC_ASN1_BIT_STRING:
case LTC_ASN1_OCTET_STRING:
case LTC_ASN1_NULL:
case LTC_ASN1_OBJECT_IDENTIFIER:
case LTC_ASN1_IA5_STRING:
case LTC_ASN1_PRINTABLE_STRING:
case LTC_ASN1_UTF8_STRING:
case LTC_ASN1_UTCTIME:
case LTC_ASN1_SET:
case LTC_ASN1_SETOF:
case LTC_ASN1_SEQUENCE:
case LTC_ASN1_CHOICE:
++x;
break;
default:
va_end(args);
return CRYPT_INVALID_ARG;
}
}
va_end(args);
/* allocate structure for x elements */
if (x == 0) {
return CRYPT_NOP;
}
list = XCALLOC(sizeof(*list), x);
if (list == NULL) {
return CRYPT_MEM;
}
/* fill in the structure */
va_start(args, inlen);
x = 0;
for (;;) {
type = va_arg(args, int);
size = va_arg(args, unsigned long);
data = va_arg(args, void*);
if (type == LTC_ASN1_EOL) {
break;
}
switch (type) {
case LTC_ASN1_BOOLEAN:
case LTC_ASN1_INTEGER:
case LTC_ASN1_SHORT_INTEGER:
case LTC_ASN1_BIT_STRING:
case LTC_ASN1_OCTET_STRING:
case LTC_ASN1_NULL:
case LTC_ASN1_OBJECT_IDENTIFIER:
case LTC_ASN1_IA5_STRING:
case LTC_ASN1_PRINTABLE_STRING:
case LTC_ASN1_UTF8_STRING:
case LTC_ASN1_UTCTIME:
case LTC_ASN1_SEQUENCE:
case LTC_ASN1_SET:
case LTC_ASN1_SETOF:
case LTC_ASN1_CHOICE:
list[x].type = type;
list[x].size = size;
list[x++].data = data;
break;
default:
va_end(args);
err = CRYPT_INVALID_ARG;
goto LBL_ERR;
}
}
va_end(args);
err = der_decode_sequence(in, inlen, list, x);
LBL_ERR:
XFREE(list);
return err;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/sequence/der_decode_sequence_multi.c,v $ */
/* $Revision: 1.13 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,68 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_decode_short_integer.c
ASN.1 DER, decode an integer, Tom St Denis
*/
#ifdef LTC_DER
/**
Read a short integer
@param in The DER encoded data
@param inlen Size of data
@param num [out] The integer to decode
@return CRYPT_OK if successful
*/
int der_decode_short_integer(const unsigned char *in, unsigned long inlen, unsigned long *num)
{
unsigned long len, x, y;
LTC_ARGCHK(num != NULL);
LTC_ARGCHK(in != NULL);
/* check length */
if (inlen < 2) {
return CRYPT_INVALID_PACKET;
}
/* check header */
x = 0;
if ((in[x++] & 0x1F) != 0x02) {
return CRYPT_INVALID_PACKET;
}
/* get the packet len */
len = in[x++];
if (x + len > inlen) {
return CRYPT_INVALID_PACKET;
}
/* read number */
y = 0;
while (len--) {
y = (y<<8) | (unsigned long)in[x++];
}
*num = y;
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/short_integer/der_decode_short_integer.c,v $ */
/* $Revision: 1.7 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,127 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_decode_utctime.c
ASN.1 DER, decode a UTCTIME, Tom St Denis
*/
#ifdef LTC_DER
static int char_to_int(unsigned char x)
{
switch (x) {
case '0': return 0;
case '1': return 1;
case '2': return 2;
case '3': return 3;
case '4': return 4;
case '5': return 5;
case '6': return 6;
case '7': return 7;
case '8': return 8;
case '9': return 9;
}
return 100;
}
#define DECODE_V(y, max) \
y = char_to_int(buf[x])*10 + char_to_int(buf[x+1]); \
if (y >= max) return CRYPT_INVALID_PACKET; \
x += 2;
/**
Decodes a UTC time structure in DER format (reads all 6 valid encoding formats)
@param in Input buffer
@param inlen Length of input buffer in octets
@param out [out] Destination of UTC time structure
@return CRYPT_OK if successful
*/
int der_decode_utctime(const unsigned char *in, unsigned long *inlen,
ltc_utctime *out)
{
unsigned char buf[32];
unsigned long x;
int y;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(inlen != NULL);
LTC_ARGCHK(out != NULL);
/* check header */
if (*inlen < 2UL || (in[1] >= sizeof(buf)) || ((in[1] + 2UL) > *inlen)) {
return CRYPT_INVALID_PACKET;
}
/* decode the string */
for (x = 0; x < in[1]; x++) {
y = der_ia5_value_decode(in[x+2]);
if (y == -1) {
return CRYPT_INVALID_PACKET;
}
buf[x] = y;
}
*inlen = 2 + x;
/* possible encodings are
YYMMDDhhmmZ
YYMMDDhhmm+hh'mm'
YYMMDDhhmm-hh'mm'
YYMMDDhhmmssZ
YYMMDDhhmmss+hh'mm'
YYMMDDhhmmss-hh'mm'
So let's do a trivial decode upto [including] mm
*/
x = 0;
DECODE_V(out->YY, 100);
DECODE_V(out->MM, 13);
DECODE_V(out->DD, 32);
DECODE_V(out->hh, 24);
DECODE_V(out->mm, 60);
/* clear timezone and seconds info */
out->off_dir = out->off_hh = out->off_mm = out->ss = 0;
/* now is it Z, +, - or 0-9 */
if (buf[x] == 'Z') {
return CRYPT_OK;
} else if (buf[x] == '+' || buf[x] == '-') {
out->off_dir = (buf[x++] == '+') ? 0 : 1;
DECODE_V(out->off_hh, 24);
DECODE_V(out->off_mm, 60);
return CRYPT_OK;
}
/* decode seconds */
DECODE_V(out->ss, 60);
/* now is it Z, +, - */
if (buf[x] == 'Z') {
return CRYPT_OK;
} else if (buf[x] == '+' || buf[x] == '-') {
out->off_dir = (buf[x++] == '+') ? 0 : 1;
DECODE_V(out->off_hh, 24);
DECODE_V(out->off_mm, 60);
return CRYPT_OK;
} else {
return CRYPT_INVALID_PACKET;
}
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/utctime/der_decode_utctime.c,v $ */
/* $Revision: 1.9 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,111 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_decode_utf8_string.c
ASN.1 DER, encode a UTF8 STRING, Tom St Denis
*/
#ifdef LTC_DER
/**
Store a UTF8 STRING
@param in The DER encoded UTF8 STRING
@param inlen The size of the DER UTF8 STRING
@param out [out] The array of utf8s stored (one per char)
@param outlen [in/out] The number of utf8s stored
@return CRYPT_OK if successful
*/
int der_decode_utf8_string(const unsigned char *in, unsigned long inlen,
wchar_t *out, unsigned long *outlen)
{
wchar_t tmp;
unsigned long x, y, z, len;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
/* must have header at least */
if (inlen < 2) {
return CRYPT_INVALID_PACKET;
}
/* check for 0x0C */
if ((in[0] & 0x1F) != 0x0C) {
return CRYPT_INVALID_PACKET;
}
x = 1;
/* decode the length */
if (in[x] & 0x80) {
/* valid # of bytes in length are 1,2,3 */
y = in[x] & 0x7F;
if ((y == 0) || (y > 3) || ((x + y) > inlen)) {
return CRYPT_INVALID_PACKET;
}
/* read the length in */
len = 0;
++x;
while (y--) {
len = (len << 8) | in[x++];
}
} else {
len = in[x++] & 0x7F;
}
if (len + x > inlen) {
return CRYPT_INVALID_PACKET;
}
/* proceed to decode */
for (y = 0; x < inlen; ) {
/* get first byte */
tmp = in[x++];
/* count number of bytes */
for (z = 0; (tmp & 0x80) && (z <= 4); z++, tmp = (tmp << 1) & 0xFF);
if (z > 4 || (x + (z - 1) > inlen)) {
return CRYPT_INVALID_PACKET;
}
/* decode, grab upper bits */
tmp >>= z;
/* grab remaining bytes */
if (z > 1) { --z; }
while (z-- != 0) {
if ((in[x] & 0xC0) != 0x80) {
return CRYPT_INVALID_PACKET;
}
tmp = (tmp << 6) | ((wchar_t)in[x++] & 0x3F);
}
if (y > *outlen) {
*outlen = y;
return CRYPT_BUFFER_OVERFLOW;
}
out[y++] = tmp;
}
*outlen = y;
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/utf8/der_decode_utf8_string.c,v $ */
/* $Revision: 1.8 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,89 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_encode_bit_string.c
ASN.1 DER, encode a BIT STRING, Tom St Denis
*/
#ifdef LTC_DER
/**
Store a BIT STRING
@param in The array of bits to store (one per char)
@param inlen The number of bits tostore
@param out [out] The destination for the DER encoded BIT STRING
@param outlen [in/out] The max size and resulting size of the DER BIT STRING
@return CRYPT_OK if successful
*/
int der_encode_bit_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen)
{
unsigned long len, x, y;
unsigned char buf;
int err;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
/* avoid overflows */
if ((err = der_length_bit_string(inlen, &len)) != CRYPT_OK) {
return err;
}
if (len > *outlen) {
*outlen = len;
return CRYPT_BUFFER_OVERFLOW;
}
/* store header (include bit padding count in length) */
x = 0;
y = (inlen >> 3) + ((inlen&7) ? 1 : 0) + 1;
out[x++] = 0x03;
if (y < 128) {
out[x++] = (unsigned char)y;
} else if (y < 256) {
out[x++] = 0x81;
out[x++] = (unsigned char)y;
} else if (y < 65536) {
out[x++] = 0x82;
out[x++] = (unsigned char)((y>>8)&255);
out[x++] = (unsigned char)(y&255);
}
/* store number of zero padding bits */
out[x++] = (unsigned char)((8 - inlen) & 7);
/* store the bits in big endian format */
for (y = buf = 0; y < inlen; y++) {
buf |= (in[y] ? 1 : 0) << (7 - (y & 7));
if ((y & 7) == 7) {
out[x++] = buf;
buf = 0;
}
}
/* store last byte */
if (inlen & 7) {
out[x++] = buf;
}
*outlen = x;
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/bit/der_encode_bit_string.c,v $ */
/* $Revision: 1.5 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,51 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_encode_boolean.c
ASN.1 DER, encode a BOOLEAN, Tom St Denis
*/
#ifdef LTC_DER
/**
Store a BOOLEAN
@param in The boolean to encode
@param out [out] The destination for the DER encoded BOOLEAN
@param outlen [in/out] The max size and resulting size of the DER BOOLEAN
@return CRYPT_OK if successful
*/
int der_encode_boolean(int in,
unsigned char *out, unsigned long *outlen)
{
LTC_ARGCHK(outlen != NULL);
LTC_ARGCHK(out != NULL);
if (*outlen < 3) {
*outlen = 3;
return CRYPT_BUFFER_OVERFLOW;
}
*outlen = 3;
out[0] = 0x01;
out[1] = 0x01;
out[2] = in ? 0xFF : 0x00;
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/boolean/der_encode_boolean.c,v $ */
/* $Revision: 1.4 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,85 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_encode_ia5_string.c
ASN.1 DER, encode a IA5 STRING, Tom St Denis
*/
#ifdef LTC_DER
/**
Store an IA5 STRING
@param in The array of IA5 to store (one per char)
@param inlen The number of IA5 to store
@param out [out] The destination for the DER encoded IA5 STRING
@param outlen [in/out] The max size and resulting size of the DER IA5 STRING
@return CRYPT_OK if successful
*/
int der_encode_ia5_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen)
{
unsigned long x, y, len;
int err;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
/* get the size */
if ((err = der_length_ia5_string(in, inlen, &len)) != CRYPT_OK) {
return err;
}
/* too big? */
if (len > *outlen) {
*outlen = len;
return CRYPT_BUFFER_OVERFLOW;
}
/* encode the header+len */
x = 0;
out[x++] = 0x16;
if (inlen < 128) {
out[x++] = (unsigned char)inlen;
} else if (inlen < 256) {
out[x++] = 0x81;
out[x++] = (unsigned char)inlen;
} else if (inlen < 65536UL) {
out[x++] = 0x82;
out[x++] = (unsigned char)((inlen>>8)&255);
out[x++] = (unsigned char)(inlen&255);
} else if (inlen < 16777216UL) {
out[x++] = 0x83;
out[x++] = (unsigned char)((inlen>>16)&255);
out[x++] = (unsigned char)((inlen>>8)&255);
out[x++] = (unsigned char)(inlen&255);
} else {
return CRYPT_INVALID_ARG;
}
/* store octets */
for (y = 0; y < inlen; y++) {
out[x++] = der_ia5_char_encode(in[y]);
}
/* retun length */
*outlen = x;
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/ia5/der_encode_ia5_string.c,v $ */
/* $Revision: 1.5 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,130 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_encode_integer.c
ASN.1 DER, encode an integer, Tom St Denis
*/
#ifdef LTC_DER
/* Exports a positive bignum as DER format (upto 2^32 bytes in size) */
/**
Store a mp_int integer
@param num The first mp_int to encode
@param out [out] The destination for the DER encoded integers
@param outlen [in/out] The max size and resulting size of the DER encoded integers
@return CRYPT_OK if successful
*/
int der_encode_integer(void *num, unsigned char *out, unsigned long *outlen)
{
unsigned long tmplen, y;
int err, leading_zero;
LTC_ARGCHK(num != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
/* find out how big this will be */
if ((err = der_length_integer(num, &tmplen)) != CRYPT_OK) {
return err;
}
if (*outlen < tmplen) {
*outlen = tmplen;
return CRYPT_BUFFER_OVERFLOW;
}
if (mp_cmp_d(num, 0) != LTC_MP_LT) {
/* we only need a leading zero if the msb of the first byte is one */
if ((mp_count_bits(num) & 7) == 0 || mp_iszero(num) == LTC_MP_YES) {
leading_zero = 1;
} else {
leading_zero = 0;
}
/* get length of num in bytes (plus 1 since we force the msbyte to zero) */
y = mp_unsigned_bin_size(num) + leading_zero;
} else {
leading_zero = 0;
y = mp_count_bits(num);
y = y + (8 - (y & 7));
y = y >> 3;
if (((mp_cnt_lsb(num)+1)==mp_count_bits(num)) && ((mp_count_bits(num)&7)==0)) --y;
}
/* now store initial data */
*out++ = 0x02;
if (y < 128) {
/* short form */
*out++ = (unsigned char)y;
} else if (y < 256) {
*out++ = 0x81;
*out++ = (unsigned char)y;
} else if (y < 65536UL) {
*out++ = 0x82;
*out++ = (unsigned char)((y>>8)&255);
*out++ = (unsigned char)y;
} else if (y < 16777216UL) {
*out++ = 0x83;
*out++ = (unsigned char)((y>>16)&255);
*out++ = (unsigned char)((y>>8)&255);
*out++ = (unsigned char)y;
} else {
return CRYPT_INVALID_ARG;
}
/* now store msbyte of zero if num is non-zero */
if (leading_zero) {
*out++ = 0x00;
}
/* if it's not zero store it as big endian */
if (mp_cmp_d(num, 0) == LTC_MP_GT) {
/* now store the mpint */
if ((err = mp_to_unsigned_bin(num, out)) != CRYPT_OK) {
return err;
}
} else if (mp_iszero(num) != LTC_MP_YES) {
void *tmp;
/* negative */
if (mp_init(&tmp) != CRYPT_OK) {
return CRYPT_MEM;
}
/* 2^roundup and subtract */
y = mp_count_bits(num);
y = y + (8 - (y & 7));
if (((mp_cnt_lsb(num)+1)==mp_count_bits(num)) && ((mp_count_bits(num)&7)==0)) y -= 8;
if (mp_2expt(tmp, y) != CRYPT_OK || mp_add(tmp, num, tmp) != CRYPT_OK) {
mp_clear(tmp);
return CRYPT_MEM;
}
if ((err = mp_to_unsigned_bin(tmp, out)) != CRYPT_OK) {
mp_clear(tmp);
return err;
}
mp_clear(tmp);
}
/* we good */
*outlen = tmplen;
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/integer/der_encode_integer.c,v $ */
/* $Revision: 1.9 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,111 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_encode_object_identifier.c
ASN.1 DER, Encode Object Identifier, Tom St Denis
*/
#ifdef LTC_DER
/**
Encode an OID
@param words The words to encode (upto 32-bits each)
@param nwords The number of words in the OID
@param out [out] Destination of OID data
@param outlen [in/out] The max and resulting size of the OID
@return CRYPT_OK if successful
*/
int der_encode_object_identifier(unsigned long *words, unsigned long nwords,
unsigned char *out, unsigned long *outlen)
{
unsigned long i, x, y, z, t, mask, wordbuf;
int err;
LTC_ARGCHK(words != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
/* check length */
if ((err = der_length_object_identifier(words, nwords, &x)) != CRYPT_OK) {
return err;
}
if (x > *outlen) {
*outlen = x;
return CRYPT_BUFFER_OVERFLOW;
}
/* compute length to store OID data */
z = 0;
wordbuf = words[0] * 40 + words[1];
for (y = 1; y < nwords; y++) {
t = der_object_identifier_bits(wordbuf);
z += t/7 + ((t%7) ? 1 : 0) + (wordbuf == 0 ? 1 : 0);
if (y < nwords - 1) {
wordbuf = words[y + 1];
}
}
/* store header + length */
x = 0;
out[x++] = 0x06;
if (z < 128) {
out[x++] = (unsigned char)z;
} else if (z < 256) {
out[x++] = 0x81;
out[x++] = (unsigned char)z;
} else if (z < 65536UL) {
out[x++] = 0x82;
out[x++] = (unsigned char)((z>>8)&255);
out[x++] = (unsigned char)(z&255);
} else {
return CRYPT_INVALID_ARG;
}
/* store first byte */
wordbuf = words[0] * 40 + words[1];
for (i = 1; i < nwords; i++) {
/* store 7 bit words in little endian */
t = wordbuf & 0xFFFFFFFF;
if (t) {
y = x;
mask = 0;
while (t) {
out[x++] = (unsigned char)((t & 0x7F) | mask);
t >>= 7;
mask |= 0x80; /* upper bit is set on all but the last byte */
}
/* now swap bytes y...x-1 */
z = x - 1;
while (y < z) {
t = out[y]; out[y] = out[z]; out[z] = (unsigned char)t;
++y;
--z;
}
} else {
/* zero word */
out[x++] = 0x00;
}
if (i < nwords - 1) {
wordbuf = words[i + 1];
}
}
*outlen = x;
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/object_identifier/der_encode_object_identifier.c,v $ */
/* $Revision: 1.7 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,86 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_encode_octet_string.c
ASN.1 DER, encode a OCTET STRING, Tom St Denis
*/
#ifdef LTC_DER
/**
Store an OCTET STRING
@param in The array of OCTETS to store (one per char)
@param inlen The number of OCTETS to store
@param out [out] The destination for the DER encoded OCTET STRING
@param outlen [in/out] The max size and resulting size of the DER OCTET STRING
@return CRYPT_OK if successful
*/
int der_encode_octet_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen)
{
unsigned long x, y, len;
int err;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
/* get the size */
if ((err = der_length_octet_string(inlen, &len)) != CRYPT_OK) {
return err;
}
/* too big? */
if (len > *outlen) {
*outlen = len;
return CRYPT_BUFFER_OVERFLOW;
}
/* encode the header+len */
x = 0;
out[x++] = 0x04;
if (inlen < 128) {
out[x++] = (unsigned char)inlen;
} else if (inlen < 256) {
out[x++] = 0x81;
out[x++] = (unsigned char)inlen;
} else if (inlen < 65536UL) {
out[x++] = 0x82;
out[x++] = (unsigned char)((inlen>>8)&255);
out[x++] = (unsigned char)(inlen&255);
} else if (inlen < 16777216UL) {
out[x++] = 0x83;
out[x++] = (unsigned char)((inlen>>16)&255);
out[x++] = (unsigned char)((inlen>>8)&255);
out[x++] = (unsigned char)(inlen&255);
} else {
return CRYPT_INVALID_ARG;
}
/* store octets */
for (y = 0; y < inlen; y++) {
out[x++] = in[y];
}
/* retun length */
*outlen = x;
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/octet/der_encode_octet_string.c,v $ */
/* $Revision: 1.5 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,85 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_encode_printable_string.c
ASN.1 DER, encode a printable STRING, Tom St Denis
*/
#ifdef LTC_DER
/**
Store an printable STRING
@param in The array of printable to store (one per char)
@param inlen The number of printable to store
@param out [out] The destination for the DER encoded printable STRING
@param outlen [in/out] The max size and resulting size of the DER printable STRING
@return CRYPT_OK if successful
*/
int der_encode_printable_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen)
{
unsigned long x, y, len;
int err;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
/* get the size */
if ((err = der_length_printable_string(in, inlen, &len)) != CRYPT_OK) {
return err;
}
/* too big? */
if (len > *outlen) {
*outlen = len;
return CRYPT_BUFFER_OVERFLOW;
}
/* encode the header+len */
x = 0;
out[x++] = 0x13;
if (inlen < 128) {
out[x++] = (unsigned char)inlen;
} else if (inlen < 256) {
out[x++] = 0x81;
out[x++] = (unsigned char)inlen;
} else if (inlen < 65536UL) {
out[x++] = 0x82;
out[x++] = (unsigned char)((inlen>>8)&255);
out[x++] = (unsigned char)(inlen&255);
} else if (inlen < 16777216UL) {
out[x++] = 0x83;
out[x++] = (unsigned char)((inlen>>16)&255);
out[x++] = (unsigned char)((inlen>>8)&255);
out[x++] = (unsigned char)(inlen&255);
} else {
return CRYPT_INVALID_ARG;
}
/* store octets */
for (y = 0; y < inlen; y++) {
out[x++] = der_printable_char_encode(in[y]);
}
/* retun length */
*outlen = x;
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/printable_string/der_encode_printable_string.c,v $ */
/* $Revision: 1.5 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,335 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
#include <stdarg.h>
/**
@file der_encode_sequence_ex.c
ASN.1 DER, encode a SEQUENCE, Tom St Denis
*/
#ifdef LTC_DER
/**
Encode a SEQUENCE
@param list The list of items to encode
@param inlen The number of items in the list
@param out [out] The destination
@param outlen [in/out] The size of the output
@param type_of LTC_ASN1_SEQUENCE or LTC_ASN1_SET/LTC_ASN1_SETOF
@return CRYPT_OK on success
*/
int der_encode_sequence_ex(ltc_asn1_list *list, unsigned long inlen,
unsigned char *out, unsigned long *outlen, int type_of)
{
int err, type;
unsigned long size, x, y, z, i;
void *data;
LTC_ARGCHK(list != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
/* get size of output that will be required */
y = 0;
for (i = 0; i < inlen; i++) {
type = list[i].type;
size = list[i].size;
data = list[i].data;
if (type == LTC_ASN1_EOL) {
break;
}
switch (type) {
case LTC_ASN1_BOOLEAN:
if ((err = der_length_boolean(&x)) != CRYPT_OK) {
goto LBL_ERR;
}
y += x;
break;
case LTC_ASN1_INTEGER:
if ((err = der_length_integer(data, &x)) != CRYPT_OK) {
goto LBL_ERR;
}
y += x;
break;
case LTC_ASN1_SHORT_INTEGER:
if ((err = der_length_short_integer(*((unsigned long*)data), &x)) != CRYPT_OK) {
goto LBL_ERR;
}
y += x;
break;
case LTC_ASN1_BIT_STRING:
if ((err = der_length_bit_string(size, &x)) != CRYPT_OK) {
goto LBL_ERR;
}
y += x;
break;
case LTC_ASN1_OCTET_STRING:
if ((err = der_length_octet_string(size, &x)) != CRYPT_OK) {
goto LBL_ERR;
}
y += x;
break;
case LTC_ASN1_NULL:
y += 2;
break;
case LTC_ASN1_OBJECT_IDENTIFIER:
if ((err = der_length_object_identifier(data, size, &x)) != CRYPT_OK) {
goto LBL_ERR;
}
y += x;
break;
case LTC_ASN1_IA5_STRING:
if ((err = der_length_ia5_string(data, size, &x)) != CRYPT_OK) {
goto LBL_ERR;
}
y += x;
break;
case LTC_ASN1_PRINTABLE_STRING:
if ((err = der_length_printable_string(data, size, &x)) != CRYPT_OK) {
goto LBL_ERR;
}
y += x;
break;
case LTC_ASN1_UTF8_STRING:
if ((err = der_length_utf8_string(data, size, &x)) != CRYPT_OK) {
goto LBL_ERR;
}
y += x;
break;
case LTC_ASN1_UTCTIME:
if ((err = der_length_utctime(data, &x)) != CRYPT_OK) {
goto LBL_ERR;
}
y += x;
break;
case LTC_ASN1_SET:
case LTC_ASN1_SETOF:
case LTC_ASN1_SEQUENCE:
if ((err = der_length_sequence(data, size, &x)) != CRYPT_OK) {
goto LBL_ERR;
}
y += x;
break;
default:
err = CRYPT_INVALID_ARG;
goto LBL_ERR;
}
}
/* calc header size */
z = y;
if (y < 128) {
y += 2;
} else if (y < 256) {
/* 0x30 0x81 LL */
y += 3;
} else if (y < 65536UL) {
/* 0x30 0x82 LL LL */
y += 4;
} else if (y < 16777216UL) {
/* 0x30 0x83 LL LL LL */
y += 5;
} else {
err = CRYPT_INVALID_ARG;
goto LBL_ERR;
}
/* too big ? */
if (*outlen < y) {
*outlen = y;
err = CRYPT_BUFFER_OVERFLOW;
goto LBL_ERR;
}
/* store header */
x = 0;
out[x++] = (type_of == LTC_ASN1_SEQUENCE) ? 0x30 : 0x31;
if (z < 128) {
out[x++] = (unsigned char)z;
} else if (z < 256) {
out[x++] = 0x81;
out[x++] = (unsigned char)z;
} else if (z < 65536UL) {
out[x++] = 0x82;
out[x++] = (unsigned char)((z>>8UL)&255);
out[x++] = (unsigned char)(z&255);
} else if (z < 16777216UL) {
out[x++] = 0x83;
out[x++] = (unsigned char)((z>>16UL)&255);
out[x++] = (unsigned char)((z>>8UL)&255);
out[x++] = (unsigned char)(z&255);
}
/* store data */
*outlen -= x;
for (i = 0; i < inlen; i++) {
type = list[i].type;
size = list[i].size;
data = list[i].data;
if (type == LTC_ASN1_EOL) {
break;
}
switch (type) {
case LTC_ASN1_BOOLEAN:
z = *outlen;
if ((err = der_encode_boolean(*((int *)data), out + x, &z)) != CRYPT_OK) {
goto LBL_ERR;
}
x += z;
*outlen -= z;
break;
case LTC_ASN1_INTEGER:
z = *outlen;
if ((err = der_encode_integer(data, out + x, &z)) != CRYPT_OK) {
goto LBL_ERR;
}
x += z;
*outlen -= z;
break;
case LTC_ASN1_SHORT_INTEGER:
z = *outlen;
if ((err = der_encode_short_integer(*((unsigned long*)data), out + x, &z)) != CRYPT_OK) {
goto LBL_ERR;
}
x += z;
*outlen -= z;
break;
case LTC_ASN1_BIT_STRING:
z = *outlen;
if ((err = der_encode_bit_string(data, size, out + x, &z)) != CRYPT_OK) {
goto LBL_ERR;
}
x += z;
*outlen -= z;
break;
case LTC_ASN1_OCTET_STRING:
z = *outlen;
if ((err = der_encode_octet_string(data, size, out + x, &z)) != CRYPT_OK) {
goto LBL_ERR;
}
x += z;
*outlen -= z;
break;
case LTC_ASN1_NULL:
out[x++] = 0x05;
out[x++] = 0x00;
*outlen -= 2;
break;
case LTC_ASN1_OBJECT_IDENTIFIER:
z = *outlen;
if ((err = der_encode_object_identifier(data, size, out + x, &z)) != CRYPT_OK) {
goto LBL_ERR;
}
x += z;
*outlen -= z;
break;
case LTC_ASN1_IA5_STRING:
z = *outlen;
if ((err = der_encode_ia5_string(data, size, out + x, &z)) != CRYPT_OK) {
goto LBL_ERR;
}
x += z;
*outlen -= z;
break;
case LTC_ASN1_PRINTABLE_STRING:
z = *outlen;
if ((err = der_encode_printable_string(data, size, out + x, &z)) != CRYPT_OK) {
goto LBL_ERR;
}
x += z;
*outlen -= z;
break;
case LTC_ASN1_UTF8_STRING:
z = *outlen;
if ((err = der_encode_utf8_string(data, size, out + x, &z)) != CRYPT_OK) {
goto LBL_ERR;
}
x += z;
*outlen -= z;
break;
case LTC_ASN1_UTCTIME:
z = *outlen;
if ((err = der_encode_utctime(data, out + x, &z)) != CRYPT_OK) {
goto LBL_ERR;
}
x += z;
*outlen -= z;
break;
case LTC_ASN1_SET:
z = *outlen;
if ((err = der_encode_set(data, size, out + x, &z)) != CRYPT_OK) {
goto LBL_ERR;
}
x += z;
*outlen -= z;
break;
case LTC_ASN1_SETOF:
z = *outlen;
if ((err = der_encode_setof(data, size, out + x, &z)) != CRYPT_OK) {
goto LBL_ERR;
}
x += z;
*outlen -= z;
break;
case LTC_ASN1_SEQUENCE:
z = *outlen;
if ((err = der_encode_sequence_ex(data, size, out + x, &z, type)) != CRYPT_OK) {
goto LBL_ERR;
}
x += z;
*outlen -= z;
break;
default:
err = CRYPT_INVALID_ARG;
goto LBL_ERR;
}
}
*outlen = x;
err = CRYPT_OK;
LBL_ERR:
return err;
}
#endif

View file

@ -0,0 +1,138 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
#include <stdarg.h>
/**
@file der_encode_sequence_multi.c
ASN.1 DER, encode a SEQUENCE, Tom St Denis
*/
#ifdef LTC_DER
/**
Encode a SEQUENCE type using a VA list
@param out [out] Destination for data
@param outlen [in/out] Length of buffer and resulting length of output
@remark <...> is of the form <type, size, data> (int, unsigned long, void*)
@return CRYPT_OK on success
*/
int der_encode_sequence_multi(unsigned char *out, unsigned long *outlen, ...)
{
int err, type;
unsigned long size, x;
void *data;
va_list args;
ltc_asn1_list *list;
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
/* get size of output that will be required */
va_start(args, outlen);
x = 0;
for (;;) {
type = va_arg(args, int);
size = va_arg(args, unsigned long);
data = va_arg(args, void*);
if (type == LTC_ASN1_EOL) {
break;
}
switch (type) {
case LTC_ASN1_BOOLEAN:
case LTC_ASN1_INTEGER:
case LTC_ASN1_SHORT_INTEGER:
case LTC_ASN1_BIT_STRING:
case LTC_ASN1_OCTET_STRING:
case LTC_ASN1_NULL:
case LTC_ASN1_OBJECT_IDENTIFIER:
case LTC_ASN1_IA5_STRING:
case LTC_ASN1_PRINTABLE_STRING:
case LTC_ASN1_UTF8_STRING:
case LTC_ASN1_UTCTIME:
case LTC_ASN1_SEQUENCE:
case LTC_ASN1_SET:
case LTC_ASN1_SETOF:
++x;
break;
default:
va_end(args);
return CRYPT_INVALID_ARG;
}
}
va_end(args);
/* allocate structure for x elements */
if (x == 0) {
return CRYPT_NOP;
}
list = XCALLOC(sizeof(*list), x);
if (list == NULL) {
return CRYPT_MEM;
}
/* fill in the structure */
va_start(args, outlen);
x = 0;
for (;;) {
type = va_arg(args, int);
size = va_arg(args, unsigned long);
data = va_arg(args, void*);
if (type == LTC_ASN1_EOL) {
break;
}
switch (type) {
case LTC_ASN1_BOOLEAN:
case LTC_ASN1_INTEGER:
case LTC_ASN1_SHORT_INTEGER:
case LTC_ASN1_BIT_STRING:
case LTC_ASN1_OCTET_STRING:
case LTC_ASN1_NULL:
case LTC_ASN1_OBJECT_IDENTIFIER:
case LTC_ASN1_IA5_STRING:
case LTC_ASN1_PRINTABLE_STRING:
case LTC_ASN1_UTF8_STRING:
case LTC_ASN1_UTCTIME:
case LTC_ASN1_SEQUENCE:
case LTC_ASN1_SET:
case LTC_ASN1_SETOF:
list[x].type = type;
list[x].size = size;
list[x++].data = data;
break;
default:
va_end(args);
err = CRYPT_INVALID_ARG;
goto LBL_ERR;
}
}
va_end(args);
err = der_encode_sequence(list, x, out, outlen);
LBL_ERR:
XFREE(list);
return err;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/sequence/der_encode_sequence_multi.c,v $ */
/* $Revision: 1.12 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,103 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_encode_set.c
ASN.1 DER, Encode a SET, Tom St Denis
*/
#ifdef LTC_DER
/* LTC define to ASN.1 TAG */
static int ltc_to_asn1(int v)
{
switch (v) {
case LTC_ASN1_BOOLEAN: return 0x01;
case LTC_ASN1_INTEGER:
case LTC_ASN1_SHORT_INTEGER: return 0x02;
case LTC_ASN1_BIT_STRING: return 0x03;
case LTC_ASN1_OCTET_STRING: return 0x04;
case LTC_ASN1_NULL: return 0x05;
case LTC_ASN1_OBJECT_IDENTIFIER: return 0x06;
case LTC_ASN1_UTF8_STRING: return 0x0C;
case LTC_ASN1_PRINTABLE_STRING: return 0x13;
case LTC_ASN1_IA5_STRING: return 0x16;
case LTC_ASN1_UTCTIME: return 0x17;
case LTC_ASN1_SEQUENCE: return 0x30;
case LTC_ASN1_SET:
case LTC_ASN1_SETOF: return 0x31;
default: return -1;
}
}
static int qsort_helper(const void *a, const void *b)
{
ltc_asn1_list *A = (ltc_asn1_list *)a, *B = (ltc_asn1_list *)b;
int r;
r = ltc_to_asn1(A->type) - ltc_to_asn1(B->type);
/* for QSORT the order is UNDEFINED if they are "equal" which means it is NOT DETERMINISTIC. So we force it to be :-) */
if (r == 0) {
/* their order in the original list now determines the position */
return A->used - B->used;
} else {
return r;
}
}
/*
Encode a SET type
@param list The list of items to encode
@param inlen The number of items in the list
@param out [out] The destination
@param outlen [in/out] The size of the output
@return CRYPT_OK on success
*/
int der_encode_set(ltc_asn1_list *list, unsigned long inlen,
unsigned char *out, unsigned long *outlen)
{
ltc_asn1_list *copy;
unsigned long x;
int err;
/* make copy of list */
copy = XCALLOC(inlen, sizeof(*copy));
if (copy == NULL) {
return CRYPT_MEM;
}
/* fill in used member with index so we can fully sort it */
for (x = 0; x < inlen; x++) {
copy[x] = list[x];
copy[x].used = x;
}
/* sort it by the "type" field */
XQSORT(copy, inlen, sizeof(*copy), &qsort_helper);
/* call der_encode_sequence_ex() */
err = der_encode_sequence_ex(copy, inlen, out, outlen, LTC_ASN1_SET);
/* free list */
XFREE(copy);
return err;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/set/der_encode_set.c,v $ */
/* $Revision: 1.12 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,162 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_encode_setof.c
ASN.1 DER, Encode SET OF, Tom St Denis
*/
#ifdef LTC_DER
struct edge {
unsigned char *start;
unsigned long size;
};
static int qsort_helper(const void *a, const void *b)
{
struct edge *A = (struct edge *)a, *B = (struct edge *)b;
int r;
unsigned long x;
/* compare min length */
r = XMEMCMP(A->start, B->start, MIN(A->size, B->size));
if (r == 0 && A->size != B->size) {
if (A->size > B->size) {
for (x = B->size; x < A->size; x++) {
if (A->start[x]) {
return 1;
}
}
} else {
for (x = A->size; x < B->size; x++) {
if (B->start[x]) {
return -1;
}
}
}
}
return r;
}
/**
Encode a SETOF stucture
@param list The list of items to encode
@param inlen The number of items in the list
@param out [out] The destination
@param outlen [in/out] The size of the output
@return CRYPT_OK on success
*/
int der_encode_setof(ltc_asn1_list *list, unsigned long inlen,
unsigned char *out, unsigned long *outlen)
{
unsigned long x, y, z, hdrlen;
int err;
struct edge *edges;
unsigned char *ptr, *buf;
/* check that they're all the same type */
for (x = 1; x < inlen; x++) {
if (list[x].type != list[x-1].type) {
return CRYPT_INVALID_ARG;
}
}
/* alloc buffer to store copy of output */
buf = XCALLOC(1, *outlen);
if (buf == NULL) {
return CRYPT_MEM;
}
/* encode list */
if ((err = der_encode_sequence_ex(list, inlen, buf, outlen, LTC_ASN1_SETOF)) != CRYPT_OK) {
XFREE(buf);
return err;
}
/* allocate edges */
edges = XCALLOC(inlen, sizeof(*edges));
if (edges == NULL) {
XFREE(buf);
return CRYPT_MEM;
}
/* skip header */
ptr = buf + 1;
/* now skip length data */
x = *ptr++;
if (x >= 0x80) {
ptr += (x & 0x7F);
}
/* get the size of the static header */
hdrlen = (unsigned long)((size_t)ptr - (size_t)buf);
/* scan for edges */
x = 0;
while (ptr < (buf + *outlen)) {
/* store start */
edges[x].start = ptr;
/* skip type */
z = 1;
/* parse length */
y = ptr[z++];
if (y < 128) {
edges[x].size = y;
} else {
y &= 0x7F;
edges[x].size = 0;
while (y--) {
edges[x].size = (edges[x].size << 8) | ((unsigned long)ptr[z++]);
}
}
/* skip content */
edges[x].size += z;
ptr += edges[x].size;
++x;
}
/* sort based on contents (using edges) */
XQSORT(edges, inlen, sizeof(*edges), &qsort_helper);
/* copy static header */
XMEMCPY(out, buf, hdrlen);
/* copy+sort using edges+indecies to output from buffer */
for (y = hdrlen, x = 0; x < inlen; x++) {
XMEMCPY(out+y, edges[x].start, edges[x].size);
y += edges[x].size;
}
#ifdef LTC_CLEAN_STACK
zeromem(buf, *outlen);
#endif
/* free buffers */
XFREE(edges);
XFREE(buf);
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/set/der_encode_setof.c,v $ */
/* $Revision: 1.12 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,97 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_encode_short_integer.c
ASN.1 DER, encode an integer, Tom St Denis
*/
#ifdef LTC_DER
/**
Store a short integer in the range (0,2^32-1)
@param num The integer to encode
@param out [out] The destination for the DER encoded integers
@param outlen [in/out] The max size and resulting size of the DER encoded integers
@return CRYPT_OK if successful
*/
int der_encode_short_integer(unsigned long num, unsigned char *out, unsigned long *outlen)
{
unsigned long len, x, y, z;
int err;
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
/* force to 32 bits */
num &= 0xFFFFFFFFUL;
/* find out how big this will be */
if ((err = der_length_short_integer(num, &len)) != CRYPT_OK) {
return err;
}
if (*outlen < len) {
*outlen = len;
return CRYPT_BUFFER_OVERFLOW;
}
/* get len of output */
z = 0;
y = num;
while (y) {
++z;
y >>= 8;
}
/* handle zero */
if (z == 0) {
z = 1;
}
/* see if msb is set */
z += (num&(1UL<<((z<<3) - 1))) ? 1 : 0;
/* adjust the number so the msB is non-zero */
for (x = 0; (z <= 4) && (x < (4 - z)); x++) {
num <<= 8;
}
/* store header */
x = 0;
out[x++] = 0x02;
out[x++] = (unsigned char)z;
/* if 31st bit is set output a leading zero and decrement count */
if (z == 5) {
out[x++] = 0;
--z;
}
/* store values */
for (y = 0; y < z; y++) {
out[x++] = (unsigned char)((num >> 24) & 0xFF);
num <<= 8;
}
/* we good */
*outlen = x;
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/short_integer/der_encode_short_integer.c,v $ */
/* $Revision: 1.8 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,83 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_encode_utctime.c
ASN.1 DER, encode a UTCTIME, Tom St Denis
*/
#ifdef LTC_DER
static const char *baseten = "0123456789";
#define STORE_V(y) \
out[x++] = der_ia5_char_encode(baseten[(y/10) % 10]); \
out[x++] = der_ia5_char_encode(baseten[y % 10]);
/**
Encodes a UTC time structure in DER format
@param utctime The UTC time structure to encode
@param out The destination of the DER encoding of the UTC time structure
@param outlen [in/out] The length of the DER encoding
@return CRYPT_OK if successful
*/
int der_encode_utctime(ltc_utctime *utctime,
unsigned char *out, unsigned long *outlen)
{
unsigned long x, tmplen;
int err;
LTC_ARGCHK(utctime != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
if ((err = der_length_utctime(utctime, &tmplen)) != CRYPT_OK) {
return err;
}
if (tmplen > *outlen) {
*outlen = tmplen;
return CRYPT_BUFFER_OVERFLOW;
}
/* store header */
out[0] = 0x17;
/* store values */
x = 2;
STORE_V(utctime->YY);
STORE_V(utctime->MM);
STORE_V(utctime->DD);
STORE_V(utctime->hh);
STORE_V(utctime->mm);
STORE_V(utctime->ss);
if (utctime->off_mm || utctime->off_hh) {
out[x++] = der_ia5_char_encode(utctime->off_dir ? '-' : '+');
STORE_V(utctime->off_hh);
STORE_V(utctime->off_mm);
} else {
out[x++] = der_ia5_char_encode('Z');
}
/* store length */
out[1] = (unsigned char)(x - 2);
/* all good let's return */
*outlen = x;
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/utctime/der_encode_utctime.c,v $ */
/* $Revision: 1.10 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,105 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_encode_utf8_string.c
ASN.1 DER, encode a UTF8 STRING, Tom St Denis
*/
#ifdef LTC_DER
/**
Store an UTF8 STRING
@param in The array of UTF8 to store (one per wchar_t)
@param inlen The number of UTF8 to store
@param out [out] The destination for the DER encoded UTF8 STRING
@param outlen [in/out] The max size and resulting size of the DER UTF8 STRING
@return CRYPT_OK if successful
*/
int der_encode_utf8_string(const wchar_t *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen)
{
unsigned long x, y, len;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
/* get the size */
for (x = len = 0; x < inlen; x++) {
if (in[x] < 0 || in[x] > 0x1FFFF) {
return CRYPT_INVALID_ARG;
}
len += der_utf8_charsize(in[x]);
}
if (len < 128) {
y = 2 + len;
} else if (len < 256) {
y = 3 + len;
} else if (len < 65536UL) {
y = 4 + len;
} else if (len < 16777216UL) {
y = 5 + len;
} else {
return CRYPT_INVALID_ARG;
}
/* too big? */
if (y > *outlen) {
*outlen = len;
return CRYPT_BUFFER_OVERFLOW;
}
/* encode the header+len */
x = 0;
out[x++] = 0x0C;
if (len < 128) {
out[x++] = (unsigned char)len;
} else if (len < 256) {
out[x++] = 0x81;
out[x++] = (unsigned char)len;
} else if (len < 65536UL) {
out[x++] = 0x82;
out[x++] = (unsigned char)((len>>8)&255);
out[x++] = (unsigned char)(len&255);
} else if (len < 16777216UL) {
out[x++] = 0x83;
out[x++] = (unsigned char)((len>>16)&255);
out[x++] = (unsigned char)((len>>8)&255);
out[x++] = (unsigned char)(len&255);
} else {
return CRYPT_INVALID_ARG;
}
/* store UTF8 */
for (y = 0; y < inlen; y++) {
switch (der_utf8_charsize(in[y])) {
case 1: out[x++] = (unsigned char)in[y]; break;
case 2: out[x++] = 0xC0 | ((in[y] >> 6) & 0x1F); out[x++] = 0x80 | (in[y] & 0x3F); break;
case 3: out[x++] = 0xE0 | ((in[y] >> 12) & 0x0F); out[x++] = 0x80 | ((in[y] >> 6) & 0x3F); out[x++] = 0x80 | (in[y] & 0x3F); break;
case 4: out[x++] = 0xF0 | ((in[y] >> 18) & 0x07); out[x++] = 0x80 | ((in[y] >> 12) & 0x3F); out[x++] = 0x80 | ((in[y] >> 6) & 0x3F); out[x++] = 0x80 | (in[y] & 0x3F); break;
}
}
/* retun length */
*outlen = x;
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/utf8/der_encode_utf8_string.c,v $ */
/* $Revision: 1.9 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,54 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_length_bit_string.c
ASN.1 DER, get length of BIT STRING, Tom St Denis
*/
#ifdef LTC_DER
/**
Gets length of DER encoding of BIT STRING
@param nbits The number of bits in the string to encode
@param outlen [out] The length of the DER encoding for the given string
@return CRYPT_OK if successful
*/
int der_length_bit_string(unsigned long nbits, unsigned long *outlen)
{
unsigned long nbytes;
LTC_ARGCHK(outlen != NULL);
/* get the number of the bytes */
nbytes = (nbits >> 3) + ((nbits & 7) ? 1 : 0) + 1;
if (nbytes < 128) {
/* 03 LL PP DD DD DD ... */
*outlen = 2 + nbytes;
} else if (nbytes < 256) {
/* 03 81 LL PP DD DD DD ... */
*outlen = 3 + nbytes;
} else if (nbytes < 65536) {
/* 03 82 LL LL PP DD DD DD ... */
*outlen = 4 + nbytes;
} else {
return CRYPT_INVALID_ARG;
}
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/bit/der_length_bit_string.c,v $ */
/* $Revision: 1.3 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,35 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_length_boolean.c
ASN.1 DER, get length of a BOOLEAN, Tom St Denis
*/
#ifdef LTC_DER
/**
Gets length of DER encoding of a BOOLEAN
@param outlen [out] The length of the DER encoding
@return CRYPT_OK if successful
*/
int der_length_boolean(unsigned long *outlen)
{
LTC_ARGCHK(outlen != NULL);
*outlen = 3;
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/boolean/der_length_boolean.c,v $ */
/* $Revision: 1.3 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,194 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_length_ia5_string.c
ASN.1 DER, get length of IA5 STRING, Tom St Denis
*/
#ifdef LTC_DER
static const struct {
int code, value;
} ia5_table[] = {
{ '\0', 0 },
{ '\a', 7 },
{ '\b', 8 },
{ '\t', 9 },
{ '\n', 10 },
{ '\f', 12 },
{ '\r', 13 },
{ ' ', 32 },
{ '!', 33 },
{ '"', 34 },
{ '#', 35 },
{ '$', 36 },
{ '%', 37 },
{ '&', 38 },
{ '\'', 39 },
{ '(', 40 },
{ ')', 41 },
{ '*', 42 },
{ '+', 43 },
{ ',', 44 },
{ '-', 45 },
{ '.', 46 },
{ '/', 47 },
{ '0', 48 },
{ '1', 49 },
{ '2', 50 },
{ '3', 51 },
{ '4', 52 },
{ '5', 53 },
{ '6', 54 },
{ '7', 55 },
{ '8', 56 },
{ '9', 57 },
{ ':', 58 },
{ ';', 59 },
{ '<', 60 },
{ '=', 61 },
{ '>', 62 },
{ '?', 63 },
{ '@', 64 },
{ 'A', 65 },
{ 'B', 66 },
{ 'C', 67 },
{ 'D', 68 },
{ 'E', 69 },
{ 'F', 70 },
{ 'G', 71 },
{ 'H', 72 },
{ 'I', 73 },
{ 'J', 74 },
{ 'K', 75 },
{ 'L', 76 },
{ 'M', 77 },
{ 'N', 78 },
{ 'O', 79 },
{ 'P', 80 },
{ 'Q', 81 },
{ 'R', 82 },
{ 'S', 83 },
{ 'T', 84 },
{ 'U', 85 },
{ 'V', 86 },
{ 'W', 87 },
{ 'X', 88 },
{ 'Y', 89 },
{ 'Z', 90 },
{ '[', 91 },
{ '\\', 92 },
{ ']', 93 },
{ '^', 94 },
{ '_', 95 },
{ '`', 96 },
{ 'a', 97 },
{ 'b', 98 },
{ 'c', 99 },
{ 'd', 100 },
{ 'e', 101 },
{ 'f', 102 },
{ 'g', 103 },
{ 'h', 104 },
{ 'i', 105 },
{ 'j', 106 },
{ 'k', 107 },
{ 'l', 108 },
{ 'm', 109 },
{ 'n', 110 },
{ 'o', 111 },
{ 'p', 112 },
{ 'q', 113 },
{ 'r', 114 },
{ 's', 115 },
{ 't', 116 },
{ 'u', 117 },
{ 'v', 118 },
{ 'w', 119 },
{ 'x', 120 },
{ 'y', 121 },
{ 'z', 122 },
{ '{', 123 },
{ '|', 124 },
{ '}', 125 },
{ '~', 126 }
};
int der_ia5_char_encode(int c)
{
int x;
for (x = 0; x < (int)(sizeof(ia5_table)/sizeof(ia5_table[0])); x++) {
if (ia5_table[x].code == c) {
return ia5_table[x].value;
}
}
return -1;
}
int der_ia5_value_decode(int v)
{
int x;
for (x = 0; x < (int)(sizeof(ia5_table)/sizeof(ia5_table[0])); x++) {
if (ia5_table[x].value == v) {
return ia5_table[x].code;
}
}
return -1;
}
/**
Gets length of DER encoding of IA5 STRING
@param octets The values you want to encode
@param noctets The number of octets in the string to encode
@param outlen [out] The length of the DER encoding for the given string
@return CRYPT_OK if successful
*/
int der_length_ia5_string(const unsigned char *octets, unsigned long noctets, unsigned long *outlen)
{
unsigned long x;
LTC_ARGCHK(outlen != NULL);
LTC_ARGCHK(octets != NULL);
/* scan string for validity */
for (x = 0; x < noctets; x++) {
if (der_ia5_char_encode(octets[x]) == -1) {
return CRYPT_INVALID_ARG;
}
}
if (noctets < 128) {
/* 16 LL DD DD DD ... */
*outlen = 2 + noctets;
} else if (noctets < 256) {
/* 16 81 LL DD DD DD ... */
*outlen = 3 + noctets;
} else if (noctets < 65536UL) {
/* 16 82 LL LL DD DD DD ... */
*outlen = 4 + noctets;
} else if (noctets < 16777216UL) {
/* 16 83 LL LL LL DD DD DD ... */
*outlen = 5 + noctets;
} else {
return CRYPT_INVALID_ARG;
}
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/ia5/der_length_ia5_string.c,v $ */
/* $Revision: 1.3 $ */
/* $Date: 2006/12/28 01:27:24 $ */

View file

@ -0,0 +1,82 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "../../headers/tomcrypt.h"
/**
@file der_length_integer.c
ASN.1 DER, get length of encoding, Tom St Denis
*/
#ifdef LTC_DER
/**
Gets length of DER encoding of num
@param num The int to get the size of
@param outlen [out] The length of the DER encoding for the given integer
@return CRYPT_OK if successful
*/
int der_length_integer(void *num, unsigned long *outlen)
{
unsigned long z, len;
int leading_zero;
LTC_ARGCHK(num != NULL);
LTC_ARGCHK(outlen != NULL);
if (mp_cmp_d(num, 0) != LTC_MP_LT) {
/* positive */
/* we only need a leading zero if the msb of the first byte is one */
if ((mp_count_bits(num) & 7) == 0 || mp_iszero(num) == LTC_MP_YES) {
leading_zero = 1;
} else {
leading_zero = 0;
}
/* size for bignum */
z = len = leading_zero + mp_unsigned_bin_size(num);
} else {
/* it's negative */
/* find power of 2 that is a multiple of eight and greater than count bits */
leading_zero = 0;
z = mp_count_bits(num);
z = z + (8 - (z & 7));
if (((mp_cnt_lsb(num)+1)==mp_count_bits(num)) && ((mp_count_bits(num)&7)==0)) --z;
len = z = z >> 3;
}
/* now we need a length */
if (z < 128) {
/* short form */
++len;
} else {
/* long form (relies on z != 0), assumes length bytes < 128 */
++len;
while (z) {
++len;
z >>= 8;
}
}
/* we need a 0x02 to indicate it's INTEGER */
++len;
/* return length */
*outlen = len;
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/pk/asn1/der/integer/der_length_integer.c,v $ */
/* $Revision: 1.5 $ */
/* $Date: 2006/12/28 01:27:24 $ */

Some files were not shown because too many files have changed in this diff Show more