/* Copyright 2005-2009 Intel Corporation. All Rights Reserved. This file is part of Threading Building Blocks. Threading Building Blocks is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. Threading Building Blocks is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Threading Building Blocks; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA As a special exception, you may use this file as part of a free software library without restriction. Specifically, if other files instantiate templates or use macros or inline functions from this file, or you compile this file and link it with other files to produce an executable, this file does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ #include "tbb/concurrent_queue.h" #include "tbb/atomic.h" #include "tbb/tick_count.h" #include "../test/harness_assert.h" #include "../test/harness.h" static tbb::atomic FooConstructed; static tbb::atomic FooDestroyed; class Foo { enum state_t{ LIVE=0x1234, DEAD=0xDEAD }; state_t state; public: int thread_id; int serial; Foo() : state(LIVE) { ++FooConstructed; } Foo( const Foo& item ) : state(LIVE) { ASSERT( item.state==LIVE, NULL ); ++FooConstructed; thread_id = item.thread_id; serial = item.serial; } ~Foo() { ASSERT( state==LIVE, NULL ); ++FooDestroyed; state=DEAD; thread_id=0xDEAD; serial=0xDEAD; } void operator=( Foo& item ) { ASSERT( item.state==LIVE, NULL ); ASSERT( state==LIVE, NULL ); thread_id = item.thread_id; serial = item.serial; } bool is_const() {return false;} bool is_const() const {return true;} }; const size_t MAXTHREAD = 256; static int Sum[MAXTHREAD]; //! Count of various pop operations /** [0] = pop_if_present that failed [1] = pop_if_present that succeeded [2] = pop */ static tbb::atomic PopKind[3]; const int M = 10000; struct Body { tbb::concurrent_queue* queue; const int nthread; Body( int nthread_ ) : nthread(nthread_) {} void operator()( long thread_id ) const { long pop_kind[3] = {0,0,0}; int serial[MAXTHREAD+1]; memset( serial, 0, nthread*sizeof(unsigned) ); ASSERT( thread_idpop_if_present(f); ++pop_kind[prepopped]; } Foo g; g.thread_id = thread_id; g.serial = j+1; queue->push( g ); if( !prepopped ) { queue->pop(f); ++pop_kind[2]; } ASSERT( f.thread_id<=nthread, NULL ); ASSERT( f.thread_id==nthread || serial[f.thread_id]0, "nthread must be positive" ); if( prefill+1>=capacity ) return; bool success = false; for( int k=0; k<3; ++k ) PopKind[k] = 0; for( int trial=0; !success; ++trial ) { FooConstructed = 0; FooDestroyed = 0; Body body(nthread); tbb::concurrent_queue queue; queue.set_capacity( capacity ); body.queue = &queue; for( int i=0; i=0; ) { ASSERT( !queue.empty(), NULL ); Foo f; queue.pop(f); ASSERT( queue.size()==i, NULL ); sum += f.serial-1; } ASSERT( queue.empty(), NULL ); ASSERT( queue.size()==0, NULL ); if( sum!=expected ) printf("sum=%d expected=%d\n",sum,expected); ASSERT( FooConstructed==FooDestroyed, NULL ); success = true; if( nthread>1 && prefill==0 ) { // Check that pop_if_present got sufficient exercise for( int k=0; k<2; ++k ) { #if (_WIN32||_WIN64) // The TBB library on Windows seems to have a tough time generating // the desired interleavings for pop_if_present, so the code tries longer, and settles // for fewer desired interleavings. const int max_trial = 100; const int min_requirement = 20; #else const int min_requirement = 100; const int max_trial = 20; #endif /* _WIN32||_WIN64 */ if( PopKind[k]=max_trial ) { if( Verbose ) printf("Warning: %d threads had only %ld pop_if_present operations %s after %d trials (expected at least %d). " "This problem may merely be unlucky scheduling. " "Investigate only if it happens repeatedly.\n", nthread, long(PopKind[k]), k==0?"failed":"succeeded", max_trial, min_requirement); else printf("Warning: the number of %s pop_if_present operations is less than expected for %d threads. Investigate if it happens repeatedly.\n", k==0?"failed":"succeeded", nthread ); } else { success = false; } } } } } } template void TestIteratorAux( Iterator1 i, Iterator2 j, int size ) { // Now test iteration Iterator1 old_i; for( int k=0; k" ASSERT( k+2==i->serial, NULL ); } // Test assignment old_i = i; } ASSERT( k+1==f.serial, NULL ); } ASSERT( !(i!=j), NULL ); ASSERT( i==j, NULL ); } template void TestIteratorAssignment( Iterator2 j ) { Iterator1 i(j); ASSERT( i==j, NULL ); ASSERT( !(i!=j), NULL ); Iterator1 k; k = j; ASSERT( k==j, NULL ); ASSERT( !(k!=j), NULL ); } //! Test the iterators for concurrent_queue void TestIterator() { tbb::concurrent_queue queue; tbb::concurrent_queue& const_queue = queue; for( int j=0; j<500; ++j ) { TestIteratorAux( queue.begin(), queue.end(), j ); TestIteratorAux( const_queue.begin(), const_queue.end(), j ); TestIteratorAux( const_queue.begin(), queue.end(), j ); TestIteratorAux( queue.begin(), const_queue.end(), j ); Foo f; f.serial = j+1; queue.push(f); } TestIteratorAssignment::const_iterator>( const_queue.begin() ); TestIteratorAssignment::const_iterator>( queue.begin() ); TestIteratorAssignment::iterator>( queue.begin() ); } void TestConcurrenetQueueType() { AssertSameType( tbb::concurrent_queue::value_type(), Foo() ); Foo f; const Foo g; tbb::concurrent_queue::reference r = f; ASSERT( &r==&f, NULL ); ASSERT( !r.is_const(), NULL ); tbb::concurrent_queue::const_reference cr = g; ASSERT( &cr==&g, NULL ); ASSERT( cr.is_const(), NULL ); } template void TestEmptyQueue() { const tbb::concurrent_queue queue; ASSERT( queue.size()==0, NULL ); ASSERT( queue.capacity()>0, NULL ); ASSERT( size_t(queue.capacity())>=size_t(-1)/(sizeof(void*)+sizeof(T)), NULL ); } void TestFullQueue() { for( int n=0; n<10; ++n ) { FooConstructed = 0; FooDestroyed = 0; tbb::concurrent_queue queue; queue.set_capacity(n); for( int i=0; i<=n; ++i ) { Foo f; f.serial = i; bool result = queue.push_if_not_full( f ); ASSERT( result==(i struct TestNegativeQueueBody { tbb::concurrent_queue& queue; const int nthread; TestNegativeQueueBody( tbb::concurrent_queue& q, int n ) : queue(q), nthread(n) {} void operator()( int k ) const { if( k==0 ) { int number_of_pops = nthread-1; // Wait for all pops to pend. while( queue.size()>-number_of_pops ) { __TBB_Yield(); } for( int i=0; ; ++i ) { ASSERT( queue.size()==i-number_of_pops, NULL ); ASSERT( queue.empty()==(queue.size()<=0), NULL ); if( i==number_of_pops ) break; // Satisfy another pop queue.push( T() ); } } else { // Pop item from queue T item; queue.pop(item); } } }; //! Test a queue with a negative size. template void TestNegativeQueue( int nthread ) { tbb::concurrent_queue queue; NativeParallelFor( nthread, TestNegativeQueueBody(queue,nthread) ); } int main( int argc, char* argv[] ) { // Set default for minimum number of threads. MinThread = 1; ParseCommandLine(argc,argv); TestEmptyQueue(); TestEmptyQueue(); TestFullQueue(); TestConcurrenetQueueType(); TestIterator(); // Test concurrent operations for( int nthread=MinThread; nthread<=MaxThread; ++nthread ) { TestNegativeQueue(nthread); for( int prefill=0; prefill<64; prefill+=(1+prefill/3) ) { TestPushPop(prefill,ptrdiff_t(-1),nthread); TestPushPop(prefill,ptrdiff_t(1),nthread); TestPushPop(prefill,ptrdiff_t(2),nthread); TestPushPop(prefill,ptrdiff_t(10),nthread); TestPushPop(prefill,ptrdiff_t(100),nthread); } } printf("done\n"); return 0; }