/** @file Vector3.h 3D vector class @maintainer Morgan McGuire, matrix@graphics3d.com @created 2001-06-02 @edited 2005-08-23 Copyright 2000-2006, Morgan McGuire. All rights reserved. */ #ifndef G3D_VECTOR3_H #define G3D_VECTOR3_H #include "G3D/platform.h" #include "G3D/g3dmath.h" #include "G3D/Vector2.h" #include #include namespace G3D { class Vector2; class Vector3; class Vector4; /** Swizzles Vector classes have swizzle operators, e.g. v.xy(), that allow selection of arbitrary sub-fields. These cannot be used as write masks. Examples
Vector3 v(1, 2, 3);
Vector3 j;
Vector2 b;

b = v.xz();
j = b.xx();
Warning Do not subclass-- this implementation makes assumptions about the memory layout. */ class Vector3 { private: /** Reflect this vector about the (not necessarily unit) normal. Note that if used for a collision or ray reflection you must negate the resulting vector to get a direction pointing away from the collision.
       V'    N      V
                 
         r   ^   -,
          \  |  /
            \|/
     
See also Vector3::reflectionDirection */ Vector3 reflectAbout(const Vector3& normal) const; // Hidden operators bool operator<(const Vector3&) const; bool operator>(const Vector3&) const; bool operator<=(const Vector3&) const; bool operator>=(const Vector3&) const; public: // construction Vector3(); Vector3(float _x, float _y, float _z); Vector3(const class Vector2& v, float _z); Vector3(float coordinate[3]); Vector3(double coordinate[3]); Vector3(const Vector3& rkVector); Vector3(const class Vector3int16& v); // coordinates float x, y, z; // access vector V as V[0] = V.x, V[1] = V.y, V[2] = V.z // // WARNING. These member functions rely on // (1) Vector3 not having virtual functions // (2) the data packed in a 3*sizeof(float) memory block const float& operator[] (int i) const; float& operator[] (int i); inline operator float* () { return (float*)this; } operator const float* () const { return (float*)this; } enum Axis {X_AXIS=0, Y_AXIS=1, Z_AXIS=2, DETECT_AXIS=-1}; /** Returns the largest dimension. Particularly convenient for determining which plane to project a triangle onto for point-in-polygon tests. */ Axis primaryAxis() const; // assignment and comparison Vector3& operator= (const Vector3& rkVector); bool operator== (const Vector3& rkVector) const; bool operator!= (const Vector3& rkVector) const; unsigned int hashCode() const; bool fuzzyEq(const Vector3& other) const; bool fuzzyNe(const Vector3& other) const; /** Returns true if this vector has finite length. */ bool isFinite() const; /** Returns true if this vector has length ~= 0 */ bool isZero() const; /** Returns true if this vector has length ~= 1 */ bool isUnit() const; // arithmetic operations Vector3 operator+ (const Vector3& v) const; Vector3 operator- (const Vector3& v) const; Vector3 operator* (float s) const; Vector3 operator/ (float s) const; Vector3 operator* (const Vector3& v) const; Vector3 operator/ (const Vector3& v) const; Vector3 operator- () const; // arithmetic updates Vector3& operator+= (const Vector3& v); Vector3& operator-= (const Vector3& v); Vector3& operator*= (float s); Vector3& operator/= (float s); Vector3& operator*= (const Vector3& v); Vector3& operator/= (const Vector3& v); /** @deprecated Use magnitude */ float G3D_DEPRECATED length() const; float magnitude() const; /** The result is a nan vector if the length is almost zero. */ Vector3 direction() const; /** Potentially less accurate but faster than direction(). Only works if System::hasSSE is true. */ Vector3 fastDirection() const; /** See also G3D::Ray::reflect. The length is 1.
       V'    N       V
                 
         r   ^    /
          \  |  /
            \|'-
     
*/ Vector3 reflectionDirection(const Vector3& normal) const; /** Returns Vector3::zero() if the length is nearly zero, otherwise returns a unit vector. */ inline Vector3 directionOrZero() const { float mag = magnitude(); if (G3D::fuzzyEq(mag, 0.0f)) { return Vector3::zero(); } else if (G3D::fuzzyEq(mag, 1.0f)) { return *this; } else { return *this * (1.0f / mag); } } /** Returns the direction of a refracted ray, where iExit is the index of refraction for the previous material and iEnter is the index of refraction for the new material. Like Vector3::reflectionDirection, the result has length 1 and is pointed away from the intersection. Returns Vector3::zero() in the case of total internal refraction. @param iOutside The index of refraction (eta) outside (on the positive normal side) of the surface. @param iInside The index of refraction (eta) inside (on the negative normal side) of the surface. See also G3D::Ray::refract.
              N      V
                  
              ^    /
              |  /
              |'-
          __--
     V'<--
     
*/ Vector3 refractionDirection( const Vector3& normal, float iInside, float iOutside) const; /** Synonym for direction */ inline Vector3 unit() const { return direction(); } /** Returns a normalized vector. May be computed with lower precision than unit */ inline Vector3 fastUnit() const { return fastDirection(); } /** @deprecated Use squaredMagnitude */ float G3D_DEPRECATED squaredLength() const; float squaredMagnitude () const; /** @deprecated Use squaredMagnitude */ inline float G3D_DEPRECATED norm() const { return squaredMagnitude(); } float dot(const Vector3& rkVector) const; float G3D_DEPRECATED unitize(float fTolerance = 1e-06); /** Cross product. Note that two cross products in a row can be computed more cheaply: v1 x (v2 x v3) = (v1 dot v3) v2 - (v1 dot v2) v3. */ Vector3 cross(const Vector3& rkVector) const; Vector3 unitCross (const Vector3& rkVector) const; /** Returns a matrix such that v.cross() * w = v.cross(w).
     [ 0  -v.z  v.y ]
     [ v.z  0  -v.x ]
     [ -v.y v.x  0  ]
     
*/ class Matrix3 cross() const; Vector3 min(const Vector3 &v) const; Vector3 max(const Vector3 &v) const; std::string toString() const; inline Vector3 clamp(const Vector3& low, const Vector3& high) const { return Vector3( G3D::clamp(x, low.x, high.x), G3D::clamp(y, low.y, high.y), G3D::clamp(z, low.z, high.z)); } inline Vector3 clamp(float low, float high) const { return Vector3( G3D::clamp(x, low, high), G3D::clamp(y, low, high), G3D::clamp(z, low, high)); } /** Linear interpolation */ inline Vector3 lerp(const Vector3& v, float alpha) const { return (*this) + (v - *this) * alpha; } /** Gram-Schmidt orthonormalization. */ static void orthonormalize (Vector3 akVector[3]); /** Random unit vector, uniformly distributed */ static Vector3 random(); /** Random unit vector, distributed so that the probability of V is proportional to max(V dot Normal, 0). @cite Henrik Wann Jensen, Realistic Image Synthesis using Photon Mapping eqn 2.24 */ static Vector3 cosRandom(const Vector3& normal); /** Random vector distributed over the hemisphere about normal. */ static Vector3 hemiRandom(const Vector3& normal); // Input W must be initialize to a nonzero vector, output is {U,V,W} // an orthonormal basis. A hint is provided about whether or not W // is already unit length. static void generateOrthonormalBasis (Vector3& rkU, Vector3& rkV, Vector3& rkW, bool bUnitLengthW = true); inline float sum() const { return x + y + z; } inline float average() const { return sum() / 3.0f; } // Special values. inline static const Vector3& zero() { static Vector3 v(0, 0, 0); return v; } inline static const Vector3& one() { static Vector3 v(1, 1, 1); return v; } inline static const Vector3& unitX() { static Vector3 v(1, 0, 0); return v; } inline static const Vector3& unitY() { static Vector3 v(0, 1, 0); return v; } inline static const Vector3& unitZ() { static Vector3 v(0, 0, 1); return v; } inline static const Vector3& inf() { static Vector3 v((float)G3D::inf(), (float)G3D::inf(), (float)G3D::inf()); return v; } inline static const Vector3& nan() { static Vector3 v((float)G3D::nan(), (float)G3D::nan(), (float)G3D::nan()); return v; } /** Smallest (most negative) representable vector */ inline static const Vector3& minFinite(){ static Vector3 v(-FLT_MAX, -FLT_MAX, -FLT_MAX); return v; } /** Largest representable vector */ inline static const Vector3& maxFinite(){ static Vector3 v(FLT_MAX, FLT_MAX, FLT_MAX); return v; } // Deprecated. See Matrix3::identity() for details. /** @deprecated Use Vector3::zero() */ static const Vector3 ZERO; /** @deprecated Use Vector3::zero() */ static const Vector3 ZERO3; /** @deprecated Use Vector3::unitX() */ static const Vector3 UNIT_X; /** @deprecated Use Vector3::unitY() */ static const Vector3 UNIT_Y; /** @deprecated Use Vector3::unitZ() */ static const Vector3 UNIT_Z; /** @deprecated Use Vector3::inf() */ static const Vector3 INF3; /** @deprecated Use Vector3::nan() */ static const Vector3 NAN3; // 2-char swizzles Vector2 xx() const; Vector2 yx() const; Vector2 zx() const; Vector2 xy() const; Vector2 yy() const; Vector2 zy() const; Vector2 xz() const; Vector2 yz() const; Vector2 zz() const; // 3-char swizzles Vector3 xxx() const; Vector3 yxx() const; Vector3 zxx() const; Vector3 xyx() const; Vector3 yyx() const; Vector3 zyx() const; Vector3 xzx() const; Vector3 yzx() const; Vector3 zzx() const; Vector3 xxy() const; Vector3 yxy() const; Vector3 zxy() const; Vector3 xyy() const; Vector3 yyy() const; Vector3 zyy() const; Vector3 xzy() const; Vector3 yzy() const; Vector3 zzy() const; Vector3 xxz() const; Vector3 yxz() const; Vector3 zxz() const; Vector3 xyz() const; Vector3 yyz() const; Vector3 zyz() const; Vector3 xzz() const; Vector3 yzz() const; Vector3 zzz() const; // 4-char swizzles Vector4 xxxx() const; Vector4 yxxx() const; Vector4 zxxx() const; Vector4 xyxx() const; Vector4 yyxx() const; Vector4 zyxx() const; Vector4 xzxx() const; Vector4 yzxx() const; Vector4 zzxx() const; Vector4 xxyx() const; Vector4 yxyx() const; Vector4 zxyx() const; Vector4 xyyx() const; Vector4 yyyx() const; Vector4 zyyx() const; Vector4 xzyx() const; Vector4 yzyx() const; Vector4 zzyx() const; Vector4 xxzx() const; Vector4 yxzx() const; Vector4 zxzx() const; Vector4 xyzx() const; Vector4 yyzx() const; Vector4 zyzx() const; Vector4 xzzx() const; Vector4 yzzx() const; Vector4 zzzx() const; Vector4 xxxy() const; Vector4 yxxy() const; Vector4 zxxy() const; Vector4 xyxy() const; Vector4 yyxy() const; Vector4 zyxy() const; Vector4 xzxy() const; Vector4 yzxy() const; Vector4 zzxy() const; Vector4 xxyy() const; Vector4 yxyy() const; Vector4 zxyy() const; Vector4 xyyy() const; Vector4 yyyy() const; Vector4 zyyy() const; Vector4 xzyy() const; Vector4 yzyy() const; Vector4 zzyy() const; Vector4 xxzy() const; Vector4 yxzy() const; Vector4 zxzy() const; Vector4 xyzy() const; Vector4 yyzy() const; Vector4 zyzy() const; Vector4 xzzy() const; Vector4 yzzy() const; Vector4 zzzy() const; Vector4 xxxz() const; Vector4 yxxz() const; Vector4 zxxz() const; Vector4 xyxz() const; Vector4 yyxz() const; Vector4 zyxz() const; Vector4 xzxz() const; Vector4 yzxz() const; Vector4 zzxz() const; Vector4 xxyz() const; Vector4 yxyz() const; Vector4 zxyz() const; Vector4 xyyz() const; Vector4 yyyz() const; Vector4 zyyz() const; Vector4 xzyz() const; Vector4 yzyz() const; Vector4 zzyz() const; Vector4 xxzz() const; Vector4 yxzz() const; Vector4 zxzz() const; Vector4 xyzz() const; Vector4 yyzz() const; Vector4 zyzz() const; Vector4 xzzz() const; Vector4 yzzz() const; Vector4 zzzz() const; /** A value that can be passed to ignore a parameter. Never look at the result of dummy. */ static Vector3 dummy; }; inline G3D::Vector3 operator*(float s, const G3D::Vector3& v) { return v * s; } inline G3D::Vector3 operator*(double s, const G3D::Vector3& v) { return v * (float)s; } inline G3D::Vector3 operator*(int s, const G3D::Vector3& v) { return v * (float)s; } std::ostream& operator<<(std::ostream& os, const Vector3&); } unsigned int hashCode(const G3D::Vector3& v); #include "Vector3.inl" #endif