server/dep/include/g3dlite/G3D/Vector3.h

798 lines
23 KiB
C++

/**
@file Vector3.h
3D vector class
@maintainer Morgan McGuire, http://graphics.cs.williams.edu
@created 2001-06-02
@edited 2009-11-01
Copyright 2000-2009, Morgan McGuire.
All rights reserved.
*/
#ifndef G3D_Vector3_h
#define G3D_Vector3_h
#include "G3D/platform.h"
#include "G3D/g3dmath.h"
#include "G3D/Random.h"
#include "G3D/Vector2.h"
#include "G3D/Table.h"
#include "G3D/HashTrait.h"
#include "G3D/PositionTrait.h"
#include "G3D/Vector2.h"
#include <iostream>
#include <string>
namespace G3D {
class Vector2;
class Vector4;
class Vector4int8;
class Vector3int32;
class Any;
/**
<B>Swizzles</B>
Vector classes have swizzle operators, e.g. <CODE>v.xy()</CODE>, that
allow selection of arbitrary sub-fields. These cannot be used as write
masks. Examples
<PRE>
Vector3 v(1, 2, 3);
Vector3 j;
Vector2 b;
b = v.xz();
j = b.xx();
</PRE>
<B>Warning</B>
Do not subclass-- this implementation makes assumptions about the
memory layout.
*/
class Vector3 {
public:
// coordinates
float x, y, z;
private:
// Hidden operators
bool operator<(const Vector3&) const;
bool operator>(const Vector3&) const;
bool operator<=(const Vector3&) const;
bool operator>=(const Vector3&) const;
public:
/** Initializes to zero */
Vector3();
/** \param any Must either Vector3(#, #, #) or Vector3 {x = #, y = #, z = #}*/
Vector3(const Any& any);
/** Converts the Vector3 to an Any. */
operator Any() const;
/** Divides by 127 */
Vector3(const Vector4int8&);
Vector3(const class Vector3int32& v);
explicit Vector3(class BinaryInput& b);
Vector3(float _x, float _y, float _z);
explicit Vector3(const class Vector2& v, float _z);
explicit Vector3(float coordinate[3]);
explicit Vector3(double coordinate[3]);
Vector3(const class Vector3int16& v);
explicit Vector3(class TextInput& t);
explicit Vector3(const class Color3& c);
/** Format is three float32's */
void serialize(class BinaryOutput& b) const;
void deserialize(class BinaryInput& b);
/** Format is "(%f, %f, %f)" */
void serialize(class TextOutput& t) const;
void deserialize(class TextInput& t);
// access vector V as V[0] = V.x, V[1] = V.y, V[2] = V.z
//
// WARNING. These member functions rely on
// (1) Vector3 not having virtual functions
// (2) the data packed in a 3*sizeof(float) memory block
const float& __fastcall operator[] (int i) const;
float& operator[] (int i);
enum Axis {X_AXIS=0, Y_AXIS=1, Z_AXIS=2, DETECT_AXIS=-1};
/**
Returns the largest dimension. Particularly convenient for determining
which plane to project a triangle onto for point-in-polygon tests.
*/
Axis primaryAxis() const;
// assignment and comparison
Vector3& __fastcall operator= (const Vector3& rkVector);
bool operator== (const Vector3& rkVector) const;
bool operator!= (const Vector3& rkVector) const;
size_t hashCode() const;
bool fuzzyEq(const Vector3& other) const;
bool fuzzyNe(const Vector3& other) const;
/** Returns true if this vector has finite length. */
bool isFinite() const;
/** Returns true if this vector has length ~= 0 */
bool isZero() const;
/** Returns true if this vector has length ~= 1 */
bool isUnit() const;
// arithmetic operations
Vector3 __fastcall operator+ (const Vector3& v) const;
Vector3 __fastcall operator- (const Vector3& v) const;
Vector3 __fastcall operator* (float s) const;
inline Vector3 __fastcall operator/ (float s) const {
return *this * (1.0f / s);
}
Vector3 __fastcall operator* (const Vector3& v) const;
Vector3 __fastcall operator/ (const Vector3& v) const;
Vector3 __fastcall operator- () const;
// arithmetic updates
Vector3& __fastcall operator+= (const Vector3& v);
Vector3& __fastcall operator-= (const Vector3& v);
Vector3& __fastcall operator*= (float s);
inline Vector3& __fastcall operator/= (float s) {
return (*this *= (1.0f / s));
}
Vector3& __fastcall operator*= (const Vector3& v);
Vector3& __fastcall operator/= (const Vector3& v);
/** Same as magnitude */
float length() const;
float magnitude() const;
/**
The result is a nan vector if the length is almost zero.
*/
Vector3 direction() const;
/**
Potentially less accurate but faster than direction().
Only works if System::hasSSE is true.
*/
Vector3 fastDirection() const;
/**
Reflect this vector about the (not necessarily unit) normal.
Assumes that both the before and after vectors point away from
the base of the normal.
Note that if used for a collision or ray reflection you
must negate the resulting vector to get a direction pointing
<I>away</I> from the collision.
<PRE>
V' N V
r ^ -,
\ | /
\|/
</PRE>
See also Vector3::reflectionDirection
*/
Vector3 reflectAbout(const Vector3& normal) const;
/**
See also G3D::Ray::reflect.
The length is 1.
<PRE>
V' N V
r ^ /
\ | /
\|'-
</PRE>
*/
Vector3 reflectionDirection(const Vector3& normal) const;
/**
Returns Vector3::zero() if the length is nearly zero, otherwise
returns a unit vector.
*/
inline Vector3 directionOrZero() const {
float mag = magnitude();
if (mag < 0.0000001f) {
return Vector3::zero();
} else if (mag < 1.00001f && mag > 0.99999f) {
return *this;
} else {
return *this * (1.0f / mag);
}
}
/**
Returns the direction of a refracted ray,
where iExit is the index of refraction for the
previous material and iEnter is the index of refraction
for the new material. Like Vector3::reflectionDirection,
the result has length 1 and is
pointed <I>away</I> from the intersection.
Returns Vector3::zero() in the case of total internal refraction.
@param iOutside The index of refraction (eta) outside
(on the <I>positive</I> normal side) of the surface.
@param iInside The index of refraction (eta) inside
(on the <I>negative</I> normal side) of the surface.
See also G3D::Ray::refract.
<PRE>
N V
^ /
| /
|'-
__--
V'<--
</PRE>
*/
Vector3 refractionDirection(
const Vector3& normal,
float iInside,
float iOutside) const;
/** Synonym for direction */
inline Vector3 unit() const {
return direction();
}
/** Returns a normalized vector. May be computed with lower
precision than unit */
inline Vector3 fastUnit() const {
return fastDirection();
}
/** Same as squaredMagnitude */
float squaredLength() const;
float squaredMagnitude () const;
float __fastcall dot(const Vector3& rkVector) const;
float unitize(float tolerance = 1e-06);
/** Cross product. Note that two cross products in a row
can be computed more cheaply: v1 x (v2 x v3) = (v1 dot v3) v2 - (v1 dot v2) v3.
*/
Vector3 __fastcall cross(const Vector3& rkVector) const;
Vector3 unitCross(const Vector3& rkVector) const;
/**
Returns a matrix such that v.cross() * w = v.cross(w).
<PRE>
[ 0 -v.z v.y ]
[ v.z 0 -v.x ]
[ -v.y v.x 0 ]
</PRE>
*/
class Matrix3 cross() const;
Vector3 __fastcall min(const Vector3 &v) const;
Vector3 __fastcall max(const Vector3 &v) const;
/** Smallest element */
inline float min() const {
return G3D::min(G3D::min(x, y), z);
}
/** Largest element */
inline float max() const {
return G3D::max(G3D::max(x, y), z);
}
std::string toString() const;
inline Vector3 clamp(const Vector3& low, const Vector3& high) const {
return Vector3(
G3D::clamp(x, low.x, high.x),
G3D::clamp(y, low.y, high.y),
G3D::clamp(z, low.z, high.z));
}
inline Vector3 clamp(float low, float high) const {
return Vector3(
G3D::clamp(x, low, high),
G3D::clamp(y, low, high),
G3D::clamp(z, low, high));
}
/**
Linear interpolation
*/
inline Vector3 lerp(const Vector3& v, float alpha) const {
return (*this) + (v - *this) * alpha;
}
/** Gram-Schmidt orthonormalization. */
static void orthonormalize (Vector3 akVector[3]);
/** \brief Random unit vector, uniformly distributed on the sphere.
Distribution rendered by G3D::DirectionHistogram:
\image html vector3-random.png
*/
static Vector3 random(Random& r = Random::common());
/** \brief Random unit vector, distributed according to \f$\max(\cos \theta,0)\f$.
That is, so that the probability of \f$\vec{V}\f$ is proportional
to \f$\max(\vec{v} \cdot \vec{n}, 0)\f$. Useful in photon mapping for
Lambertian scattering.
Distribution rendered by G3D::DirectionHistogram:
\image html vector3-coshemirandom.png
\param n Unit vector at the center of the distribution.
@cite Henrik Wann Jensen, Realistic Image Synthesis using Photon Mapping eqn 2.24
*/
static Vector3 cosHemiRandom(const Vector3& n, Random& r = Random::common());
/** \brief Random unit vector, distributed according to \f$\max(\cos^k \theta,0)\f$.
That is, so that the probability of \f$\vec{V}\f$ is
proportional to \f$\max((\vec{v} \cdot \vec{n})^k, 0)\f$.
Useful in photon mapping for glossy scattering.
Distribution rendered by G3D::DirectionHistogram:
\image html vector3-cospowhemirandom.png
\param n Unit vector at the center of the distribution.
@cite Ashikhmin and Shirley, An anisotropic Phong BRDF model, Journal of Graphics Tools, 2002
*/
static Vector3 cosPowHemiRandom(const Vector3& n, const float k, Random& r = Random::common());
/**
\brief Random vector distributed over the hemisphere about normal.
Distribution rendered by G3D::DirectionHistogram:
\image html vector3-hemirandom.png
*/
static Vector3 hemiRandom(const Vector3& normal, Random& r = Random::common());
/** Input W must be initialize to a nonzero vector, output is {U,V,W}
an orthonormal basis. A hint is provided about whether or not W
is already unit length.
@deprecated Use getTangents
*/
static void generateOrthonormalBasis (Vector3& rkU, Vector3& rkV,
Vector3& rkW, bool bUnitLengthW = true);
inline float sum() const {
return x + y + z;
}
inline float average() const {
return sum() / 3.0f;
}
// Special values.
static const Vector3& zero();
static const Vector3& one();
static const Vector3& unitX();
static const Vector3& unitY();
static const Vector3& unitZ();
static const Vector3& inf();
static const Vector3& nan();
/** Smallest (most negative) representable vector */
static const Vector3& minFinite();
/** Largest representable vector */
static const Vector3& maxFinite();
/** Creates two orthonormal tangent vectors X and Y such that
if Z = this, X x Y = Z.*/
inline void getTangents(Vector3& X, Vector3& Y) const {
debugAssertM(G3D::fuzzyEq(length(), 1.0f),
"makeAxes requires Z to have unit length");
// Choose another vector not perpendicular
X = (abs(x) < 0.9f) ? Vector3::unitX() : Vector3::unitY();
// Remove the part that is parallel to Z
X -= *this * this->dot(X);
X /= X.length();
Y = this->cross(X);
}
// 2-char swizzles
Vector2 xx() const;
Vector2 yx() const;
Vector2 zx() const;
Vector2 xy() const;
Vector2 yy() const;
Vector2 zy() const;
Vector2 xz() const;
Vector2 yz() const;
Vector2 zz() const;
// 3-char swizzles
Vector3 xxx() const;
Vector3 yxx() const;
Vector3 zxx() const;
Vector3 xyx() const;
Vector3 yyx() const;
Vector3 zyx() const;
Vector3 xzx() const;
Vector3 yzx() const;
Vector3 zzx() const;
Vector3 xxy() const;
Vector3 yxy() const;
Vector3 zxy() const;
Vector3 xyy() const;
Vector3 yyy() const;
Vector3 zyy() const;
Vector3 xzy() const;
Vector3 yzy() const;
Vector3 zzy() const;
Vector3 xxz() const;
Vector3 yxz() const;
Vector3 zxz() const;
Vector3 xyz() const;
Vector3 yyz() const;
Vector3 zyz() const;
Vector3 xzz() const;
Vector3 yzz() const;
Vector3 zzz() const;
// 4-char swizzles
Vector4 xxxx() const;
Vector4 yxxx() const;
Vector4 zxxx() const;
Vector4 xyxx() const;
Vector4 yyxx() const;
Vector4 zyxx() const;
Vector4 xzxx() const;
Vector4 yzxx() const;
Vector4 zzxx() const;
Vector4 xxyx() const;
Vector4 yxyx() const;
Vector4 zxyx() const;
Vector4 xyyx() const;
Vector4 yyyx() const;
Vector4 zyyx() const;
Vector4 xzyx() const;
Vector4 yzyx() const;
Vector4 zzyx() const;
Vector4 xxzx() const;
Vector4 yxzx() const;
Vector4 zxzx() const;
Vector4 xyzx() const;
Vector4 yyzx() const;
Vector4 zyzx() const;
Vector4 xzzx() const;
Vector4 yzzx() const;
Vector4 zzzx() const;
Vector4 xxxy() const;
Vector4 yxxy() const;
Vector4 zxxy() const;
Vector4 xyxy() const;
Vector4 yyxy() const;
Vector4 zyxy() const;
Vector4 xzxy() const;
Vector4 yzxy() const;
Vector4 zzxy() const;
Vector4 xxyy() const;
Vector4 yxyy() const;
Vector4 zxyy() const;
Vector4 xyyy() const;
Vector4 yyyy() const;
Vector4 zyyy() const;
Vector4 xzyy() const;
Vector4 yzyy() const;
Vector4 zzyy() const;
Vector4 xxzy() const;
Vector4 yxzy() const;
Vector4 zxzy() const;
Vector4 xyzy() const;
Vector4 yyzy() const;
Vector4 zyzy() const;
Vector4 xzzy() const;
Vector4 yzzy() const;
Vector4 zzzy() const;
Vector4 xxxz() const;
Vector4 yxxz() const;
Vector4 zxxz() const;
Vector4 xyxz() const;
Vector4 yyxz() const;
Vector4 zyxz() const;
Vector4 xzxz() const;
Vector4 yzxz() const;
Vector4 zzxz() const;
Vector4 xxyz() const;
Vector4 yxyz() const;
Vector4 zxyz() const;
Vector4 xyyz() const;
Vector4 yyyz() const;
Vector4 zyyz() const;
Vector4 xzyz() const;
Vector4 yzyz() const;
Vector4 zzyz() const;
Vector4 xxzz() const;
Vector4 yxzz() const;
Vector4 zxzz() const;
Vector4 xyzz() const;
Vector4 yyzz() const;
Vector4 zyzz() const;
Vector4 xzzz() const;
Vector4 yzzz() const;
Vector4 zzzz() const;
/** Can be passed to ignore a vector3 parameter */
static Vector3& ignore();
};
inline G3D::Vector3 operator*(float s, const G3D::Vector3& v) {
return v * s;
}
inline G3D::Vector3 operator*(double s, const G3D::Vector3& v) {
return v * (float)s;
}
inline G3D::Vector3 operator*(int s, const G3D::Vector3& v) {
return v * (float)s;
}
std::ostream& operator<<(std::ostream& os, const Vector3&);
void serialize(const Vector3::Axis& a, class BinaryOutput& bo);
void deserialize(Vector3::Axis& a, class BinaryInput& bo);
//----------------------------------------------------------------------------
inline Vector3::Vector3() : x(0.0f), y(0.0f), z(0.0f) {
}
//----------------------------------------------------------------------------
inline Vector3::Vector3 (float fX, float fY, float fZ) : x(fX), y(fY), z(fZ) {
}
//----------------------------------------------------------------------------
inline Vector3::Vector3 (float V[3]) : x(V[0]), y(V[1]), z(V[2]){
}
//----------------------------------------------------------------------------
inline Vector3::Vector3 (double V[3]) : x((float)V[0]), y((float)V[1]), z((float)V[2]){
}
//----------------------------------------------------------------------------
inline const float& Vector3::operator[] (int i) const {
return ((float*)this)[i];
}
inline float& Vector3::operator[] (int i) {
return ((float*)this)[i];
}
//----------------------------------------------------------------------------
inline Vector3& Vector3::operator= (const Vector3& rkVector) {
x = rkVector.x;
y = rkVector.y;
z = rkVector.z;
return *this;
}
//----------------------------------------------------------------------------
inline bool Vector3::fuzzyEq(const Vector3& other) const {
return G3D::fuzzyEq((*this - other).squaredMagnitude(), 0);
}
//----------------------------------------------------------------------------
inline bool Vector3::fuzzyNe(const Vector3& other) const {
return G3D::fuzzyNe((*this - other).squaredMagnitude(), 0);
}
//----------------------------------------------------------------------------
inline bool Vector3::isFinite() const {
return G3D::isFinite(x) && G3D::isFinite(y) && G3D::isFinite(z);
}
//----------------------------------------------------------------------------
inline bool Vector3::operator== (const Vector3& rkVector) const {
return ( x == rkVector.x && y == rkVector.y && z == rkVector.z );
}
//----------------------------------------------------------------------------
inline bool Vector3::operator!= (const Vector3& rkVector) const {
return ( x != rkVector.x || y != rkVector.y || z != rkVector.z );
}
//----------------------------------------------------------------------------
inline Vector3 Vector3::operator+ (const Vector3& rkVector) const {
return Vector3(x + rkVector.x, y + rkVector.y, z + rkVector.z);
}
//----------------------------------------------------------------------------
inline Vector3 Vector3::operator- (const Vector3& rkVector) const {
return Vector3(x - rkVector.x, y - rkVector.y, z - rkVector.z);
}
//----------------------------------------------------------------------------
inline Vector3 Vector3::operator* (const Vector3& rkVector) const {
return Vector3(x * rkVector.x, y * rkVector.y, z * rkVector.z);
}
inline Vector3 Vector3::operator*(float f) const {
return Vector3(x * f, y * f, z * f);
}
//----------------------------------------------------------------------------
inline Vector3 Vector3::operator/ (const Vector3& rkVector) const {
return Vector3(x / rkVector.x, y / rkVector.y, z / rkVector.z);
}
//----------------------------------------------------------------------------
inline Vector3 Vector3::operator- () const {
return Vector3(-x, -y, -z);
}
//----------------------------------------------------------------------------
inline Vector3& Vector3::operator+= (const Vector3& rkVector) {
x += rkVector.x;
y += rkVector.y;
z += rkVector.z;
return *this;
}
//----------------------------------------------------------------------------
inline Vector3& Vector3::operator-= (const Vector3& rkVector) {
x -= rkVector.x;
y -= rkVector.y;
z -= rkVector.z;
return *this;
}
//----------------------------------------------------------------------------
inline Vector3& Vector3::operator*= (float fScalar) {
x *= fScalar;
y *= fScalar;
z *= fScalar;
return *this;
}
//----------------------------------------------------------------------------
inline Vector3& Vector3::operator*= (const Vector3& rkVector) {
x *= rkVector.x;
y *= rkVector.y;
z *= rkVector.z;
return *this;
}
//----------------------------------------------------------------------------
inline Vector3& Vector3::operator/= (const Vector3& rkVector) {
x /= rkVector.x;
y /= rkVector.y;
z /= rkVector.z;
return *this;
}
//----------------------------------------------------------------------------
inline float Vector3::squaredMagnitude () const {
return x*x + y*y + z*z;
}
//----------------------------------------------------------------------------
inline float Vector3::squaredLength () const {
return squaredMagnitude();
}
//----------------------------------------------------------------------------
inline float Vector3::magnitude() const {
return ::sqrtf(x*x + y*y + z*z);
}
//----------------------------------------------------------------------------
inline float Vector3::length() const {
return magnitude();
}
//----------------------------------------------------------------------------
inline Vector3 Vector3::direction () const {
const float lenSquared = squaredMagnitude();
const float invSqrt = 1.0f / sqrtf(lenSquared);
return Vector3(x * invSqrt, y * invSqrt, z * invSqrt);
}
//----------------------------------------------------------------------------
inline Vector3 Vector3::fastDirection () const {
float lenSquared = x * x + y * y + z * z;
float invSqrt = rsq(lenSquared);
return Vector3(x * invSqrt, y * invSqrt, z * invSqrt);
}
//----------------------------------------------------------------------------
inline float Vector3::dot (const Vector3& rkVector) const {
return x*rkVector.x + y*rkVector.y + z*rkVector.z;
}
//----------------------------------------------------------------------------
inline Vector3 Vector3::cross (const Vector3& rkVector) const {
return Vector3(y*rkVector.z - z*rkVector.y, z*rkVector.x - x*rkVector.z,
x*rkVector.y - y*rkVector.x);
}
//----------------------------------------------------------------------------
inline Vector3 Vector3::unitCross (const Vector3& rkVector) const {
Vector3 kCross(y*rkVector.z - z*rkVector.y, z*rkVector.x - x*rkVector.z,
x*rkVector.y - y*rkVector.x);
kCross.unitize();
return kCross;
}
//----------------------------------------------------------------------------
inline Vector3 Vector3::min(const Vector3 &v) const {
return Vector3(G3D::min(v.x, x), G3D::min(v.y, y), G3D::min(v.z, z));
}
//----------------------------------------------------------------------------
inline Vector3 Vector3::max(const Vector3 &v) const {
return Vector3(G3D::max(v.x, x), G3D::max(v.y, y), G3D::max(v.z, z));
}
//----------------------------------------------------------------------------
inline bool Vector3::isZero() const {
return G3D::fuzzyEq(squaredMagnitude(), 0.0f);
}
//----------------------------------------------------------------------------
inline bool Vector3::isUnit() const {
return G3D::fuzzyEq(squaredMagnitude(), 1.0f);
}
} // namespace G3D
template <>
struct HashTrait<G3D::Vector3> {
static size_t hashCode(const G3D::Vector3& key) {
return key.hashCode();
}
};
template<> struct PositionTrait<class G3D::Vector2> {
static void getPosition(const G3D::Vector2& v, G3D::Vector3& p) { p = G3D::Vector3(v, 0); }
};
template<> struct PositionTrait<class G3D::Vector3> {
static void getPosition(const G3D::Vector3& v, G3D::Vector3& p) { p = v; }
};
#endif