server/dep/src/g3dlite/ConvexPolyhedron.cpp
Lynx3d ae3ad10bcf [10097] Update G3D up to v8.0b4
+ Got rid of zip lib requirement in G3D...
  Still can re-enable code by defining _HAVE_ZIP...

+ Remove silly X11 lib dependency from G3D
  Code doesn't seem to do anything yet anyway, and even if, we don't want it :p

+ Fix another weird G3D build problem...

+ Remove some __asm usage in g3d, which is not available on Win64
  My editor also decided to remove a ton of trailing white spaces...tss...

+ Reapply G3D fixes for 64bit VC

+ not use SSE specific header when SSE not enabled in *nix

+ Updated project files

+ New vmap_assembler VC90/VC80 Project

+ vmap assembler binaries updates

NOTE: Old vmap fikes expected work (as tests show) with new library version.
      But better use new generated versions. Its different in small parts to bad or good...

(based on Lynx3d's repo commit 44798d3)

Signed-off-by: VladimirMangos <vladimir@getmangos.com>
2010-06-23 06:45:25 +04:00

457 lines
13 KiB
C++

/**
@file ConvexPolyhedron.cpp
@author Morgan McGuire, http://graphics.cs.williams.edu
@created 2001-11-11
@edited 2009-08-10
Copyright 2000-2009, Morgan McGuire.
All rights reserved.
*/
#include "G3D/platform.h"
#include "G3D/ConvexPolyhedron.h"
#include "G3D/debug.h"
namespace G3D {
ConvexPolygon::ConvexPolygon(const Array<Vector3>& __vertex) : _vertex(__vertex) {
// Intentionally empty
}
ConvexPolygon::ConvexPolygon(const Vector3& v0, const Vector3& v1, const Vector3& v2) {
_vertex.append(v0, v1, v2);
}
bool ConvexPolygon::isEmpty() const {
return (_vertex.length() == 0) || (getArea() <= fuzzyEpsilon);
}
float ConvexPolygon::getArea() const {
if (_vertex.length() < 3) {
return 0;
}
float sum = 0;
int length = _vertex.length();
// Split into triangle fan, compute individual area
for (int v = 2; v < length; v++) {
int i0 = 0;
int i1 = v - 1;
int i2 = v;
sum += (_vertex[i1] - _vertex[i0]).cross(_vertex[i2] - _vertex[i0]).magnitude() / 2;
}
return sum;
}
void ConvexPolygon::cut(const Plane& plane, ConvexPolygon &above, ConvexPolygon &below) {
DirectedEdge edge;
cut(plane, above, below, edge);
}
void ConvexPolygon::cut(const Plane& plane, ConvexPolygon &above, ConvexPolygon &below, DirectedEdge &newEdge) {
above._vertex.resize(0);
below._vertex.resize(0);
if (isEmpty()) {
//debugPrintf("Empty\n");
return;
}
int v = 0;
int length = _vertex.length();
Vector3 polyNormal = normal();
Vector3 planeNormal= plane.normal();
// See if the polygon is *in* the plane.
if (planeNormal.fuzzyEq(polyNormal) || planeNormal.fuzzyEq(-polyNormal)) {
// Polygon is parallel to the plane. It must be either above,
// below, or in the plane.
double a, b, c, d;
Vector3 pt = _vertex[0];
plane.getEquation(a,b,c,d);
float r = (float)(a * pt.x + b * pt.y + c * pt.z + d);
if (fuzzyGe(r, 0)) {
// The polygon is entirely in the plane.
//debugPrintf("Entirely above\n");
above = *this;
return;
} else {
//debugPrintf("Entirely below (1)\n");
below = *this;
return;
}
}
// Number of edges crossing the plane. Used for
// debug assertions.
int count = 0;
// True when the last _vertex we looked at was above the plane
bool lastAbove = plane.halfSpaceContains(_vertex[v]);
if (lastAbove) {
above._vertex.append(_vertex[v]);
} else {
below._vertex.append(_vertex[v]);
}
for (v = 1; v < length; v++) {
bool isAbove = plane.halfSpaceContains(_vertex[v]);
if (lastAbove ^ isAbove) {
// Switched sides.
// Create an interpolated point that lies
// in the plane, between the two points.
Line line = Line::fromTwoPoints(_vertex[v - 1], _vertex[v]);
Vector3 interp = line.intersection(plane);
if (! interp.isFinite()) {
// Since the polygon is not in the plane (we checked above),
// it must be the case that this edge (and only this edge)
// is in the plane. This only happens when the polygon is
// entirely below the plane except for one edge. This edge
// forms a degenerate polygon, so just treat the whole polygon
// as below the plane.
below = *this;
above._vertex.resize(0);
//debugPrintf("Entirely below\n");
return;
}
above._vertex.append(interp);
below._vertex.append(interp);
if (lastAbove) {
newEdge.stop = interp;
} else {
newEdge.start = interp;
}
count++;
}
lastAbove = isAbove;
if (lastAbove) {
above._vertex.append(_vertex[v]);
} else {
below._vertex.append(_vertex[v]);
}
}
// Loop back to the first point, seeing if an interpolated point is
// needed.
bool isAbove = plane.halfSpaceContains(_vertex[0]);
if (lastAbove ^ isAbove) {
Line line = Line::fromTwoPoints(_vertex[length - 1], _vertex[0]);
Vector3 interp = line.intersection(plane);
if (! interp.isFinite()) {
// Since the polygon is not in the plane (we checked above),
// it must be the case that this edge (and only this edge)
// is in the plane. This only happens when the polygon is
// entirely below the plane except for one edge. This edge
// forms a degenerate polygon, so just treat the whole polygon
// as below the plane.
below = *this;
above._vertex.resize(0);
//debugPrintf("Entirely below\n");
return;
}
above._vertex.append(interp);
below._vertex.append(interp);
debugAssertM(count < 2, "Convex polygons may only intersect planes at two edges.");
if (lastAbove) {
newEdge.stop = interp;
} else {
newEdge.start = interp;
}
++count;
}
debugAssertM((count == 2) || (count == 0), "Convex polygons may only intersect planes at two edges.");
}
ConvexPolygon ConvexPolygon::inverse() const {
ConvexPolygon result;
int length = _vertex.length();
result._vertex.resize(length);
for (int v = 0; v < length; v++) {
result._vertex[v] = _vertex[length - v - 1];
}
return result;
}
void ConvexPolygon::removeDuplicateVertices(){
// Any valid polygon should have 3 or more vertices, but why take chances?
if (_vertex.size() >= 2){
// Remove duplicate vertices.
for (int i=0;i<_vertex.size()-1;++i){
if (_vertex[i].fuzzyEq(_vertex[i+1])){
_vertex.remove(i+1);
--i; // Don't move forward.
}
}
// Check the last vertex against the first.
if (_vertex[_vertex.size()-1].fuzzyEq(_vertex[0])){
_vertex.pop();
}
}
}
//////////////////////////////////////////////////////////////////////////////
ConvexPolyhedron::ConvexPolyhedron(const Array<ConvexPolygon>& _face) : face(_face) {
// Intentionally empty
}
float ConvexPolyhedron::getVolume() const {
if (face.length() < 4) {
return 0;
}
// The volume of any pyramid is 1/3 * h * base area.
// Discussion at: http://nrich.maths.org/mathsf/journalf/oct01/art1/
float sum = 0;
// Choose the first _vertex of the first face as the origin.
// This lets us skip one face, too, and avoids negative heights.
Vector3 v0 = face[0]._vertex[0];
for (int f = 1; f < face.length(); f++) {
const ConvexPolygon& poly = face[f];
float height = (poly._vertex[0] - v0).dot(poly.normal());
float base = poly.getArea();
sum += height * base;
}
return sum / 3;
}
bool ConvexPolyhedron::isEmpty() const {
return (face.length() == 0) || (getVolume() <= fuzzyEpsilon);
}
void ConvexPolyhedron::cut(const Plane& plane, ConvexPolyhedron &above, ConvexPolyhedron &below) {
above.face.resize(0);
below.face.resize(0);
Array<DirectedEdge> edge;
int f;
// See if the plane cuts this polyhedron at all. Detect when
// the polyhedron is entirely to one side or the other.
//{
int numAbove = 0, numIn = 0, numBelow = 0;
bool ruledOut = false;
double d;
Vector3 abc;
plane.getEquation(abc, d);
// This number has to be fairly large to prevent precision problems down
// the road.
const float eps = 0.005f;
for (f = face.length() - 1; (f >= 0) && (!ruledOut); f--) {
const ConvexPolygon& poly = face[f];
for (int v = poly._vertex.length() - 1; (v >= 0) && (!ruledOut); v--) {
double r = abc.dot(poly._vertex[v]) + d;
if (r > eps) {
numAbove++;
} else if (r < -eps) {
numBelow++;
} else {
numIn++;
}
ruledOut = (numAbove != 0) && (numBelow !=0);
}
}
if (numBelow == 0) {
above = *this;
return;
} else if (numAbove == 0) {
below = *this;
return;
}
//}
// Clip each polygon, collecting split edges.
for (f = face.length() - 1; f >= 0; f--) {
ConvexPolygon a, b;
DirectedEdge e;
face[f].cut(plane, a, b, e);
bool aEmpty = a.isEmpty();
bool bEmpty = b.isEmpty();
//debugPrintf("\n");
if (! aEmpty) {
//debugPrintf(" Above %f\n", a.getArea());
above.face.append(a);
}
if (! bEmpty) {
//debugPrintf(" Below %f\n", b.getArea());
below.face.append(b);
}
if (! aEmpty && ! bEmpty) {
//debugPrintf(" == Split\n");
edge.append(e);
} else {
// Might be the case that the polygon is entirely on
// one side of the plane yet there is an edge we need
// because it touches the plane.
//
// Extract the non-empty _vertex list and examine it.
// If we find exactly one edge in the plane, add that edge.
const Array<Vector3>& _vertex = (aEmpty ? b._vertex : a._vertex);
int L = _vertex.length();
int count = 0;
for (int v = 0; v < L; v++) {
if (plane.fuzzyContains(_vertex[v]) && plane.fuzzyContains(_vertex[(v + 1) % L])) {
e.start = _vertex[v];
e.stop = _vertex[(v + 1) % L];
count++;
}
}
if (count == 1) {
edge.append(e);
}
}
}
if (above.face.length() == 1) {
// Only one face above means that this entire
// polyhedron is below the plane. Move that face over.
below.face.append(above.face[0]);
above.face.resize(0);
} else if (below.face.length() == 1) {
// This shouldn't happen, but it arises in practice
// from numerical imprecision.
above.face.append(below.face[0]);
below.face.resize(0);
}
if ((above.face.length() > 0) && (below.face.length() > 0)) {
// The polyhedron was actually cut; create a cap polygon
ConvexPolygon cap;
// Collect the final polgyon by sorting the edges
int numVertices = edge.length();
/*debugPrintf("\n");
for (int xx=0; xx < numVertices; xx++) {
std::string s1 = edge[xx].start.toString();
std::string s2 = edge[xx].stop.toString();
debugPrintf("%s -> %s\n", s1.c_str(), s2.c_str());
}
*/
// Need at least three points to make a polygon
debugAssert(numVertices >= 3);
Vector3 last_vertex = edge.last().stop;
cap._vertex.append(last_vertex);
// Search for the next _vertex. Because of accumulating
// numerical error, we have to find the closest match, not
// just the one we expect.
for (int v = numVertices - 1; v >= 0; v--) {
// matching edge index
int index = 0;
int num = edge.length();
double distance = (edge[index].start - last_vertex).squaredMagnitude();
for (int e = 1; e < num; e++) {
double d = (edge[e].start - last_vertex).squaredMagnitude();
if (d < distance) {
// This is the new closest one
index = e;
distance = d;
}
}
// Don't tolerate ridiculous error.
debugAssertM(distance < 0.02, "Edge missing while closing polygon.");
last_vertex = edge[index].stop;
cap._vertex.append(last_vertex);
}
//debugPrintf("\n");
//debugPrintf("Cap (both) %f\n", cap.getArea());
above.face.append(cap);
below.face.append(cap.inverse());
}
// Make sure we put enough faces on each polyhedra
debugAssert((above.face.length() == 0) || (above.face.length() >= 4));
debugAssert((below.face.length() == 0) || (below.face.length() >= 4));
}
///////////////////////////////////////////////
ConvexPolygon2D::ConvexPolygon2D(const Array<Vector2>& pts, bool reverse) : m_vertex(pts) {
if (reverse) {
m_vertex.reverse();
}
}
bool ConvexPolygon2D::contains(const Vector2& p, bool reverse) const {
// Compute the signed area of each polygon from p to an edge.
// If the area is non-negative for all polygons then p is inside
// the polygon. (To adapt this algorithm for a concave polygon,
// the *sum* of the areas must be non-negative).
float r = reverse ? -1 : 1;
for (int i0 = 0; i0 < m_vertex.size(); ++i0) {
int i1 = (i0 + 1) % m_vertex.size();
const Vector2& v0 = m_vertex[i0];
const Vector2& v1 = m_vertex[i1];
Vector2 e0 = v0 - p;
Vector2 e1 = v1 - p;
// Area = (1/2) cross product, negated to be ccw in
// a 2D space; we neglect the 1/2
float area = -(e0.x * e1.y - e0.y * e1.x);
if (area * r < 0) {
return false;
}
}
return true;
}
}