server/dep/src/g3dlite/GImage_bayer.cpp
Lynx3d ae3ad10bcf [10097] Update G3D up to v8.0b4
+ Got rid of zip lib requirement in G3D...
  Still can re-enable code by defining _HAVE_ZIP...

+ Remove silly X11 lib dependency from G3D
  Code doesn't seem to do anything yet anyway, and even if, we don't want it :p

+ Fix another weird G3D build problem...

+ Remove some __asm usage in g3d, which is not available on Win64
  My editor also decided to remove a ton of trailing white spaces...tss...

+ Reapply G3D fixes for 64bit VC

+ not use SSE specific header when SSE not enabled in *nix

+ Updated project files

+ New vmap_assembler VC90/VC80 Project

+ vmap assembler binaries updates

NOTE: Old vmap fikes expected work (as tests show) with new library version.
      But better use new generated versions. Its different in small parts to bad or good...

(based on Lynx3d's repo commit 44798d3)

Signed-off-by: VladimirMangos <vladimir@getmangos.com>
2010-06-23 06:45:25 +04:00

298 lines
8.4 KiB
C++

/**
@file GImage_bayer.cpp
@author Morgan McGuire, http://graphics.cs.williams.edu
@created 2002-05-27
@edited 2006-05-10
*/
#include "G3D/platform.h"
#include "G3D/GImage.h"
namespace G3D {
void GImage::BAYER_G8B8_R8G8_to_Quarter_R8G8B8(int width, int height, const uint8* in, uint8* out) {
debugAssert(in != out);
int halfHeight = height / 2;
int halfWidth = width / 2;
int dst_off = 0;
for (int y = 0; y < halfHeight; ++y) {
for (int x = 0; x < halfWidth; ++x) {
// GBRG
int src_off = x*2 + y*2*width;
out[dst_off] = in[src_off+width]; // red
out[dst_off+1] = ((int)in[src_off] + (int)in[src_off+width+1])/2; // green
out[dst_off+2] = in[src_off+1]; // blue
dst_off = dst_off + 3;
}
}
}
void GImage::Quarter_R8G8B8_to_BAYER_G8B8_R8G8(int inWidth, int inHeight, const uint8* in, uint8* out) {
// Undo quarter-size Bayer as best we can. This code isn't very efficient, but it
// also isn't used very frequently.
debugAssert(out != in);
int outWidth = 2 * inWidth;
int outHeight = 2 * inHeight;
for (int y = 0; y < outHeight; ++y) {
for (int x = 0; x < outWidth; ++x) {
const Color3uint8* inp = ((const Color3uint8*)in) + ((x/2) + (y/2)* inWidth);
uint8* outp = out + x + y * outWidth;
if (isEven(y)) {
// GB row
if (isEven(x)) {
// Green
*outp = inp->g;
} else {
// Blue
*outp = inp->b;
}
} else {
// RG row
if (isEven(x)) {
// Red
*outp = inp->r;
} else {
// Green
*outp = inp->g;
}
}
}
}
}
/** Applies a 5x5 filter to monochrome image I (wrapping at the boundaries) */
static uint8 applyFilter(
const uint8* I,
int x,
int y,
int w,
int h,
const float filter[5][5]) {
debugAssert(isEven(w));
debugAssert(isEven(h));
float sum = 0.0f;
float denom = 0.0f;
for (int dy = 0; dy < 5; ++dy) {
int offset = ((y + dy + h - 2) % h) * w;
for (int dx = 0; dx < 5; ++dx) {
float f = filter[dy][dx];
sum += f * I[((x + dx + w - 2) % w) + offset];
denom += f;
}
}
return (uint8)iClamp(iRound(sum / denom), 0, 255);
}
////////////////////////////////////////////////////////////////////////////////////////////////
//
// Bayer conversions
//
// There are two kinds of rows (GR and BG).
// In each row, there are two kinds of pixels (G/R, B/G).
// We express the four kinds of INPUT pixels as:
// GRG, GRG, BGB, BGG
//
// There are three kinds of OUTPUT pixels: R, G, B.
// Thus there are nominally 12 different I/O combinations,
// but several are impulses because needed output at that
// location *is* the input (e.g., G_GRG and G_BGG).
//
// The following 5x5 row-major filters are named as output_input.
// Green
static const float G_GRR[5][5] =
{{ 0.0f, 0.0f, -1.0f, 0.0f, 0.0f},
{ 0.0f, 0.0f, 2.0f, 0.0f, 0.0f},
{ -1.0f, 2.0f, 4.0f, 2.0f, -1.0f},
{ 0.0f, 0.0f, 2.0f, 0.0f, 0.0f},
{ 0.0f, 0.0f, -1.0f, 0.0f, 0.0f}};
static const float G_BGB[5][5] =
{{ 0.0f, 0.0f, -1.0f, 0.0f, 0.0f},
{ 0.0f, 0.0f, 2.0f, 0.0f, 0.0f},
{ -1.0f, 2.0f, 4.0f, 2.0f, -1.0f},
{ 0.0f, 0.0f, 2.0f, 0.0f, 0.0f},
{ 0.0f, 0.0f, -1.0f, 0.0f, 0.0f}};
// Red
//(the caption in the paper is wrong for this case:
// "R row B column really means R row G column"
static const float R_GRG[5][5] =
{{ 0.0f, 0.0f, 0.5f, 0.0f, 0.0f},
{ 0.0f, -1.0f, 0.0f, -1.0f, 0.0f},
{ -1.0f, 4.0f, 5.0f, 4.0f, -1.0f},
{ 0.0f, -1.0f, 0.0f, -1.0f, 0.0f},
{ 0.0f, 0.0f, 0.5f, 0.0f, 0.0f}};
static const float R_BGG[5][5] =
{{ 0.0f, 0.0f, -1.0f, 0.0f, 0.0f},
{ 0.0f, -1.0f, 4.0f, -1.0f, 0.0f},
{ 0.5f, 0.0f, 5.0f, 0.0f, 0.5f},
{ 0.0f, -1.0f, 4.0f, -1.0f, 0.0f},
{ 0.0f, 0.0f, -1.0f, 0.0f, 0.0f}};
static const float R_BGB[5][5] =
{{ 0.0f, 0.0f, -3.0f/2.0f, 0.0f, 0.0f},
{ 0.0f, 2.0f, 0.0f, 2.0f, 0.0f},
{-3.0f/2.0f, 0.0f, 6.0f, 0.0f, -3.0f/2.0f},
{ 0.0f, 2.0f, 0.0f, 2.0f, 0.0f},
{ 0.0f, 0.0f, -3.0f/2.0f, 0.0f, 0.0f}};
// Blue
//(the caption in the paper is wrong for this case:
// "B row R column really means B row G column")
#define B_BGG R_GRG
#define B_GRG R_BGG
#define B_GRR R_BGB
void GImage::BAYER_R8G8_G8B8_to_R8G8B8_MHC(int w, int h, const uint8* in, uint8* _out) {
debugAssert(in != _out);
Color3uint8* out = (Color3uint8*)_out;
for (int y = 0; y < h; ++y) {
// Row beginning in the input array.
int offset = y * w;
// RG row
for (int x = 0; x < w; ++x, ++out) {
// R pixel
{
out->r = in[x + offset];
out->g = applyFilter(in, x, y, w, h, G_GRR);
out->b = applyFilter(in, x, y, w, h, B_GRR);
}
++x; ++out;
// G pixel
{
out->r = applyFilter(in, x, y, w, h, R_GRG);
out->g = in[x + offset];
out->b = applyFilter(in, x, y, w, h, B_GRG);
}
}
++y;
offset += w;
// GB row
for (int x = 0; x < w; ++x, ++out) {
// G pixel
{
out->r = applyFilter(in, x, y, w, h, R_BGG);
out->g = in[x + offset];
out->b = applyFilter(in, x, y, w, h, B_BGG);
}
++x; ++out;
// B pixel
{
out->r = applyFilter(in, x, y, w, h, R_BGB);
out->g = applyFilter(in, x, y, w, h, G_BGB);
out->b = in[x + offset];
}
}
}
}
static void swapRedAndBlue(int N, Color3uint8* out) {
for (int i = N - 1; i >= 0; --i) {
uint8 tmp = out[i].r;
out[i].r = out[i].b;
out[i].b = tmp;
}
}
void GImage::BAYER_G8R8_B8G8_to_R8G8B8_MHC(int w, int h, const uint8* in, uint8* _out) {
// Run the equivalent function for red
BAYER_G8B8_R8G8_to_R8G8B8_MHC(w, h, in, _out);
// Now swap red and blue
swapRedAndBlue(w * h, (Color3uint8*)_out);
}
void GImage::BAYER_B8G8_G8R8_to_R8G8B8_MHC(int w, int h, const uint8* in, uint8* _out) {
// Run the equivalent function for red
BAYER_R8G8_G8B8_to_R8G8B8_MHC(w, h, in, _out);
// Now swap red and blue
swapRedAndBlue(w * h, (Color3uint8*)_out);
}
void GImage::BAYER_G8B8_R8G8_to_R8G8B8_MHC(int w, int h, const uint8* in, uint8* _out) {
debugAssert(in != _out);
Color3uint8* out = (Color3uint8*)_out;
for (int y = 0; y < h; ++y) {
// Row beginning in the input array.
int offset = y * w;
// GB row
for (int x = 0; x < w; ++x, ++out) {
// G pixel
{
out->r = applyFilter(in, x, y, w, h, R_BGG);
out->g = in[x + offset];
out->b = applyFilter(in, x, y, w, h, B_BGG);
}
++x; ++out;
// B pixel
{
out->r = applyFilter(in, x, y, w, h, R_BGB);
out->g = applyFilter(in, x, y, w, h, G_BGB);
out->b = in[x + offset];
}
}
++y;
offset += w;
// RG row
for (int x = 0; x < w; ++x, ++out) {
// R pixel
{
out->r = in[x + offset];
out->g = applyFilter(in, x, y, w, h, G_GRR);
out->b = applyFilter(in, x, y, w, h, B_GRR);
}
++x; ++out;
// G pixel
{
out->r = applyFilter(in, x, y, w, h, R_GRG);
out->g = in[x + offset];
out->b = applyFilter(in, x, y, w, h, B_GRG);
}
}
}
}
#undef B_BGG
#undef B_GRG
#undef B_GRR
}