server/dep/ACE_wrappers/ace/High_Res_Timer.cpp
Neo2003 23c920ca4b [10643] Update the ACE part we use to 5.8.2
Signed-off-by: Neo2003 <Neo.2003@Hotmail.fr>
2010-10-25 20:36:51 +02:00

530 lines
18 KiB
C++

// $Id: High_Res_Timer.cpp 91286 2010-08-05 09:04:31Z johnnyw $
// Be very carefull before changing the calculations inside
// ACE_High_Res_Timer. The precision matters and we are using integer
// calculations not floating point. Also look good at the emulated 64
// bit int class (inside Basic_Types{h,i,cpp} before changing
// anything. It's operator/ only returns 32 bits not 64 bits, among
// other things.
#include "ace/High_Res_Timer.h"
#if !defined (__ACE_INLINE__)
#include "ace/High_Res_Timer.inl"
#endif /* __ACE_INLINE__ */
#include "ace/Stats.h"
#include "ace/OS_NS_stdio.h"
#include "ace/OS_NS_string.h"
#include "ace/OS_NS_sys_time.h"
#include "ace/OS_NS_time.h"
#include "ace/OS_NS_unistd.h"
#include "ace/OS_NS_stdlib.h"
#include "ace/Truncate.h"
ACE_BEGIN_VERSIONED_NAMESPACE_DECL
ACE_ALLOC_HOOK_DEFINE(ACE_High_Res_Timer)
ACE_END_VERSIONED_NAMESPACE_DECL
// For Intel platforms, a scale factor is required for
// ACE_OS::gethrtime. We'll still set this to one to prevent division
// by zero errors.
#if (defined (ACE_WIN32) || defined (ACE_HAS_POWERPC_TIMER) || \
defined (ACE_HAS_PENTIUM) || defined (ACE_HAS_ALPHA_TIMER)) && \
!defined (ACE_HAS_HI_RES_TIMER)
# include "ace/Guard_T.h"
# include "ace/Recursive_Thread_Mutex.h"
# include "ace/Object_Manager.h"
ACE_BEGIN_VERSIONED_NAMESPACE_DECL
// Initialize the global_scale_factor_ to 1. The first
// ACE_High_Res_Timer instance construction will override this
// value.
/* static */
ACE_UINT32 ACE_High_Res_Timer::global_scale_factor_ = 1u;
ACE_END_VERSIONED_NAMESPACE_DECL
#else /* ! (ACE_WIN32 || ACE_HAS_POWERPC_TIMER || \
ACE_HAS_PENTIUM || ACE_HAS_ALPHA_TIMER) ||
ACE_HAS_HI_RES_TIMER */
ACE_BEGIN_VERSIONED_NAMESPACE_DECL
// A scale_factor of 1000 converts nanosecond ticks to microseconds.
// That is, on these platforms, 1 tick == 1 nanosecond.
/* static */
ACE_UINT32 ACE_High_Res_Timer::global_scale_factor_ = 1000u;
ACE_END_VERSIONED_NAMESPACE_DECL
#endif /* ! (ACE_WIN32 || ACE_HAS_POWERPC_TIMER || \
ACE_HAS_PENTIUM || ACE_HAS_ALPHA_TIMER) ||
ACE_HAS_HI_RES_TIMER */
ACE_BEGIN_VERSIONED_NAMESPACE_DECL
// This is used to tell if the global_scale_factor_ has been
// set, and if high resolution timers are supported.
/* static */
int ACE_High_Res_Timer::global_scale_factor_status_ = 0;
#if defined (linux)
// Determine the apparent CPU clock speed from /proc/cpuinfo
ACE_UINT32
ACE_High_Res_Timer::get_cpuinfo (void)
{
ACE_UINT32 scale_factor = 1u;
// Get the BogoMIPS from /proc/cpuinfo. It works fine on Alpha and
// Pentium Pro. For other CPUs, it will be necessary to interpret
// the BogoMips, as described in the BogoMips mini-HOWTO. Note that
// this code assumes an order to the /proc/cpuinfo contents. The
// BogoMips rating had better come after CPU type and model info.
#if !defined (__alpha__)
bool supported = false;
#endif /* __alpha__ */
FILE *cpuinfo = ACE_OS::fopen (ACE_TEXT ("/proc/cpuinfo"),
ACE_TEXT ("r"));
if (cpuinfo != 0)
{
char buf[128];
// ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("\nReading /proc/cpuinfo...")));
while (ACE_OS::fgets (buf, sizeof buf, cpuinfo))
{
#if defined (__alpha__)
ACE_UINT32 whole;
ACE_UINT32 fractional;
if (::sscanf (buf,
"BogoMIPS : %d.%d\n",
&whole,
&fractional) == 2
|| ::sscanf (buf,
"bogomips : %d.%d\n",
&whole,
&fractional) == 2)
{
scale_factor = whole;
break;
}
#else
double mhertz = 1;
double bmips = 1;
char arg[128];
// CPU type?
if (::sscanf (buf, "cpu : %s\n", arg) == 1)
{
// If this is an Alpha chip, then the BogoMips rating is
// usable...
if (ACE_OS::strncmp (arg,
"Alpha",
5) == 0)
{
supported = true;
}
}
// Pentium CPU model?
else if (!supported
&& ::sscanf (buf, "model name : Pentium %s\n", arg) == 1)
{
// But if we don't have the right kind of Intel chip,
// just quit.
if (ACE_OS::strcmp (arg, "II") == 0
|| ACE_OS::strcmp (arg, "III") == 0
|| ACE_OS::strcmp (arg, "IV") == 0
|| ACE_OS::strcmp (arg, "Pro") == 0)
{
supported = true;
}
}
else if (::sscanf (buf, "cpu MHz : %lf\n", &mhertz) == 1)
{
// If the line "cpu MHz : xxx" is present, then it's a
// reliable measure of the CPU speed - according to the
// kernel-source. It's possible to see a 0 value reported.
if (mhertz > 0.0)
{
scale_factor = (ACE_UINT32) (mhertz + 0.5);
break;
}
}
else if (::sscanf (buf, "bogomips : %lf\n", &bmips) == 1
|| ::sscanf (buf, "BogoMIPS : %lf\n", &bmips) == 1)
{
if (supported)
{
scale_factor = (ACE_UINT32) (bmips + 0.5);
// ACE_DEBUG ((LM_DEBUG, ACE_TEXT (" setting the clock scale factor to %u"), scale_factor));
}
#if 0
else
{
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("\nThe BogoMIPS metric is not supported on this platform"
"\n\tReport the results of the clock calibration and"
"\n\tthe contents of /proc/cpuinfo to the ace-users mailing list")));
}
#endif /* 0 */
break;
}
#endif /* __alpha__ */
}
// ACE_DEBUG ((LM_DEBUG, ACE_TEXT (" (done)\n")));
ACE_OS::fclose (cpuinfo);
}
return scale_factor;
}
#endif /* linux */
ACE_UINT32
ACE_High_Res_Timer::global_scale_factor (void)
{
#if (defined (ACE_WIN32) || defined (ACE_HAS_POWERPC_TIMER) || \
defined (ACE_HAS_PENTIUM) || defined (ACE_HAS_ALPHA_TIMER)) && \
!defined (ACE_HAS_HI_RES_TIMER) && \
(defined (ACE_WIN32) || \
defined (ghs) || defined (__GNUG__) || \
defined (__INTEL_COMPILER))
// Check if the global scale factor needs to be set, and do if so.
if (ACE_High_Res_Timer::global_scale_factor_status_ == 0)
{
// Grab ACE's static object lock. This doesn't have anything to
// do with static objects; it's just a convenient lock to use.
ACE_MT (ACE_GUARD_RETURN (ACE_Recursive_Thread_Mutex, ace_mon,
*ACE_Static_Object_Lock::instance (), 0));
// Double check
if (ACE_High_Res_Timer::global_scale_factor_status_ == 0)
{
# if defined (ACE_WIN32)
LARGE_INTEGER freq;
if (::QueryPerformanceFrequency (&freq))
{
// We have a high-res timer
# if defined (ACE_LACKS_LONGLONG_T)
ACE_UINT64 uint64_freq(freq.u.LowPart, (ACE_UINT32) freq.u.HighPart);
ACE_High_Res_Timer::global_scale_factor
(uint64_freq / (ACE_UINT32) ACE_ONE_SECOND_IN_USECS);
# else
ACE_High_Res_Timer::global_scale_factor
(static_cast<unsigned int> (freq.QuadPart / ACE_HR_SCALE_CONVERSION));
# endif // (ACE_LACKS_LONGLONG_T)
ACE_High_Res_Timer::global_scale_factor_status_ = 1;
}
else
// High-Res timers not supported
ACE_High_Res_Timer::global_scale_factor_status_ = -1;
return ACE_High_Res_Timer::global_scale_factor_;
# elif defined (linux)
ACE_High_Res_Timer::global_scale_factor (ACE_High_Res_Timer::get_cpuinfo ());
# endif /* ! ACE_WIN32 && ! (linux && __alpha__) */
# if !defined (ACE_WIN32)
if (ACE_High_Res_Timer::global_scale_factor_ <= 1u)
// Failed to retrieve CPU speed from system, so calculate it.
ACE_High_Res_Timer::calibrate ();
# endif // (ACE_WIN32)
}
}
ACE_High_Res_Timer::global_scale_factor_status_ = 1;
#endif /* (ACE_WIN32 || ACE_HAS_POWERPC_TIMER || \
ACE_HAS_PENTIUM || ACE_HAS_ALPHA_TIMER) && \
! ACE_HAS_HI_RES_TIMER &&
((WIN32 && ! WINCE) || ghs || __GNUG__) */
return ACE_High_Res_Timer::global_scale_factor_;
}
ACE_High_Res_Timer::ACE_High_Res_Timer (void)
{
ACE_TRACE ("ACE_High_Res_Timer::ACE_High_Res_Timer");
this->reset ();
// Make sure that the global scale factor is set.
(void) global_scale_factor ();
}
ACE_UINT32
ACE_High_Res_Timer::calibrate (const ACE_UINT32 usec,
const u_int iterations)
{
const ACE_Time_Value sleep_time (0, usec);
ACE_Stats delta_hrtime;
// In units of 100 usec, to avoid overflow.
ACE_Stats actual_sleeps;
for (u_int i = 0;
i < iterations;
++i)
{
ACE_Time_Value const actual_start = ACE_OS::gettimeofday ();
ACE_hrtime_t const start = ACE_OS::gethrtime ();
ACE_OS::sleep (sleep_time);
ACE_hrtime_t const stop = ACE_OS::gethrtime ();
ACE_Time_Value const actual_delta =
ACE_OS::gettimeofday () - actual_start;
// Store the sample.
delta_hrtime.sample (ACE_Utils::truncate_cast<ACE_INT32> (stop - start));
actual_sleeps.sample (actual_delta.msec () * 100u);
}
// Calculate the mean value of the samples, with no fractional
// precision. Use it for the global scale factor.
ACE_Stats_Value ticks (0);
delta_hrtime.mean (ticks);
ACE_Stats_Value actual_sleep (0);
actual_sleeps.mean (actual_sleep);
// The addition of 5 below rounds instead of truncates.
const ACE_UINT32 scale_factor =
(ticks.whole () / actual_sleep.whole () + 5) /
10u /* usec/100 usec */;
ACE_High_Res_Timer::global_scale_factor (scale_factor);
return scale_factor;
}
void
ACE_High_Res_Timer::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_High_Res_Timer::dump");
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("\nglobal_scale_factor_: %u\n"),
global_scale_factor ()));
#if defined (ACE_LACKS_LONGLONG_T)
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT (":\nstart_.hi (): %8x; start_.lo (): %8x;\n")
ACE_TEXT ("end_.hi (): %8x; end_.lo (): %8x;\n")
ACE_TEXT ("total_.hi (): %8x; total_.lo (): %8x;\n")
ACE_TEXT ("start_incr_.hi () %8x; start_incr_.lo (): %8x;\n"),
start_.hi (), start_.lo (),
end_.hi (), end_.lo (),
total_.hi (), total_.lo (),
start_incr_.hi (), start_incr_.lo ()));
#else /* ! ACE_LACKS_LONGLONG_T */
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT (":\nstart_.hi (): %8x; start_.lo (): %8x;\n")
ACE_TEXT ("end_.hi (): %8x; end_.lo (): %8x;\n")
ACE_TEXT ("total_.hi (): %8x; total_.lo (): %8x;\n")
ACE_TEXT ("start_incr_.hi () %8x; start_incr_.lo (): %8x;\n"),
static_cast<ACE_UINT32> (start_ >> 32),
static_cast<ACE_UINT32> (start_ & 0xfffffffful),
static_cast<ACE_UINT32> (end_ >> 32),
static_cast<ACE_UINT32> (end_ & 0xfffffffful),
static_cast<ACE_UINT32> (total_ >> 32),
static_cast<ACE_UINT32> (total_ & 0xfffffffful),
static_cast<ACE_UINT32> (start_incr_ >> 32),
static_cast<ACE_UINT32> (start_incr_ & 0xfffffffful)));
#endif /* ! ACE_LACKS_LONGLONG_T */
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
void
ACE_High_Res_Timer::reset (void)
{
ACE_TRACE ("ACE_High_Res_Timer::reset");
this->start_ = 0;
this->end_ = 0;
this->total_ = 0;
this->start_incr_ = 0;
}
void
ACE_High_Res_Timer::elapsed_time (ACE_Time_Value &tv) const
{
hrtime_to_tv (tv,
ACE_High_Res_Timer::elapsed_hrtime (this->end_, this->start_));
}
#if defined (ACE_HAS_POSIX_TIME)
// Note... Win32 does not have ACE_HAS_POSIX_TIME, so the scale factor
// does not need to take into account the different units on Win32.
void
ACE_High_Res_Timer::elapsed_time (struct timespec &elapsed_time) const
{
// This implementation should be cleaned up.
// Just grab the nanoseconds. That is, leave off all values above
// microsecond. This equation is right! Don't mess with me! (It
// first strips off everything but the portion less than 1 usec.
// Then it converts that to nanoseconds by dividing by the scale
// factor to convert to usec, and multiplying by 1000.) The cast
// avoids a MSVC 4.1 compiler warning about narrowing.
ACE_hrtime_t elapsed =
ACE_High_Res_Timer::elapsed_hrtime (this->end_, this->start_);
u_long nseconds = static_cast<u_long> (elapsed %
global_scale_factor () * 1000u /
global_scale_factor ());
// Get just the microseconds (dropping any left over nanoseconds).
ACE_UINT32 useconds = (ACE_UINT32) (elapsed / global_scale_factor ());
elapsed_time.tv_sec = (time_t) (useconds / ACE_ONE_SECOND_IN_USECS);
// Transforms one second in microseconds into nanoseconds.
elapsed_time.tv_nsec = (time_t) ((useconds % ACE_ONE_SECOND_IN_USECS) * 1000u + nseconds);
}
#endif /* ACE_HAS_POSIX_TIME */
void
ACE_High_Res_Timer::elapsed_time_incr (ACE_Time_Value &tv) const
{
hrtime_to_tv (tv, total_);
}
void
ACE_High_Res_Timer::elapsed_time (ACE_hrtime_t &nanoseconds) const
{
// Please do _not_ rearrange this equation. It is carefully
// designed and tested to avoid overflow on machines that don't have
// native 64-bit ints. In particular, division can be a problem.
// For more background on this, please see bugzilla #1024.
nanoseconds = ACE_High_Res_Timer::elapsed_hrtime (this->end_, this->start_)
* (1024000u / ACE_High_Res_Timer::global_scale_factor ());
// Caution - Borland has a problem with >>=, so resist the temptation.
nanoseconds = nanoseconds >> 10;
// Right shift is implemented for non native 64-bit ints
// operator/ only for a 32 bit result !
}
void
ACE_High_Res_Timer::elapsed_time_incr (ACE_hrtime_t &nanoseconds) const
{
// Same as above.
nanoseconds = this->total_
* (1024000u / ACE_High_Res_Timer::global_scale_factor ());
// Caution - Borland has a problem with >>=, so resist the temptation.
nanoseconds = nanoseconds >> 10;
}
void
ACE_High_Res_Timer::print_ave (const ACE_TCHAR *str,
const int count,
ACE_HANDLE handle) const
{
ACE_TRACE ("ACE_High_Res_Timer::print_ave");
// Get the total number of nanoseconds elapsed.
ACE_hrtime_t total_nanoseconds;
this->elapsed_time (total_nanoseconds);
// Separate to seconds and nanoseconds.
u_long total_secs =
static_cast<u_long> (total_nanoseconds / (ACE_UINT32) ACE_ONE_SECOND_IN_NSECS);
ACE_UINT32 extra_nsecs =
static_cast<ACE_UINT32> (total_nanoseconds % (ACE_UINT32) ACE_ONE_SECOND_IN_NSECS);
ACE_TCHAR buf[100];
if (count > 1)
{
ACE_hrtime_t avg_nsecs = total_nanoseconds / (ACE_UINT32) count;
ACE_OS::sprintf (buf,
ACE_TEXT (" count = %d, total (secs %lu, usecs %u), avg usecs = %lu\n"),
count,
total_secs,
(extra_nsecs + 500u) / 1000u,
(u_long) ((avg_nsecs + 500u) / 1000u));
}
else
ACE_OS::sprintf (buf,
ACE_TEXT (" total %3lu.%06lu secs\n"),
total_secs,
(extra_nsecs + 500lu) / 1000lu);
ACE_OS::write (handle,
str,
ACE_OS::strlen (str));
ACE_OS::write (handle,
buf,
ACE_OS::strlen (buf));
}
void
ACE_High_Res_Timer::print_total (const ACE_TCHAR *str,
const int count,
ACE_HANDLE handle) const
{
ACE_TRACE ("ACE_High_Res_Timer::print_total");
// Get the total number of nanoseconds elapsed.
ACE_hrtime_t total_nanoseconds;
this->elapsed_time (total_nanoseconds);
// Separate to seconds and nanoseconds.
u_long total_secs =
static_cast<u_long> (total_nanoseconds / (ACE_UINT32) ACE_ONE_SECOND_IN_NSECS);
ACE_UINT32 extra_nsecs =
static_cast<ACE_UINT32> (total_nanoseconds % (ACE_UINT32) ACE_ONE_SECOND_IN_NSECS);
ACE_TCHAR buf[100];
if (count > 1)
{
ACE_hrtime_t avg_nsecs = this->total_ / (ACE_UINT32) count;
ACE_OS::sprintf (buf,
ACE_TEXT (" count = %d, total (secs %lu, usecs %u), avg usecs = %lu\n"),
count,
total_secs,
(extra_nsecs + 500u) / 1000u,
(u_long) ((avg_nsecs + 500u) / 1000u));
}
else
ACE_OS::sprintf (buf,
ACE_TEXT (" total %3lu.%06u secs\n"),
total_secs,
(extra_nsecs + 500u) / 1000u);
ACE_OS::write (handle,
str,
ACE_OS::strlen (str));
ACE_OS::write (handle,
buf,
ACE_OS::strlen (buf));
}
int
ACE_High_Res_Timer::get_env_global_scale_factor (const ACE_TCHAR *env)
{
if (env != 0)
{
const char *env_value = ACE_OS::getenv (ACE_TEXT_ALWAYS_CHAR (env));
if (env_value != 0)
{
int const value = ACE_OS::atoi (env_value);
if (value > 0)
{
ACE_High_Res_Timer::global_scale_factor (value);
return 0;
}
}
}
return -1;
}
ACE_END_VERSIONED_NAMESPACE_DECL