server/dep/ACE_wrappers/ace/Local_Tokens.cpp
Neo2003 23c920ca4b [10643] Update the ACE part we use to 5.8.2
Signed-off-by: Neo2003 <Neo.2003@Hotmail.fr>
2010-10-25 20:36:51 +02:00

1619 lines
40 KiB
C++

// $Id: Local_Tokens.cpp 91368 2010-08-16 13:03:34Z mhengstmengel $
#include "ace/Local_Tokens.h"
#if defined (ACE_HAS_TOKENS_LIBRARY)
#include "ace/Thread.h"
#include "ace/Token_Manager.h"
#include "ace/OS_NS_unistd.h"
#if !defined (__ACE_INLINE__)
#include "ace/Local_Tokens.inl"
#endif /* __ACE_INLINE__ */
ACE_BEGIN_VERSIONED_NAMESPACE_DECL
void
ACE_Tokens::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Tokens::dump");
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("ACE_Tokens::dump:\n")
ACE_TEXT (" reference_cont_ = %d\n")
ACE_TEXT (" token_name_ = %s\n"),
reference_count_, token_name_));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("waiters_\n")));
this->waiters_.dump ();
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
ACE_Tokens::ACE_Tokens (void)
: visited_ (0),
reference_count_ (0)
{
ACE_TRACE ("ACE_Tokens::ACE_Tokens");
}
ACE_Tokens::~ACE_Tokens (void)
{
}
void
ACE_Tokens::make_owner (ACE_TPQ_Entry *caller)
{
this->waiters_.remove (caller);
this->waiters_.enqueue (caller, 0);
}
ACE_Token_Proxy_Queue *
ACE_Tokens::waiters ()
{
ACE_TRACE ("ACE_Tokens::waiters");
return &this->waiters_;
}
int
ACE_Tokens::no_of_waiters ()
{
ACE_TRACE ("ACE_Tokens::no_of_waiters");
return this->waiters_.size ();
}
#if defined (ACE_LACKS_INLINE_FUNCTIONS)
ACE_Null_Token::ACE_Null_Token (void)
{
}
ACE_Null_Token::~ACE_Null_Token (void)
{
}
#endif /* ACE_LACKS_INLINE_FUNCTIONS */
void
ACE_TPQ_Entry::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_TPQ_Entry::dump");
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("ACE_TPQ_Entry::dump:\n")
ACE_TEXT (" nesting_level_ = %d\n")
ACE_TEXT (" client_id_ = %s\n"),
nesting_level_,
client_id_));
if (next_ != 0)
{
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("next:.\n")));
next_->dump ();
}
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("ACE_TPQ_Entry::dump end.\n")));
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
ACE_TPQ_Entry::ACE_TPQ_Entry (const ACE_Token_Proxy *new_proxy,
const ACE_TCHAR *client_id)
: cond_var_ (lock_),
next_ (0),
// This const typecast is safe.
proxy_ ((ACE_Token_Proxy *) new_proxy),
nesting_level_ (0),
sleep_hook_ (0)
{
ACE_TRACE ("ACE_TPQ_Entry::ACE_TPQ_Entry");
if (client_id != 0)
this->client_id (client_id);
else
{
// Just make sure we have enough space.
ACE_TCHAR host_name[MAXHOSTNAMELEN];
ACE_TCHAR name[(sizeof host_name / sizeof (ACE_TCHAR)) + 256];
ACE_OS::hostname (host_name, sizeof host_name);
ACE_thread_t thread_id = ACE_Thread::self ();
// The cast is an attempt to get this to compile (and run,
// hopefully) regardless of the type of ACE_thread_t.
ACE_OS::sprintf (name,
ACE_TEXT ("/%s/%u/%lu"),
host_name,
static_cast<u_int> (ACE_OS::getpid ()),
*reinterpret_cast<u_long *> (&thread_id));
this->client_id (name);
}
}
ACE_TPQ_Entry::ACE_TPQ_Entry (void)
: cond_var_ (lock_),
proxy_ (0),
nesting_level_ (0),
sleep_hook_ (0)
{
ACE_TRACE ("ACE_TPQ_Entry::ACE_TPQ_Entry null const.");
}
ACE_TPQ_Entry::ACE_TPQ_Entry (const ACE_TPQ_Entry &rhs)
: cond_var_ (lock_)
{
ACE_TRACE ("ACE_TPQ_Entry::ACE_TPQ_Entry copy const.");
*this = rhs;
}
ACE_TPQ_Entry::~ACE_TPQ_Entry (void)
{
ACE_TRACE ("ACE_TPQ_Entry::~ACE_TPQ_Entry");
}
void
ACE_TPQ_Entry::operator= (const ACE_TPQ_Entry& rhs)
{
ACE_TRACE ("ACE_TPQ_Entry::operator=");
if (&rhs == this)
return;
this->proxy_ = rhs.proxy ();
this->nesting_level_ = rhs.nesting_level ();
this->client_id (rhs.client_id ());
this->sleep_hook_ = rhs.sleep_hook ();
}
void
ACE_TPQ_Entry::client_id (const ACE_TCHAR *id)
{
ACE_TRACE ("ACE_TPQ_Entry::client_id");
if (id == 0)
return;
ACE_OS::strsncpy (this->client_id_,
(ACE_TCHAR *) id,
ACE_MAXCLIENTIDLEN);
}
ACE_TSS_TPQ_Entry::~ACE_TSS_TPQ_Entry (void)
{
}
void
ACE_TSS_TPQ_Entry::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_TSS_TPQ_Entry::dump");
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("ACE_TSS_TPQ_Entry::dump:\n")
ACE_TEXT (" client_id_ = %s\n"),
client_id_ == 0 ? ACE_TEXT ("0") : client_id_));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("base:\n")));
ACE_TPQ_ENTRY::dump ();
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
ACE_TSS_TPQ_Entry::ACE_TSS_TPQ_Entry (const ACE_Token_Proxy *proxy,
const ACE_TCHAR *client_id)
: proxy_ (proxy),
client_id_ (client_id)
{
ACE_TRACE ("ACE_TSS_TPQ_Entry::ACE_TSS_TPQ_Entry");
}
ACE_TPQ_Entry *
ACE_TSS_TPQ_Entry::make_TSS_TYPE (void) const
{
ACE_TRACE ("ACE_TSS_TPQ_Entry::make_TSS_TYPE");
ACE_TPQ_Entry *temp;
ACE_NEW_RETURN (temp,
ACE_TPQ_Entry (this->proxy_,
this->client_id_),
0);
return temp;
}
ACE_TSS_TPQ_Entry::operator ACE_TPQ_Entry * (void)
{
#if !defined (ACE_NO_TSS_TOKENS)
return (ACE_TPQ_Entry *) (*((ACE_TSS<ACE_TPQ_Entry> *) this));
#else
// Not sure this is the right thing to do, but it seems to work.
// The base class ALSO has a proxy_ and client_id_ members (weird?)
// which don't get initialised. The following two lines make this
// the same as the subclass, so that the slicing works .
ACE_TPQ_ENTRY::proxy ((ACE_Token_Proxy *)(this->proxy_));
ACE_TPQ_ENTRY::client_id (this->client_id_);
return (ACE_TPQ_Entry *) this;;
#endif /* !ACE_NO_TSS_TOKENS */
}
ACE_TPQ_Iterator::ACE_TPQ_Iterator (ACE_Token_Proxy_Queue &q)
: current_ (q.head_)
{
ACE_TRACE ("ACE_TPQ_Iterator::ACE_TPQ_Iterator");
}
int
ACE_TPQ_Iterator::next (ACE_TPQ_Entry *&next_item)
{
ACE_TRACE ("ACE_TPQ_Iterator::next");
next_item = this->current_;
return current_ != 0;
}
int
ACE_TPQ_Iterator::done (void) const
{
ACE_TRACE ("ACE_TPQ_Iterator::done");
return this->current_ == 0;
}
void
ACE_TPQ_Iterator::advance (void)
{
ACE_TRACE ("ACE_TPQ_Iterator::advance");
if (current_ != 0)
this->current_ = this->current_->next_;
}
void
ACE_TPQ_Iterator::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_TPQ_Iterator::dump");
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("ACE_TPQ_Iterator::dump:\n")
ACE_TEXT (" current_ = %d\n"),
(long) this->current_));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("head_ and tail_\n")));
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
void
ACE_Token_Proxy_Queue::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Token_Proxy_Queue::dump");
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("ACE_Token_Proxy_Queue::dump:\n")
ACE_TEXT (" size_ = %d\n"),
size_));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("head_ and tail_\n")));
if (this->head_ != 0)
this->head_->dump ();
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("ACE_Token_Proxy_Queue::dump end.\n")));
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
ACE_Token_Proxy_Queue::ACE_Token_Proxy_Queue (void)
: head_ (0),
tail_ (0),
size_ (0)
{
ACE_TRACE ("ACE_Token_Proxy_Queue::ACE_Token_Proxy_Queue");
}
void
ACE_Token_Proxy_Queue::enqueue (ACE_TPQ_Entry *tpq,
int position)
{
ACE_TRACE ("ACE_Token_Proxy_Queue::enqueue");
tpq->next_ = 0;
++this->size_;
if (this->head_ == 0)
{
// make tpq the entire list
this->head_ = this->tail_ = tpq;
return;
}
if (position == 0)
{
// make head of list
tpq->next_ = this->head_;
this->head_ = tpq;
return;
}
if (position == -1)
{
// stick at back of list
this->tail_->next_ = tpq;
this->tail_ = tpq;
return;
}
// walk through list to insertion point
ACE_TPQ_Entry *temp = head_;
for (int x = position;
x > 1;
--x)
{
// end of queue?
if (temp->next_ == 0)
break;
// advance pointer
else
temp = temp->next_;
}
// insert new tpq after temp
tpq->next_ = temp->next_;
temp->next_ = tpq;
}
void
ACE_Token_Proxy_Queue::dequeue (void)
{
ACE_TRACE ("ACE_Token_Proxy_Queue::dequeue");
if (head_ == 0)
return;
ACE_TPQ_Entry *temp = this->head_;
this->head_ = this->head_->next_;
temp->next_ = 0;
--this->size_;
if (this->head_ == 0 && this->size_ != 0)
ACE_ERROR ((LM_ERROR,
ACE_TEXT ("incorrect size = %d\n"),
this->size_));
}
/*
int
ACE_Token_Proxy_Queue::member (const ACE_TCHAR *id)
{
ACE_TRACE ("ACE_Token_Proxy_Queue::member");
for (ACE_TPQ_Entry *temp = this->head_;
temp != 0;
temp = temp->next_)
if (ACE_OS::strcmp (temp->client_id (), id) == 0)
// We found it!
return 1;
// We didn't find it :-(
return 0;
}
*/
void
ACE_Token_Proxy_Queue::remove (const ACE_TPQ_Entry *remove_me)
{
ACE_TRACE ("ACE_Token_Proxy_Queue::remove");
// sanity
if ((remove_me == 0) || (this->head_ == 0))
return;
// is it the head?
if (this->head_ == remove_me) // pointer comparison.
{
this->head_ = this->head_->next_;
if (this->head_ == 0)
this->tail_ = 0;
--this->size_;
return;
}
ACE_TPQ_Entry *temp = this->head_;
ACE_TPQ_Entry *previous = 0;
// is it in the middle or tail?
while (temp != 0)
{
if (temp == remove_me)
{
// previous should never be null since the first if
// conditional should always be false
previous->next_ = temp->next_;
// is it the tail?
if (this->tail_ == temp)
this->tail_ = previous;
--this->size_;
return;
}
previous = temp;
temp = temp->next_;
}
// it wasn't in the list.
return;
}
void
ACE_Mutex_Token::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Mutex_Token::dump");
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("ACE_Mutex_Token::dump:\n")));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("lock_\n")));
lock_.dump ();
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("base:\n")));
ACE_Tokens::dump ();
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("ACE_Mutex_Token::dump end.\n")));
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
ACE_Mutex_Token::ACE_Mutex_Token (const ACE_TCHAR *name)
{
ACE_TRACE ("ACE_Mutex_Token::ACE_Mutex_Token");
ACE_OS::strsncpy (this->token_name_,
name,
ACE_MAXTOKENNAMELEN);
}
ACE_Mutex_Token::~ACE_Mutex_Token (void)
{
ACE_TRACE ("ACE_Mutex_Token::~ACE_Mutex_Token");
}
int
ACE_Mutex_Token::acquire (ACE_TPQ_Entry *caller,
int ignore_deadlock,
int notify)
{
ACE_TRACE ("ACE_Mutex_Token::acquire");
// We need to acquire two locks. This one to ensure that only one
// thread uses this token at a time.
ACE_GUARD_RETURN (ACE_TOKEN_CONST::MUTEX, ace_mon1, this->lock_, -1);
// This one to ensure an atomic transaction across all tokens. Note
// that this order is crucial too. It's resource coloring for other
// threads which may be calling this same token.
ACE_GUARD_RETURN (ACE_TOKEN_CONST::MUTEX, ace_mon2, ACE_Token_Manager::instance ()->mutex (), -1);
// Does _anyone_ own the token?
if (this->owner () == 0)
{
// there are no waiters, so queue as the first waiter (the owner.)
this->waiters_.enqueue (caller, -1);
return 0; // success
}
// Does the caller already own it?
if (this->is_owner (caller->client_id ()))
{
// Recursive acquisition.
caller->nesting_level (1);
return 0; // success
}
// Check for deadlock.
if (!ignore_deadlock
&& ACE_Token_Manager::instance ()->check_deadlock (caller->proxy ()) == 1)
{
errno = EDEADLK;
ACE_RETURN (-1);
}
// Someone owns it. Sorry, you're getting queued up at the end of
// the waiter queue.
this->waiters_.enqueue (caller, -1);
if (notify)
this->owner ()->call_sleep_hook ();
errno = EWOULDBLOCK;
ACE_RETURN (-1);
ACE_NOTREACHED (return -1);
}
int
ACE_Mutex_Token::tryacquire (ACE_TPQ_Entry *caller)
{
ACE_TRACE ("ACE_Mutex_Token::tryacquire");
// We need to acquire two locks. This one to ensure that only one
// thread uses this token at a time.
ACE_GUARD_RETURN (ACE_TOKEN_CONST::MUTEX, ace_mon1, this->lock_, -1);
// This one to ensure an atomic transaction across all tokens. Note
// that this order is crucial too. It's resource coloring for other
// threads which may be calling this same token.
ACE_GUARD_RETURN (ACE_TOKEN_CONST::MUTEX, ace_mon2, ACE_Token_Manager::instance ()->mutex (), -1);
// Does _anyone_ own the token?
if (this->owner () == 0)
{
this->waiters_.enqueue (caller, -1);
return 0; // success
}
// Does the caller already own it?
if (this->is_owner (caller->client_id ()))
{
// recursive acquisition
caller->nesting_level (1);
return 0; // success
}
else
// Someone owns it. Fail.
{
errno = EWOULDBLOCK;
ACE_RETURN (-1);
}
ACE_NOTREACHED (return -1);
}
int
ACE_Mutex_Token::renew (ACE_TPQ_Entry *caller,
int requeue_position)
{
ACE_TRACE ("ACE_Mutex_Token::renew");
ACE_GUARD_RETURN (ACE_TOKEN_CONST::MUTEX, ace_mon, this->lock_, -1);
// Verify that the caller is the owner.
if (this->is_owner (caller->client_id ()) == 0)
{
errno = EACCES;
ACE_RETURN (-1);
}
// The caller is the owner, so check to see if there are any
// waiters. If not, we just keep the token. == 1 means that there
// is only the owner.
if (this->waiters_.size () == 1 || requeue_position == 0)
return 0;
// Requeue the caller.
this->waiters_.dequeue ();
this->waiters_.enqueue (caller, requeue_position);
// Notify new owner.
if (this->owner () != 0)
this->owner ()->proxy ()->token_acquired (this->owner ());
// Tell the caller that the operation would block.
errno = EWOULDBLOCK;
ACE_RETURN (-1);
ACE_NOTREACHED (return -1);
}
// Release the current holder of the token (which had
// better be the caller's thread!).
int
ACE_Mutex_Token::release (ACE_TPQ_Entry *caller)
{
ACE_TRACE ("ACE_Mutex_Token::release");
ACE_GUARD_RETURN (ACE_TOKEN_CONST::MUTEX, ace_mon, this->lock_, -1);
// Does anyone own the token?
if (this->owner () == 0)
{
errno = EACCES;
ACE_RETURN (-1);
}
// Is the caller the owner.
if (this->is_owner (caller->client_id ()))
{
// Check the nesting level.
if (caller->nesting_level () > 0)
caller->nesting_level (-1);
else
{
this->waiters_.dequeue ();
// Notify new owner.
if (this->owner () != 0)
this->owner ()->proxy ()->token_acquired (this->owner ());
}
}
else
this->remove (caller);
return 0;
}
int
ACE_Mutex_Token::owners (OWNER_STACK &stack,
const ACE_TCHAR *id)
{
ACE_TRACE ("ACE_Mutex_Token::owners");
if (this->owner () != 0)
{
stack.push (this->owner ());
// If an <id> is specified, return whether it is the owner being
// returned.
if (id != 0)
return this->owner ()->equal_client_id (id);
}
return 0;
}
int
ACE_Mutex_Token::is_waiting_for (const ACE_TCHAR *id)
{
ACE_TRACE ("ACE_Mutex_Token::is_waiting_for");
// If there is no owner, or <id> is the owner, return false.
if ((this->owner () == 0) || this->is_owner (id))
return 0;
// Step through each waiter looking for <id>.
ACE_TPQ_Iterator iterator (waiters_);
iterator.advance ();
for (ACE_TPQ_Entry *temp = 0;
iterator.next (temp) != 0;
iterator.advance ())
{
if (temp->equal_client_id (id))
return 1;
}
return 0;
}
int
ACE_Mutex_Token::is_owner (const ACE_TCHAR *id)
{
ACE_TRACE ("ACE_Mutex_Token::is_owner");
// If there is an owner, return whether it is <id>.
if ((this->owner () != 0) &&
this->owner ()->equal_client_id (id))
return 1;
else
return 0;
}
int
ACE_Mutex_Token::type (void) const
{
ACE_TRACE ("ACE_Mutex_Token::type");
return (int) ACE_Tokens::MUTEX;
}
// ************************************************************
int
ACE_RW_Token::type (void) const
{
ACE_TRACE ("ACE_RW_Token::type");
return (int) ACE_Tokens::RWLOCK;
}
void
ACE_RW_Token::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_RW_Token::dump");
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("ACE_RW_Token::dump:\n")
ACE_TEXT ("num_writers_ = %d\n"), num_writers_));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("lock_\n")));
this->lock_.dump ();
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("base:\n")));
ACE_Tokens::dump ();
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("ACE_RW_Token::dump end.\n")));
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
ACE_RW_Token::ACE_RW_Token (const ACE_TCHAR *name)
: num_writers_ (0)
{
ACE_TRACE ("ACE_RW_Token::ACE_RW_Token");
ACE_OS::strsncpy (this->token_name_,
name,
ACE_MAXTOKENNAMELEN);
}
ACE_RW_Token::~ACE_RW_Token (void)
{
ACE_TRACE ("ACE_RW_Token::~ACE_RW_Token");
}
int
ACE_RW_Token::acquire (ACE_TPQ_Entry *caller,
int ignore_deadlock,
int notify)
{
ACE_TRACE ("ACE_RW_Token::acquire");
// We need to acquire two locks. This one to ensure that only one
// thread uses this token at a time.
ACE_GUARD_RETURN (ACE_TOKEN_CONST::MUTEX, ace_mon1, this->lock_, -1);
// This one to ensure an atomic transaction across all tokens. Note
// that this order is crucial too. It's resource coloring for other
// threads which may be calling this same token.
ACE_GUARD_RETURN (ACE_TOKEN_CONST::MUTEX, ace_mon2, ACE_Token_Manager::instance ()->mutex (), -1);
if (caller->proxy ()->type () == ACE_RW_Token::WRITER)
this->num_writers_++;
// Does _anyone_ own the token?
if (this->owner () == 0)
{
// There are no waiters, so queue as the first waiter (the owner).
this->waiters_.enqueue (caller, -1);
return 0;
}
// Check for recursive acquisition.
if (this->is_owner (caller->client_id ()))
{
caller->nesting_level (1);
return 0; // Success.
}
// Reader.
if (caller->proxy ()->type () == ACE_RW_Token::READER)
{
// Are there any writers?
if (this->num_writers_ == 0)
{
// Queue the caller at the end of the queue.
this->waiters_.enqueue (caller, -1);
return 0;
}
// Else failure.
}
// Failure code.
// Check for deadlock.
if (!ignore_deadlock &&
ACE_Token_Manager::instance ()->check_deadlock (caller->proxy ()) == 1)
{
if (caller->proxy ()->type () == ACE_RW_Token::WRITER)
this->num_writers_--;
errno = EDEADLK;
ACE_RETURN (-1);
}
// Queue the caller at the end of the queue.
this->waiters_.enqueue (caller, -1);
if (notify)
{
// If it's a writer, just notify it.
if (this->owner ()->proxy ()->type () == ACE_RW_Token::WRITER)
this->owner ()->call_sleep_hook ();
else
{
// Call back all reader owners.
ACE_TPQ_Entry *temp = this->owner ();
do
{
temp->call_sleep_hook ();
temp = temp->next_;
}
while (temp != 0 &&
temp->proxy ()->type () == ACE_RW_Token::READER);
}
}
errno = EWOULDBLOCK;
ACE_RETURN (-1);
ACE_NOTREACHED (return -1);
}
int
ACE_RW_Token::tryacquire (ACE_TPQ_Entry *caller)
{
ACE_TRACE ("ACE_RW_Token::tryacquire");
// We need to acquire two locks. This one to ensure that only one
// thread uses this token at a time.
ACE_GUARD_RETURN (ACE_TOKEN_CONST::MUTEX, ace_mon1, this->lock_, -1);
// This one to ensure an atomic transaction across all tokens. Note
// that this order is crucial too. It's resource coloring for other
// threads which may be calling this same token.
ACE_GUARD_RETURN (ACE_TOKEN_CONST::MUTEX, ace_mon2, ACE_Token_Manager::instance ()->mutex (), -1);
if (caller->proxy ()->type () == ACE_RW_Token::WRITER)
{
this->num_writers_++;
}
// Does _anyone_ own the token?
if (this->owner () == 0)
{
// There are no waiters, so queue as the first waiter (the owner).
this->waiters_.enqueue (caller, -1);
return 0;
}
// Check for recursive acquisition.
if (this->is_owner (caller->client_id ()))
{
caller->nesting_level (1);
return 0; // Success.
}
// Reader.
if (caller->proxy ()->type () == ACE_RW_Token::READER)
{
// Are there any writers?
if (this->num_writers_ == 0)
{
// queue the caller at the end of the queue.
this->waiters_.enqueue (caller, -1);
return 0;
}
// Else, fail.
}
else // Writer.
// We're going to fail, so decrement the num_writers.
{
this->num_writers_--;
}
errno = EWOULDBLOCK;
ACE_RETURN (-1);
ACE_NOTREACHED (return -1);
}
int
ACE_RW_Token::renew (ACE_TPQ_Entry *caller,
int requeue_position)
{
ACE_TRACE ("ACE_RW_Token::renew");
ACE_GUARD_RETURN (ACE_TOKEN_CONST::MUTEX, ace_mon, this->lock_, -1);
// Werify that the caller is the owner
if (this->is_owner (caller->client_id ()) == 0)
{
errno = EACCES;
ACE_RETURN (-1);
}
// The caller is the owner, so check to see if there are any
// waiters. If not, we just keep the token.
if (this->waiters_.size () == 1 || requeue_position == 0)
return 0;
// There are waiters, so remove the caller.
this->remove (caller);
// Requeue the caller.
this->waiters_.enqueue (caller, requeue_position);
if (caller->proxy ()->type () == ACE_RW_Token::READER)
{
// If the caller got queued before any writers, the caller is
// still the owner.
if (this->is_owner (caller->client_id ()))
return 0; // success
// else fallthrough and return would block.
}
// Writers will always have to block since waiters_.size () == 1 or
// requeue_position == 0.
// Get a new owner.
this->notify_new_owner (caller);
// Tell the caller that the operation would block.
errno = EWOULDBLOCK;
ACE_RETURN (-1);
ACE_NOTREACHED (return -1);
}
int
ACE_RW_Token::release (ACE_TPQ_Entry *caller)
{
ACE_TRACE ("ACE_RW_Token::release");
ACE_GUARD_RETURN (ACE_TOKEN_CONST::MUTEX, ace_mon, this->lock_, -1);
// Check for errors.
if ((this->owner () == 0) ||
(this->is_owner (caller->client_id ()) == 0))
{
errno = EACCES;
ACE_RETURN (-1);
}
if (caller->proxy ()->type () == ACE_RW_Token::WRITER)
num_writers_--;
// Recursive release.
if (caller->nesting_level () > 0)
{
caller->nesting_level (-1);
return 0;
}
// Remove the caller and notify the new owner(s).
this->remove (caller);
this->notify_new_owner (caller);
return 0;
}
void
ACE_RW_Token::notify_new_owner (ACE_TPQ_Entry *old_owner)
{
ACE_TRACE ("ACE_RW_Token::notify_new_owner");
if (this->owner () == 0)
return;
if (this->owner ()->proxy ()->type () == ACE_RW_Token::READER)
{
if (old_owner->proxy ()->type () == ACE_RW_Token::READER)
// the owners already know that they're owners
return;
// The current owner is a reader and the previous owner was a
// writer, so notify all waiting readers up to the first writer.
// call back all reader owners.
ACE_TPQ_Iterator iterator (waiters_);
for (ACE_TPQ_Entry *temp = 0;
iterator.next (temp) != 0;
iterator.advance ())
{
if (temp->proxy ()->type () == WRITER)
// We've gone through all the readers.
break;
temp->proxy ()->token_acquired (temp);
}
}
else // writer
this->owner ()->proxy ()->token_acquired (this->owner ());
}
int
ACE_RW_Token::owners (OWNER_STACK &stack,
const ACE_TCHAR *id)
{
ACE_TRACE ("ACE_RW_Token::owners");
if (this->owner () == 0)
return 0;
int id_is_owner = 0;
// The first waiter is a writer, so there is only one owner.
if (this->owner ()->proxy ()->type () == WRITER)
{
stack.push (this->owner ());
// If an <id> is specified, return whether it is the owner being
// returned.
if ((id != 0) &&
(ACE_OS::strcmp (id, this->owner ()->client_id ()) == 0))
id_is_owner = 1;
}
// The first waiter is a reader, so there can be multiple owning
// readers.
else
{
ACE_TPQ_Iterator iterator (waiters_);
for (ACE_TPQ_Entry *temp = 0;
iterator.next (temp) != 0;
iterator.advance ())
{
if (temp->proxy ()->type () == WRITER)
// We've gone through all the readers.
break;
stack.push (temp);
if (!id_is_owner && (id != 0) &&
(ACE_OS::strcmp (id, temp->client_id ()) == 0))
id_is_owner = 1;
}
}
return id_is_owner;
}
int
ACE_RW_Token::is_waiting_for (const ACE_TCHAR *id)
{
ACE_TRACE ("ACE_RW_Token::is_waiting_for");
// If there is no owner, or <id> is the owner, return false.
if ((this->owner () == 0) ||
this->is_owner (id))
return 0;
// Step through each waiter looking for <id>.
ACE_TPQ_Iterator iterator (waiters_);
iterator.advance ();
for (ACE_TPQ_Entry *temp = 0;
iterator.next (temp) != 0;
iterator.advance ())
{
if (temp->equal_client_id (id))
return 1;
}
return 0;
}
int
ACE_RW_Token::is_owner (const ACE_TCHAR *id)
{
ACE_TRACE ("ACE_RW_Token::is_owner");
// If there is no owner, return false.
if (this->owner () == 0)
return 0;
// A writer owns us.
if (this->owner ()->proxy ()->type () == ACE_RW_Token::WRITER)
return this->owner ()->equal_client_id (id);
// Readers own us.
// Step through each owning reader looking for <id>.
ACE_TPQ_Iterator iterator (waiters_);
for (ACE_TPQ_Entry *temp = 0;
iterator.next (temp) != 0;
iterator.advance ())
{
if (temp->proxy ()->type () != ACE_RW_Token::READER)
break;
if (temp->equal_client_id (id))
return 1;
}
return 0;
}
void
ACE_Token_Proxy::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Token_Proxy::dump");
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("ACE_Token_Proxy::dump:\n")
ACE_TEXT (" type = %d\n")
ACE_TEXT (" ignore_deadlock_ = %d\n")
ACE_TEXT (" debug_ = %d\n"),
(int) this->type (), ignore_deadlock_, debug_));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("mutex_, and waiter_\n")));
if (this->token_ != 0)
this->token_->dump ();
this->waiter_.dump ();
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("ACE_Token_Proxy::dump end.\n")));
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
const ACE_TCHAR *
ACE_Token_Proxy::client_id (void) const
{
ACE_TRACE ("ACE_Token_Proxy::client_id");
// Thread-specific.
const ACE_TPQ_Entry *temp = this->waiter_.operator->();
const ACE_TCHAR *id = temp->client_id ();
if (id == 0)
return ACE_TEXT ("ERROR NO CLIENT ID");
else
return id;
}
void
ACE_Token_Proxy::client_id (const ACE_TCHAR *client_id)
{
ACE_TRACE ("ACE_Token_Proxy::client_id");
this->waiter_->client_id (client_id);
}
const ACE_TCHAR *
ACE_Token_Proxy::owner_id (void)
{
ACE_TRACE ("ACE_Token_Proxy::owner_id");
return this->token_->owner_id ();
}
const ACE_TCHAR *
ACE_Token_Proxy::name (void) const
{
ACE_TRACE ("ACE_Token_Proxy::name");
return this->token_->name ();
}
#if defined (ACE_WIN32_VC8)
# pragma warning (push)
# pragma warning (disable:4355) /* Use of 'this' in initializer list */
#endif
ACE_Token_Proxy::ACE_Token_Proxy (void)
: token_ (0),
waiter_ (this, 0)
{
ACE_TRACE ("ACE_Token_Proxy::ACE_Token_Proxy");
}
// Notice the token_ (0). Do *not* copy the token pointer. This must
// be obtained through the token manager. Also, we don't copy any
// waiter info. A copied Proxy does *not* inherit client_id.
ACE_Token_Proxy::ACE_Token_Proxy (const ACE_Token_Proxy &)
: token_ (0),
waiter_ (this, 0)
{
ACE_TRACE ("ACE_Token_Proxy::ACE_Token_Proxy");
}
#if defined (ACE_WIN32_VC8)
# pragma warning (pop)
#endif
// @@ should I do a mutex_->release ()?
ACE_Token_Proxy::~ACE_Token_Proxy (void)
{
ACE_TRACE ("ACE_Token_Proxy::~ACE_Token_Proxy");
if (token_ != 0)
// notify token manager that we are done with it so it can
// free it if necessary
ACE_Token_Manager::instance ()->release_token (token_);
}
int
ACE_Token_Proxy::open (const ACE_TCHAR *token_name,
int ignore_deadlock,
int debug)
{
ACE_TRACE ("ACE_Token_Proxy::open");
// Store some parameters.
this->ignore_deadlock_ = ignore_deadlock;
this->debug_ = debug;
// Used in case a name was not specified.
ACE_TCHAR name[BUFSIZ];
// We must have a name.
if (token_name == 0)
{
ACE_OS::sprintf (name, ACE_TEXT ("token %lx"),
reinterpret_cast<long> (this));
token_name = name;
}
// Get or create the underlying token. The Token Manager will call
// us back to set token_.
ACE_Token_Manager::instance ()->get_token (this, token_name);
// Check for failed get or failed new.
if (this->token_ == 0)
{
errno = ENOMEM;
ACE_ERROR_RETURN ((LM_ERROR, ACE_TEXT ("Can't allocate mutex")), -1);
}
return 0;
}
int
ACE_Token_Proxy::acquire (int notify,
void (*sleep_hook)(void *),
ACE_Synch_Options &options)
{
ACE_TRACE ("ACE_Token_Proxy::acquire");
if (this->token_ == 0)
{
errno = ENOENT;
ACE_ERROR_RETURN ((LM_ERROR, ACE_TEXT ("Not open.\n")), -1);
}
// Make sure no one calls our token_acquired until we have a chance
// to sleep first! If after we call an EWOULDBLOCK
// mutex_->acquire() below, but before we enter handle_options to
// wait on the cond_var, a thread tries to give take us off the
// waiter queue and signal us, IT WILL FIRST HAVE TO ACQUIRE THIS
// cond_var.mutex (). _This_ is why we acquire it.
this->waiter_->cond_var_.mutex ().acquire ();
this->waiter_->sleep_hook (sleep_hook);
if (this->token_->acquire (this->waiter_, this->ignore_deadlock_, notify) == -1)
// acquire failed
{
switch (errno)
{
case EDEADLK :
if (!ignore_deadlock_)
{
waiter_->cond_var_.mutex ().release ();
errno = EDEADLK;
ACE_RETURN (-1);
}
// Else, fallthrough and block!
case EWOULDBLOCK :
if (this->debug_)
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("(%t) waiting for %s, owner is %s, ")
ACE_TEXT ("total waiters == %d\n"),
this->name (),
this->token_->owner_id (),
token_->no_of_waiters ()));
// no error, but would block, if error, return error (-1),
// otherwise, return whether we called the holder or not.
int return_value;
if (this->handle_options (options,
waiter_->cond_var_) == -1)
return_value = -1;
else
return_value = notify == 1;
errno = EWOULDBLOCK;
ACE_RETURN (return_value);
default :
waiter_->cond_var_.mutex ().release ();
ACE_ERROR_RETURN ((LM_ERROR,
ACE_TEXT ("%p\n"),
ACE_TEXT ("Token Proxy acquire.")),
-1);
}
}
else
// we have the token
{
if (debug_)
ACE_DEBUG ((LM_DEBUG,
ACE_TEXT ("(%t) acquired %s\n"),
this->name ()));
waiter_->cond_var_.mutex ().release ();
}
return 0;
}
int
ACE_Token_Proxy::tryacquire (void (*sleep_hook)(void *))
{
ACE_TRACE ("ACE_Token_Proxy::tryacquire");
if (this->token_ == 0)
{
errno = ENOENT;
ACE_ERROR_RETURN ((LM_ERROR,
ACE_TEXT ("Not open.\n")),
-1);
}
this->waiter_->sleep_hook (sleep_hook);
return this->token_->tryacquire (waiter_);
}
int
ACE_Token_Proxy::renew (int requeue_position,
ACE_Synch_Options &options)
{
ACE_TRACE ("ACE_Token_Proxy::renew");
if (this->token_ == 0)
{
errno = ENOENT;
ACE_ERROR_RETURN ((LM_ERROR,
ACE_TEXT ("Not open.\n")),
-1);
}
// Make sure no one calls our token_acquired until we have a chance
// to sleep first!
this->waiter_->cond_var_.mutex ().acquire ();
if (this->token_->renew (this->waiter_, requeue_position) == -1)
{
// check for error
if (errno != EWOULDBLOCK)
ACE_ERROR_RETURN ((LM_ERROR,
ACE_TEXT ("%p renew failed\n"), ACE_TEXT ("ACE_Token_Proxy")), -1);
if (this->debug_)
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("(%t) renew blocking for %s, owner is %s\n"),
this->name (),
token_->owner_id ()));
// no error, but would block, so block or return
return this->handle_options (options, waiter_->cond_var_);
}
else
// we have the token
{
if (this->debug_)
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("(%t) renewed %s\n"),
this->name ()));
waiter_->cond_var_.mutex ().release ();
return 0;
}
}
int
ACE_Token_Proxy::handle_options (ACE_Synch_Options &options,
ACE_TOKEN_CONST::COND_VAR &cv)
{
// Some operation failed with EWOULDBLOCK.
ACE_TRACE ("ACE_Token_Proxy::handle_options");
if (options[ACE_Synch_Options::USE_REACTOR] == 1)
// Asynchronous.
{
// Save/restore errno.
ACE_Errno_Guard error (errno);
cv.mutex ().release ();
ACE_RETURN (-1);
}
else
// Synchronous.
{
// Block on condition variable.
while (cv.wait ((ACE_Time_Value *) options.time_value ()) == -1)
{
// Note, this should obey whatever thread-specific
// interrupt policy is currently in place...
if (errno == EINTR)
continue;
// We come here if a timeout occurs or some serious
// ACE_Condition object error.
cv.mutex ().release ();
ACE_ERROR_RETURN ((LM_ERROR, ACE_TEXT ("condition variable wait")
ACE_TEXT (" bombed.")), -1);
}
if (this->debug_)
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("(%t) unblocking %s.\n"),
this->client_id ()));
cv.mutex ().release ();
return 0; // operation succeeded
}
}
int
ACE_Token_Proxy::release (ACE_Synch_Options &)
{
ACE_TRACE ("ACE_Token_Proxy::release");
if (this->token_ == 0)
{
errno = ENOENT;
if (debug_)
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("Must open before releasing.\n")));
ACE_RETURN (-1);
}
if (this->token_->release (waiter_) != 0)
{
// Release failed.
this->token_->remove (this->waiter_);
if (debug_)
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("(%t) %p.\n"), ACE_TEXT ("release failed")));
return -1;
}
else
{
if (this->debug_)
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("(%t) released %s, owner is %s\n"),
this->name (),
token_->owner_id ()));
return 0;
}
}
int
ACE_Token_Proxy::remove (ACE_Synch_Options &)
{
ACE_TRACE ("ACE_Token_Proxy::remove");
return 0;
}
void
ACE_Token_Proxy::sleep_hook (void)
{
ACE_TRACE ("ACE_Token_Proxy::sleep_hook");
// Somebody wants our token! (Let'em wait...)
return;
}
void
ACE_Token_Proxy::token_acquired (ACE_TPQ_Entry *e)
{
ACE_TRACE ("ACE_Token_Proxy::token_acquired");
e->cond_var_.mutex ().acquire ();
// We've been taken off the waiters list and given the token!
// This implementation signals the internal condition
// variable. Thus, if asynchronous acquires are used, this must be
// overriden to do something more useful!
e->cond_var_.signal ();
e->cond_var_.mutex ().release ();
return;
}
int
ACE_Token_Proxy::type (void) const
{
ACE_TRACE ("ACE_Token_Proxy::type");
return 0;
}
int
ACE_Token_Proxy::acquire_read (int notify,
void (*sleep_hook)(void *),
ACE_Synch_Options &options)
{
return this->acquire (notify,
sleep_hook,
options);
}
int
ACE_Token_Proxy::acquire_write (int notify,
void (*sleep_hook)(void *),
ACE_Synch_Options &options)
{
return this->acquire (notify,
sleep_hook,
options);
}
int
ACE_Token_Proxy::tryacquire_read (void (*sleep_hook)(void *))
{
return this->tryacquire (sleep_hook);
}
int
ACE_Token_Proxy::tryacquire_write (void (*sleep_hook)(void *))
{
return this->tryacquire (sleep_hook);
}
ACE_Token_Name::ACE_Token_Name (const ACE_TCHAR *token_name)
{
ACE_TRACE ("ACE_Token_Name::ACE_Token_Name");
this->name (token_name);
}
ACE_Token_Name::ACE_Token_Name (const ACE_Token_Name &rhs)
{
ACE_TRACE ("ACE_Token_Name::ACE_Token_Name");
this->name (rhs.name ());
}
ACE_Token_Name::~ACE_Token_Name ()
{
ACE_TRACE ("ACE_Token_Name::~ACE_Token_Name");
}
void
ACE_Token_Name::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_Token_Name::dump");
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("ACE_Token_Name::dump:\n")
ACE_TEXT (" token_name_ = %s\n"),
token_name_ == 0 ? ACE_TEXT ("no name") : token_name_));
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
// ************************************************************
ACE_Token_Proxy *
ACE_Local_Mutex::clone (void) const
{
ACE_Token_Proxy *temp = 0;
ACE_NEW_RETURN (temp,
ACE_Local_Mutex (token_->name (),
ignore_deadlock_,
debug_),
0);
return temp;
}
ACE_Tokens *
ACE_Local_Mutex::create_token (const ACE_TCHAR *name)
{
ACE_Tokens *temp = 0;
ACE_NEW_RETURN (temp,
ACE_Mutex_Token (name),
0);
return temp;
}
ACE_Local_Mutex::~ACE_Local_Mutex (void)
{
}
// ************************************************************
ACE_Local_RLock::~ACE_Local_RLock (void)
{
}
ACE_Tokens *
ACE_Local_RLock::create_token (const ACE_TCHAR *name)
{
ACE_Tokens *temp = 0;
ACE_NEW_RETURN (temp,
ACE_RW_Token (name),
0);
return temp;
}
int
ACE_Local_RLock::type (void) const
{
return ACE_RW_Token::READER;
}
ACE_Token_Proxy *
ACE_Local_RLock::clone (void) const
{
ACE_Token_Proxy *temp = 0;
ACE_NEW_RETURN (temp,
ACE_Local_RLock (token_->name (),
ignore_deadlock_,
debug_),
0);
return temp;
}
// ************************************************************
ACE_Local_WLock::~ACE_Local_WLock (void)
{
}
ACE_Tokens *
ACE_Local_WLock::create_token (const ACE_TCHAR *name)
{
ACE_Tokens *temp = 0;
ACE_NEW_RETURN (temp,
ACE_RW_Token (name),
0);
return temp;
}
int
ACE_Local_WLock::type (void) const
{
return ACE_RW_Token::WRITER;
}
ACE_Token_Proxy *
ACE_Local_WLock::clone (void) const
{
ACE_Token_Proxy *temp = 0;
ACE_NEW_RETURN (temp,
ACE_Local_WLock (token_->name (),
ignore_deadlock_,
debug_),
0);
return temp;
}
ACE_END_VERSIONED_NAMESPACE_DECL
#endif /* ACE_HAS_TOKENS_LIBRARY */