server/dep/ACE_wrappers/ace/Map_Manager.cpp
zerg b8d773091a [10874] Update ACE to v5.8.3
(based on zergtmn's repo commit 3a8c259)
(based on zergtmn's repo commit 946c1a8)

Signed-off-by: VladimirMangos <vladimir@getmangos.com>
2010-12-14 17:37:42 +03:00

669 lines
20 KiB
C++

// $Id: Map_Manager.cpp 91809 2010-09-17 07:20:41Z johnnyw $
#ifndef ACE_MAP_MANAGER_CPP
#define ACE_MAP_MANAGER_CPP
#include "ace/Map_Manager.h"
#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */
#include "ace/Malloc_Base.h"
#if !defined (__ACE_INLINE__)
#include "ace/Map_Manager.inl"
#endif /* __ACE_INLINE__ */
ACE_BEGIN_VERSIONED_NAMESPACE_DECL
ACE_ALLOC_HOOK_DEFINE(ACE_Map_Entry)
ACE_ALLOC_HOOK_DEFINE(ACE_Map_Manager)
ACE_ALLOC_HOOK_DEFINE(ACE_Map_Const_Iterator_Base)
ACE_ALLOC_HOOK_DEFINE(ACE_Map_Iterator_Base)
ACE_ALLOC_HOOK_DEFINE(ACE_Map_Const_Iterator)
ACE_ALLOC_HOOK_DEFINE(ACE_Map_Iterator)
ACE_ALLOC_HOOK_DEFINE(ACE_Map_Reverse_Iterator)
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::open (size_t size,
ACE_Allocator *alloc)
{
ACE_WRITE_GUARD_RETURN (ACE_LOCK, ace_mon, this->lock_, -1);
// Close old map (if any).
this->close_i ();
// Use the user specified allocator or the default singleton one.
if (alloc == 0)
alloc = ACE_Allocator::instance ();
this->allocator_ = alloc;
// This assertion is here to help track a situation that shouldn't
// happen.
ACE_ASSERT (size != 0);
// Active_Map_Manager depends on the <slot_index_> being of fixed
// size. It cannot be size_t because size_t is 64-bits on 64-bit
// platform and 32-bits on 32-bit platforms. Size of the <slot_index_>
// has to be consistent across platforms. ACE_UIN32 is chosen as
// ACE_UIN32_MAX is big enough. The assert is to ensure that the user
// doesn't open the ACE_Map_Manager with a bigger size than we can
// handle.
ACE_ASSERT (size <= ACE_UINT32_MAX);
// Resize from 0 to <size>. Note that this will also set up the
// circular free list.
return this->resize_i ((ACE_UINT32) size);
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::close_i (void)
{
// Free entries.
this->free_search_structure ();
// Reset sizes.
this->total_size_ = 0;
this->cur_size_ = 0;
// Reset circular free list.
this->free_list_.next (this->free_list_id ());
this->free_list_.prev (this->free_list_id ());
// Reset circular occupied list.
this->occupied_list_.next (this->occupied_list_id ());
this->occupied_list_.prev (this->occupied_list_id ());
return 0;
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::bind_i (const EXT_ID &ext_id,
const INT_ID &int_id)
{
// Try to find the key.
ACE_UINT32 slot = 0;
int result = this->find_and_return_index (ext_id,
slot);
if (result == 0)
// We found the key. Nothing to change.
return 1;
else
// We didn't find the key.
return this->shared_bind (ext_id,
int_id);
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::next_free (ACE_UINT32 &free_slot)
{
// Look in the free list for an empty slot.
free_slot = this->free_list_.next ();
// If we do find a free slot, return successfully.
if (free_slot != this->free_list_id ())
return 0;
#if defined (ACE_HAS_LAZY_MAP_MANAGER)
// Move any free slots from occupied list to free list.
this->move_all_free_slots_from_occupied_list ();
// Try again in case we found any free slots in the occupied list.
free_slot = this->free_list_.next ();
// If we do find a free slot, return successfully.
if (free_slot != this->free_list_id ())
return 0;
#endif /* ACE_HAS_LAZY_MAP_MANAGER */
// Resize the map.
int result = this->resize_i (this->new_size ());
// Check for errors.
if (result == 0)
// New free slot.
free_slot = this->free_list_.next ();
return result;
}
#if defined (ACE_HAS_LAZY_MAP_MANAGER)
template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::move_all_free_slots_from_occupied_list (void)
{
//
// In the case of lazy map managers, the movement of free slots from
// the occupied list to the free list is delayed until we run out of
// free slots in the free list.
//
// Go through the entire occupied list, moving free slots to the
// free list. Note that all free slots in the occupied list are
// moved in this loop.
for (ACE_UINT32 i = this->occupied_list_.next ();
i != this->occupied_list_id ();
)
{
//
// Note the trick used here: Information about the current slot
// is first noted; <i> then moves to the next occupied slot;
// only after this is the slot (potentially) moved from the
// occupied list to the free list. This order of things, i.e.,
// moving <i> before moving the free slot is necessary,
// otherwise we'll forget which our next occupied slot is.
//
// Note information about current slot.
ACE_Map_Entry<EXT_ID, INT_ID> &current_slot = this->search_structure_[i];
ACE_UINT32 position_of_current_slot = i;
// Move <i> to next occupied slot.
i = this->search_structure_[i].next ();
// If current slot is free
if (current_slot.free_)
{
// Reset free flag to zero before moving to free list.
current_slot.free_ = false;
// Move from occupied list to free list.
this->move_from_occupied_list_to_free_list (position_of_current_slot);
}
}
}
#endif /* ACE_HAS_LAZY_MAP_MANAGER */
template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::shared_move (ACE_UINT32 slot,
ACE_Map_Entry<EXT_ID, INT_ID> &current_list,
ACE_UINT32 current_list_id,
ACE_Map_Entry<EXT_ID, INT_ID> &new_list,
ACE_UINT32 new_list_id)
{
// Grab the entry.
ENTRY &entry = this->search_structure_[slot];
// Remove from current list.
// Fix the entry before us.
ACE_UINT32 current_list_prev = entry.prev ();
if (current_list_prev == current_list_id)
current_list.next (entry.next ());
else
this->search_structure_[current_list_prev].next (entry.next ());
// Fix the entry after us.
ACE_UINT32 current_list_next = entry.next ();
if (current_list_next == current_list_id)
current_list.prev (entry.prev ());
else
this->search_structure_[current_list_next].prev (entry.prev ());
// Add to new list.
// Fix us.
ACE_UINT32 new_list_next = new_list.next ();
entry.next (new_list_next);
entry.prev (new_list_id);
// Fix entry before us.
new_list.next (slot);
// Fix entry after us.
if (new_list_next == new_list_id)
new_list.prev (slot);
else
this->search_structure_[new_list_next].prev (slot);
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::shared_bind (const EXT_ID &ext_id,
const INT_ID &int_id)
{
// This function assumes that the find() has already been done, and
// therefore, simply adds to the map.
// Find an empty slot.
ACE_UINT32 slot = 0;
int result = this->next_free (slot);
if (result == 0)
{
// Copy key and value.
this->search_structure_[slot].int_id_ = int_id;
this->search_structure_[slot].ext_id_ = ext_id;
// Move from free list to occupied list
this->move_from_free_list_to_occupied_list (slot);
// Update the current size.
++this->cur_size_;
}
return result;
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::rebind_i (const EXT_ID &ext_id,
const INT_ID &int_id,
EXT_ID &old_ext_id,
INT_ID &old_int_id)
{
// First try to find the key.
ACE_UINT32 slot = 0;
int result = this->find_and_return_index (ext_id,
slot);
if (result == 0)
{
// We found it, so make copies of the old entries and rebind
// current entries.
ENTRY &ss = this->search_structure_[slot];
old_ext_id = ss.ext_id_;
old_int_id = ss.int_id_;
ss.ext_id_ = ext_id;
ss.int_id_ = int_id;
// Sync changed entry.
this->allocator_->sync (&ss, sizeof ss);
return 1;
}
else
// We didn't find it, so let's add it.
return this->shared_bind (ext_id,
int_id);
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::rebind_i (const EXT_ID &ext_id,
const INT_ID &int_id,
INT_ID &old_int_id)
{
// First try to find the key.
ACE_UINT32 slot = 0;
int result = this->find_and_return_index (ext_id,
slot);
if (result == 0)
{
// We found it, so make copies of the old entries and rebind
// current entries.
ENTRY &ss = this->search_structure_[slot];
old_int_id = ss.int_id_;
ss.ext_id_ = ext_id;
ss.int_id_ = int_id;
// Sync changed entry.
this->allocator_->sync (&ss, sizeof ss);
return 1;
}
else
// We didn't find it, so let's add it.
return this->shared_bind (ext_id,
int_id);
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::rebind_i (const EXT_ID &ext_id,
const INT_ID &int_id)
{
// First try to find the key.
ACE_UINT32 slot = 0;
int result = this->find_and_return_index (ext_id,
slot);
if (result == 0)
{
// We found it, so rebind current entries.
ENTRY &ss = this->search_structure_[slot];
ss.ext_id_ = ext_id;
ss.int_id_ = int_id;
// Sync changed entry.
this->allocator_->sync (&ss, sizeof ss);
return 1;
}
else
// We didn't find it, so let's add it.
return this->shared_bind (ext_id,
int_id);
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::trybind_i (const EXT_ID &ext_id,
INT_ID &int_id)
{
// Try to find the key.
ACE_UINT32 slot = 0;
int result = this->find_and_return_index (ext_id,
slot);
if (result == 0)
{
// Key was found. Make a copy of value, but *don't* update
// anything in the map!
int_id = this->search_structure_[slot].int_id_;
return 1;
}
else
// We didn't find it, so let's bind it!
return this->bind_i (ext_id,
int_id);
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::find_and_return_index (const EXT_ID &ext_id,
ACE_UINT32 &slot)
{
// Go through the entire occupied list looking for the key.
for (ACE_UINT32 i = this->occupied_list_.next ();
i != this->occupied_list_id ();
i = this->search_structure_[i].next ())
{
#if defined (ACE_HAS_LAZY_MAP_MANAGER)
if (this->search_structure_[i].free_)
continue;
#endif /* ACE_HAS_LAZY_MAP_MANAGER */
if (this->equal (this->search_structure_[i].ext_id_,
ext_id))
{
// If found, return slot.
slot = i;
return 0;
}
}
// Key was not found.
return -1;
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::unbind_all (void)
{
// Go through the entire occupied list.
for (ACE_UINT32 i = this->occupied_list_.next ();
i != this->occupied_list_id ();
)
{
//
// Note the trick used here: Information about the current slot
// is first noted; <i> then moves to the next occupied slot;
// only after this is the slot (potentially) moved from the
// occupied list to the free list. This order of things, i.e.,
// moving <i> before moving the free slot is necessary,
// otherwise we'll forget which our next occupied slot is.
//
// Note information about current slot.
ACE_Map_Entry<EXT_ID, INT_ID> &current_slot =
this->search_structure_[i];
ACE_UINT32 position_of_current_slot = i;
// Move <i> to next occupied slot.
i = current_slot.next ();
#if defined (ACE_HAS_LAZY_MAP_MANAGER)
if (current_slot.free_)
continue;
#endif /* ACE_HAS_LAZY_MAP_MANAGER */
this->unbind_slot (position_of_current_slot);
}
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::find_i (const EXT_ID &ext_id,
INT_ID &int_id)
{
// Try to find the key.
ACE_UINT32 slot = 0;
int result = this->find_and_return_index (ext_id,
slot);
if (result == 0)
// Key was found. Make a copy of value.
int_id = this->search_structure_[slot].int_id_;
return result;
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::unbind_and_return_index (const EXT_ID &ext_id,
ACE_UINT32 &slot)
{
// Try to find the key.
int result = this->find_and_return_index (ext_id,
slot);
if (result == 0)
this->unbind_slot (slot);
return result;
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::unbind_slot (ACE_UINT32 slot)
{
#if defined (ACE_HAS_LAZY_MAP_MANAGER)
//
// In the case of lazy map managers, the movement of free slots
// from the occupied list to the free list is delayed until we
// run out of free slots in the free list.
//
this->search_structure_[slot].free_ = true;
#else
// Move from occupied list to free list.
this->move_from_occupied_list_to_free_list (slot);
#endif /* ACE_HAS_LAZY_MAP_MANAGER */
// Update the current size.
--this->cur_size_;
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::unbind_i (const EXT_ID &ext_id,
INT_ID &int_id)
{
// Unbind the entry.
ACE_UINT32 slot = 0;
int result = this->unbind_and_return_index (ext_id,
slot);
if (result == 0)
// If found, copy the value.
int_id = this->search_structure_[slot].int_id_;
return result;
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> int
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::resize_i (ACE_UINT32 new_size)
{
ACE_UINT32 i;
ENTRY *temp = 0;
// Allocate new memory.
ACE_ALLOCATOR_RETURN (temp,
(ENTRY *) this->allocator_->malloc (new_size * sizeof (ENTRY)),
-1);
// Copy over the occupied entires.
for (i = this->occupied_list_.next ();
i != this->occupied_list_id ();
i = this->search_structure_[i].next ())
// Call the copy constructor using operator placement new.
new (&(temp[i])) ENTRY (this->search_structure_[i]);
// Copy over the free entires.
for (i = this->free_list_.next ();
i != this->free_list_id ();
i = this->search_structure_[i].next ())
// Call the copy constructor using operator placement new.
new (&(temp[i])) ENTRY (this->search_structure_[i]);
// Construct the new elements.
for (i = this->total_size_; i < new_size; i++)
{
// Call the constructor for each element in the array using
// operator placement new. Note that this requires a default
// constructor for <EXT_ID> and <INT_ID>.
new (&(temp[i])) ENTRY;
temp[i].next (i + 1);
temp[i].prev (i - 1);
#if defined (ACE_HAS_LAZY_MAP_MANAGER)
// Even though this slot is initially free, we need the <free_>
// flag to be zero so that we don't have to set it when the slot
// is moved to the occupied list. In addition, this flag has no
// meaning while this slot is in the free list.
temp[i].free_ = false;
#endif /* ACE_HAS_LAZY_MAP_MANAGER */
}
// Add new entries to the free list.
this->free_list_.next (this->total_size_);
this->free_list_.prev (new_size - 1);
temp[new_size - 1].next (this->free_list_id ());
temp[this->total_size_].prev (this->free_list_id ());
// Remove/free old elements, update the new totoal size.
this->free_search_structure ();
this->total_size_ = new_size;
// Start using new elements.
this->search_structure_ = temp;
return 0;
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> ACE_UINT32
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::new_size (void)
{
// Calculate the new size.
ACE_UINT32 current_size = this->total_size_;
if (current_size < MAX_EXPONENTIAL)
// Exponentially increase if we haven't reached MAX_EXPONENTIAL.
current_size *= 2;
else
// Linear increase if we have reached MAX_EXPONENTIAL.
current_size += LINEAR_INCREASE;
// This should be the new size.
return current_size;
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::free_search_structure (void)
{
// Free up the structure.
if (this->search_structure_ != 0)
{
for (ACE_UINT32 i = 0; i < this->total_size_; i++)
// Explicitly call the destructor.
{
ENTRY *ss = &this->search_structure_[i];
// The "if" second argument results in a no-op instead of
// deallocation.
ACE_DES_FREE_TEMPLATE2 (ss, ACE_NOOP,
ACE_Map_Entry, EXT_ID, INT_ID);
}
// Actually free the memory.
this->allocator_->free (this->search_structure_);
this->search_structure_ = 0;
}
}
template <class EXT_ID, class INT_ID> void
ACE_Map_Entry<EXT_ID, INT_ID>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("next_ = %d"), this->next_));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("prev_ = %d"), this->prev_));
#if defined (ACE_HAS_LAZY_MAP_MANAGER)
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("free_ = %d"), this->free_));
#endif /* ACE_HAS_LAZY_MAP_MANAGER */
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Manager<EXT_ID, INT_ID, ACE_LOCK>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("total_size_ = %d"), this->total_size_));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("\ncur_size_ = %d"), this->cur_size_));
this->allocator_->dump ();
this->lock_.dump ();
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Iterator_Base<EXT_ID, INT_ID, ACE_LOCK>::dump_i (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("next_ = %d"), this->next_));
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Const_Iterator_Base<EXT_ID, INT_ID, ACE_LOCK>::dump_i (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("next_ = %d"), this->next_));
ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Iterator<EXT_ID, INT_ID, ACE_LOCK>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
this->dump_i ();
#endif /* ACE_HAS_DUMP */
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Const_Iterator<EXT_ID, INT_ID, ACE_LOCK>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
this->dump_i ();
#endif /* ACE_HAS_DUMP */
}
template <class EXT_ID, class INT_ID, class ACE_LOCK> void
ACE_Map_Reverse_Iterator<EXT_ID, INT_ID, ACE_LOCK>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
this->dump_i ();
#endif /* ACE_HAS_DUMP */
}
ACE_END_VERSIONED_NAMESPACE_DECL
#endif /* ACE_MAP_MANAGER_CPP */