server/dep/ACE_wrappers/ace/SOCK_SEQPACK_Association.cpp
Neo2003 23c920ca4b [10643] Update the ACE part we use to 5.8.2
Signed-off-by: Neo2003 <Neo.2003@Hotmail.fr>
2010-10-25 20:36:51 +02:00

348 lines
11 KiB
C++

// $Id: SOCK_SEQPACK_Association.cpp 91286 2010-08-05 09:04:31Z johnnyw $
#include "ace/SOCK_SEQPACK_Association.h"
#include "ace/Auto_Ptr.h"
#include "ace/Log_Msg.h"
#include "ace/OS_Memory.h"
#include "ace/OS_NS_string.h"
#if !defined (__ACE_INLINE__)
#include "ace/SOCK_SEQPACK_Association.inl"
#endif /* __ACE_INLINE__ */
ACE_BEGIN_VERSIONED_NAMESPACE_DECL
ACE_ALLOC_HOOK_DEFINE(ACE_SOCK_SEQPACK_Association)
void
ACE_SOCK_SEQPACK_Association::dump (void) const
{
#if defined (ACE_HAS_DUMP)
ACE_TRACE ("ACE_SOCK_SEQPACK_Association::dump");
#endif /* ACE_HAS_DUMP */
}
int
ACE_SOCK_SEQPACK_Association::close (void)
{
#if defined (ACE_WIN32)
// We need the following call to make things work correctly on
// Win32, which requires use to do a <close_writer> before doing the
// close in order to avoid losing data. Note that we don't need to
// do this on UNIX since it doesn't have this "feature". Moreover,
// this will cause subtle problems on UNIX due to the way that
// fork() works.
this->close_writer ();
#endif /* ACE_WIN32 */
// Close down the socket.
return ACE_SOCK::close ();
}
// Developed according to the API discussed in 7.1.4 of
// draft-ietf-tsvwg-sctpsocket-09.txt to abruptly free a transport
// transport association's resources.
int
ACE_SOCK_SEQPACK_Association::abort (void)
{
//
// setsockopt() SO_LINGER configures socket to reap immediately.
// Normal close then aborts the association.
//
linger slinger;
slinger.l_onoff = 1;
slinger.l_linger = 0;
if (-1 == ACE_OS::setsockopt (this->get_handle (),
SOL_SOCKET,
SO_LINGER,
reinterpret_cast<const char *> (&slinger),
sizeof (linger)))
{
return -1;
}
return this->close ();
}
int
ACE_SOCK_SEQPACK_Association::get_local_addrs (ACE_INET_Addr *addrs, size_t &size) const
{
ACE_TRACE ("ACE_SOCK_SEQPACK_Association::get_local_addrs");
#if defined (ACE_HAS_LKSCTP)
/*
The size of ACE_INET_Addr must be large enough to hold the number of
local addresses on the machine. If the array is too small, the function
will only return the number of addresses that will fit. If the array is
too large, the 'size' parameter will be modified to indicate the number
of addrs.
We will call sctp_getladdrs() which accepts 3 parameters
1. a socket fd
2. a sctp association_id which will be ignored since we are using
tcp sockets
3. a pointer to sockaddr
lksctp/draft will allocate memory and we are responsible for freeing
it by calling sctp_freeladdrs().
*/
sockaddr_in *si = 0;
sockaddr *laddrs = 0;
int err = 0;
size_t len = 0;
#ifndef ACE_HAS_VOID_PTR_SCTP_GETLADDRS
err = sctp_getladdrs(this->get_handle(), 0, &laddrs);
#else
err = sctp_getladdrs(this->get_handle(), 0, reinterpret_cast<void**>(&laddrs));
#endif /* ACE_HAS_VOID_PTR_SCTP_GETPADDRS */
if (err > 0)
{
len = err;
// check to see if we have more addresses than we have
// space in our ACE_INET_Addr array
if (len > size)
{
// since our array is too small, we will only copy the first
// few that fit
len = size;
}
for (size_t i = 0; i < len; i++)
{
// first we cast the sockaddr to sockaddr_in
// since we only support ipv4 at this time.
si = (sockaddr_in *) (&(laddrs[i]));
// now we fillup the ace_inet_addr array
addrs[i].set_addr(si, sizeof(sockaddr_in));
addrs[i].set_type(si->sin_family);
addrs[i].set_size(sizeof(sockaddr_in));
}
}
else /* err < 0 */
{
// sctp_getladdrs will return -1 on error
return -1;
}
// indicate the num of addrs returned to the calling function
size = len;
// make sure we free the struct using the system function
sctp_freeladdrs(laddrs);
#else
/*
We will be calling ACE_OS::getsockname, which accepts (and
potentially modifies) two reference parameters:
1. a sockaddr_in* that points to a buffer
2. an int* that points to the size of this buffer
The OpenSS7 implementation of SCTP copies an array of ipv4
sockaddr_in into the buffer. Then, if the size of the buffer is
greater than the size used, the size parameter is reduced
accordingly.
*/
// The array of sockaddr_in will be stored in an ACE_Auto_Array_Ptr,
// which causes dynamically-allocated memory to be released as soon
// as the ACE_Auto_Array_Ptr goes out of scope.
ACE_Auto_Array_Ptr<sockaddr_in> addr_structs;
// Allocate memory for this array. Return -1 if the memory cannot
// be allocated. (This activity requires a temporary variable---a
// bare sockaddr_in* --- because ACE_NEW_RETURN cannot act directory on
// an ACE_Auto_Array_Ptr.)
{
sockaddr_in *addr_structs_bootstrap = 0;
ACE_NEW_RETURN (addr_structs_bootstrap, sockaddr_in[size], -1);
addr_structs.reset(addr_structs_bootstrap);
}
// Physical size of this array is its logical size multiplied by
// the physical size of one of its elements.
size_t physical_size = size * sizeof(sockaddr_in);
/* Clear the array */
ACE_OS::memset(addr_structs.get(),
0,
physical_size);
/*
** Populate the array with real values from the getsockname system
** call. addr_structs is modified, and name_size is modified to contain
** the number of bytes written to addr_structs.
** Use name_size to get the data types right across the call.
*/
int name_size = static_cast<int> (physical_size);
if (ACE_OS::getsockname (this->get_handle (),
reinterpret_cast<sockaddr *> (addr_structs.get()),
&name_size) == -1)
return -1;
/* Calculate the NEW physical size of the array */
name_size /= sizeof (sockaddr_in);
size = static_cast<size_t> (name_size);
/* Copy each sockaddr_in to the address structure of an ACE_Addr from
the passed-in array */
const int addrlen (static_cast<int> (sizeof (sockaddr_in)));
for (int i = 0; i < name_size; ++i)
{
addrs[i].set_addr (&(addr_structs[i]), addrlen);
addrs[i].set_type (addr_structs[i].sin_family);
addrs[i].set_size (addrlen);
}
#endif /* ACE_HAS_LKSCTP */
return 0;
}
int
ACE_SOCK_SEQPACK_Association::get_remote_addrs (ACE_INET_Addr *addrs, size_t &size) const
{
ACE_TRACE ("ACE_SOCK_SEQPACK_Association::get_remote_addrs");
#if defined (ACE_HAS_LKSCTP)
/*
The size of ACE_INET_Addr must be large enough to hold the number of
remotes addresses in the association. If the array is too small, the
function will only return the number of addresses that will fit. If the
array is too large, the 'size' parameter will be modified to indicate
the number of addrs.
We will call sctp_getpaddrs() which accepts 3 parameters
1. a socket fd
2. a sctp association_id which will be ignored since we are using
tcp sockets
3. a pointer to a sockaddr
lksctp/draft will allocate memory and we are responsible for freeing
it by calling sctp_freepaddrs().
*/
sockaddr_in *si = 0;
sockaddr *paddrs = 0;
int err = 0;
size_t len = 0;
#ifndef ACE_HAS_VOID_PTR_SCTP_GETPADDRS
err = sctp_getpaddrs(this->get_handle(), 0, &paddrs);
#else
err = sctp_getpaddrs(this->get_handle(), 0, reinterpret_cast<void**>(&paddrs));
#endif /* ACE_HAS_VOID_PTR_SCTP_GETPADDRS */
if (err > 0)
{
len = err;
// check to see if we have more addresses than we have
// space in our ACE_INET_Addr array
if (len > size)
{
// since our array is too small, we will only copy the first
// few that fit
len = size;
}
for (size_t i = 0; i < len; i++)
{
// first we cast the sockaddr to sockaddr_in
// since we only support ipv4 at this time.
si = (sockaddr_in *) (&(paddrs[i]));
// now we fillup the ace_inet_addr array
addrs[i].set_addr(si, sizeof(sockaddr_in));
addrs[i].set_type(si->sin_family);
addrs[i].set_size(sizeof(sockaddr_in));
}
}
else /* err < 0 */
{
// sctp_getpaddrs will return -1 on error
return -1;
}
// indicate the num of addrs returned to the calling function
size = len;
// make sure we free the struct using the system function
sctp_freepaddrs(paddrs);
#else
/*
We will be calling ACE_OS::getpeername, which accepts (and
potentially modifies) two reference parameters:
1. a sockaddr_in* that points to a buffer
2. an int* that points to the size of this buffer
The OpenSS7 implementation of SCTP copies an array of ipv4
sockaddr_in into the buffer. Then, if the size of the buffer is
greater than the size used, the size parameter is reduced
accordingly.
*/
// The array of sockaddr_in will be stored in an ACE_Auto_Array_Ptr,
// which causes dynamically-allocated memory to be released as soon
// as the ACE_Auto_Array_Ptr goes out of scope.
ACE_Auto_Array_Ptr<sockaddr_in> addr_structs;
// Allocate memory for this array. Return -1 if the memory cannot
// be allocated. (This activity requires a temporary variable---a
// bare sockaddr_in* --- because ACE_NEW_RETURN cannot act directory on
// an ACE_Auto_Array_Ptr.)
{
sockaddr_in *addr_structs_bootstrap = 0;
ACE_NEW_RETURN (addr_structs_bootstrap, sockaddr_in[size], -1);
addr_structs.reset(addr_structs_bootstrap);
}
// Physical size of this array is its logical size multiplied by
// the physical size of one of its elements.
size_t physical_size = size * sizeof(sockaddr_in);
/* Clear the array */
ACE_OS::memset(addr_structs.get(),
0,
physical_size);
/*
** Populate the array with real values from the getpeername system
** call. addr_structs is modified, and name_size is modified to contain
** the number of bytes written to addr_structs.
** Use name_size to get the data types right across the call.
*/
int name_size = static_cast<int> (physical_size);
if (ACE_OS::getpeername (this->get_handle (),
reinterpret_cast<sockaddr *> (addr_structs.get()),
&name_size) == -1)
return -1;
/* Calculate the NEW physical size of the array */
name_size /= sizeof (sockaddr_in);
size = static_cast<size_t> (name_size);
/* Copy each sockaddr_in to the address structure of an ACE_Addr from
the passed-in array */
const int addrlen (static_cast<int> (sizeof (sockaddr_in)));
for (int i = 0; i < name_size; ++i)
{
addrs[i].set_addr (&(addr_structs[i]), addrlen);
addrs[i].set_type (addr_structs[i].sin_family);
addrs[i].set_size (addrlen);
}
#endif /* ACE_HAS_LKSCTP */
return 0;
}
ACE_END_VERSIONED_NAMESPACE_DECL