server/dep/acelite/ace/Time_Value.cpp
2020-02-17 09:23:51 +00:00

357 lines
9.9 KiB
C++

// $Id: Time_Value.cpp 96061 2012-08-16 09:36:07Z mcorino $
#include "ace/Time_Value.h"
#if !defined (__ACE_INLINE__)
#include "ace/Time_Value.inl"
#endif /* __ACE_INLINE__ */
#include "ace/Numeric_Limits.h"
#include "ace/If_Then_Else.h"
#include "ace/OS_NS_math.h"
#include "ace/Time_Policy.h"
#ifdef ACE_HAS_CPP98_IOSTREAMS
#include <ostream>
#include <iomanip>
#endif /* ACE_HAS_CPP98_IOSTREAMS */
ACE_BEGIN_VERSIONED_NAMESPACE_DECL
/// Static constant representing `zero-time'.
/// Note: this object requires static construction.
const ACE_Time_Value ACE_Time_Value::zero;
/// Constant for maximum time representable. Note that this time
/// is not intended for use with select () or other calls that may
/// have *their own* implementation-specific maximum time representations.
/// Its primary use is in time computations such as those used by the
/// dynamic subpriority strategies in the ACE_Dynamic_Message_Queue class.
/// Note: this object requires static construction.
const ACE_Time_Value ACE_Time_Value::max_time (
ACE_Numeric_Limits<time_t>::max (),
ACE_ONE_SECOND_IN_USECS - 1);
ACE_ALLOC_HOOK_DEFINE (ACE_Time_Value)
ACE_Time_Value::~ACE_Time_Value()
{}
/// Increment microseconds (the only reason this is here is to allow
/// the use of ACE_Atomic_Op with ACE_Time_Value).
ACE_Time_Value
ACE_Time_Value::operator ++ (int)
{
// ACE_OS_TRACE ("ACE_Time_Value::operator ++ (int)");
ACE_Time_Value tv (*this);
++*this;
return tv;
}
ACE_Time_Value &
ACE_Time_Value::operator ++ (void)
{
// ACE_OS_TRACE ("ACE_Time_Value::operator ++ (void)");
this->usec (this->usec () + 1);
this->normalize ();
return *this;
}
/// Decrement microseconds (the only reason this is here is / to allow
/// the use of ACE_Atomic_Op with ACE_Time_Value).
ACE_Time_Value
ACE_Time_Value::operator -- (int)
{
// ACE_OS_TRACE ("ACE_Time_Value::operator -- (int)");
ACE_Time_Value tv (*this);
--*this;
return tv;
}
ACE_Time_Value &
ACE_Time_Value::operator -- (void)
{
// ACE_OS_TRACE ("ACE_Time_Value::operator -- (void)");
this->usec (this->usec () - 1);
this->normalize ();
return *this;
}
#if defined (ACE_WIN32)
/// Static constant to remove time skew between FILETIME and POSIX
/// time. POSIX and Win32 use different epochs (Jan. 1, 1970 v.s.
/// Jan. 1, 1601). The following constant defines the difference
/// in 100ns ticks.
///
/// In the beginning (Jan. 1, 1601), there was no time and no computer.
/// And Bill said: "Let there be time," and there was time....
const DWORDLONG ACE_Time_Value::FILETIME_to_timval_skew =
ACE_INT64_LITERAL (0x19db1ded53e8000);
/// Initializes the ACE_Time_Value object from a Win32 FILETIME
ACE_Time_Value::ACE_Time_Value (const FILETIME &file_time)
{
// // ACE_OS_TRACE ("ACE_Time_Value::ACE_Time_Value");
this->set (file_time);
}
void ACE_Time_Value::set (const FILETIME &file_time)
{
// Initializes the ACE_Time_Value object from a Win32 FILETIME
// Don't use a struct initializer, gcc don't like it.
ULARGE_INTEGER _100ns;
_100ns.LowPart = file_time.dwLowDateTime;
_100ns.HighPart = file_time.dwHighDateTime;
_100ns.QuadPart -= ACE_Time_Value::FILETIME_to_timval_skew;
// Convert 100ns units to seconds;
this->tv_.tv_sec = (time_t) (_100ns.QuadPart / (10000 * 1000));
// Convert remainder to microseconds;
this->tv_.tv_usec = (suseconds_t) ((_100ns.QuadPart % (10000 * 1000)) / 10);
this->normalize ();
}
/// Returns the value of the object as a Win32 FILETIME.
ACE_Time_Value::operator FILETIME () const
{
FILETIME file_time;
// ACE_OS_TRACE ("ACE_Time_Value::operator FILETIME");
ULARGE_INTEGER _100ns;
_100ns.QuadPart = (((DWORDLONG) this->tv_.tv_sec * (10000 * 1000) +
this->tv_.tv_usec * 10) +
ACE_Time_Value::FILETIME_to_timval_skew);
file_time.dwLowDateTime = _100ns.LowPart;
file_time.dwHighDateTime = _100ns.HighPart;
return file_time;
}
#endif /* ACE_WIN32 */
ACE_Time_Value
ACE_Time_Value::now () const
{
ACE_System_Time_Policy systp;
return systp ();
}
ACE_Time_Value
ACE_Time_Value::to_relative_time () const
{
ACE_System_Time_Policy systp;
return (*this) - systp ();
}
ACE_Time_Value
ACE_Time_Value::to_absolute_time () const
{
ACE_System_Time_Policy systp;
return (*this) + systp ();
}
ACE_Time_Value *
ACE_Time_Value::duplicate () const
{
ACE_Time_Value * tmp = 0;
ACE_NEW_RETURN (tmp, ACE_Time_Value (*this), 0);
return tmp;
}
void
ACE_Time_Value::dump (void) const
{
}
void
ACE_Time_Value::normalize (bool saturate)
{
// // ACE_OS_TRACE ("ACE_Time_Value::normalize");
// From Hans Rohnert...
if (this->tv_.tv_usec >= ACE_ONE_SECOND_IN_USECS)
{
/*! \todo This loop needs some optimization.
*/
if (!saturate) // keep the conditionnal expression outside the while loop to minimize performance cost
do
{
++this->tv_.tv_sec;
this->tv_.tv_usec -= ACE_ONE_SECOND_IN_USECS;
}
while (this->tv_.tv_usec >= ACE_ONE_SECOND_IN_USECS);
else
do
if (this->tv_.tv_sec < ACE_Numeric_Limits<time_t>::max())
{
++this->tv_.tv_sec;
this->tv_.tv_usec -= ACE_ONE_SECOND_IN_USECS;
}
else
this->tv_.tv_usec = ACE_ONE_SECOND_IN_USECS - 1;
while (this->tv_.tv_usec >= ACE_ONE_SECOND_IN_USECS);
}
else if (this->tv_.tv_usec <= -ACE_ONE_SECOND_IN_USECS)
{
/*! \todo This loop needs some optimization.
*/
if (!saturate)
do
{
--this->tv_.tv_sec;
this->tv_.tv_usec += ACE_ONE_SECOND_IN_USECS;
}
while (this->tv_.tv_usec <= -ACE_ONE_SECOND_IN_USECS);
else
do
if (this->tv_.tv_sec > ACE_Numeric_Limits<time_t>::min())
{
--this->tv_.tv_sec;
this->tv_.tv_usec += ACE_ONE_SECOND_IN_USECS;
}
else
this->tv_.tv_usec = -ACE_ONE_SECOND_IN_USECS + 1;
while (this->tv_.tv_usec <= -ACE_ONE_SECOND_IN_USECS);
}
if (this->tv_.tv_sec >= 1 && this->tv_.tv_usec < 0)
{
--this->tv_.tv_sec;
this->tv_.tv_usec += ACE_ONE_SECOND_IN_USECS;
}
// tv_sec in qnxnto is unsigned
#if !defined ( __QNX__)
else if (this->tv_.tv_sec < 0 && this->tv_.tv_usec > 0)
{
++this->tv_.tv_sec;
this->tv_.tv_usec -= ACE_ONE_SECOND_IN_USECS;
}
#endif /* __QNX__ */
}
ACE_Time_Value &
ACE_Time_Value::operator *= (double d)
{
// To work around the lack of precision of a long double to contain
// a 64-bits time_t + 6 digits after the decimal point for the usec part,
// we perform the multiplication of the 2 timeval parts separately.
//
// This extra precision step is adding a cost when transfering the
// seconds resulting from the usec multiplication. This operation
// correspond to the normalization process performed in normalize()
// but we must absolutly do it here because the usec multiplication
// result value could exceed what can be stored in a suseconds_t
// type variable.
//
// Since this is a costly operation, we try to detect as soon as
// possible if we are having a saturation in order to abort the rest
// of the computation.
typedef ACE::If_Then_Else<(sizeof (double) > sizeof (time_t)),
double,
long double>::result_type float_type;
float_type sec_total = static_cast<float_type> (this->sec());
sec_total *= d;
// shall we saturate the result?
static const float_type max_int =
ACE_Numeric_Limits<time_t>::max() + 0.999999;
static const float_type min_int =
ACE_Numeric_Limits<time_t>::min() - 0.999999;
if (sec_total > max_int)
{
this->set(ACE_Numeric_Limits<time_t>::max(), ACE_ONE_SECOND_IN_USECS-1);
}
else if (sec_total < min_int)
{
this->set(ACE_Numeric_Limits<time_t>::min(), -ACE_ONE_SECOND_IN_USECS+1);
}
else
{
time_t time_sec = static_cast<time_t> (sec_total);
float_type usec_total = this->usec();
usec_total *= d;
// adding usec resulting from tv_sec mult
usec_total += (sec_total-time_sec) * ACE_ONE_SECOND_IN_USECS;
// extract seconds component of the usec mult
sec_total = usec_total / ACE_ONE_SECOND_IN_USECS;
// keep remaining usec
if (sec_total > 0)
{
usec_total = (sec_total - ACE_OS::floor(sec_total));
}
else
{
usec_total = (sec_total - ACE_OS::ceil(sec_total));
}
sec_total -= usec_total;
usec_total *= ACE_ONE_SECOND_IN_USECS;
// add the seconds component of the usec mult with the tv_sec mult prod.
sec_total += time_sec;
// recheck for saturation
if (sec_total > max_int)
{
this->set (ACE_Numeric_Limits<time_t>::max(), ACE_ONE_SECOND_IN_USECS - 1);
}
else if (sec_total < min_int)
{
this->set (ACE_Numeric_Limits<time_t>::min(), -ACE_ONE_SECOND_IN_USECS + 1);
}
else
{
time_sec = static_cast<time_t> (sec_total);
suseconds_t time_usec = static_cast<suseconds_t> (usec_total);
// round up the result to save the last usec
if (time_usec > 0 && (usec_total - time_usec) >= 0.5)
{
++time_usec;
}
else if (time_usec < 0 && (usec_total - time_usec) <= -0.5)
{
--time_usec;
}
this->set (time_sec, time_usec);
}
}
return *this;
}
#ifdef ACE_HAS_CPP98_IOSTREAMS
ostream &operator<<(ostream &o, const ACE_Time_Value &v)
{
char oldFiller = o.fill ();
o.fill ('0');
const timeval *tv = v;
if (tv->tv_sec)
{
o << tv->tv_sec;
if (tv->tv_usec)
o << '.' << std::setw (6) << ACE_STD_NAMESPACE::abs (tv->tv_usec);
}
else if (tv->tv_usec < 0)
o << "-0." << std::setw (6) << - tv->tv_usec;
else
{
o << '0';
if (tv->tv_usec > 0)
o << '.'<< std::setw (6) << tv->tv_usec;
}
o.fill (oldFiller);
return o;
}
#endif /* ACE_HAS_CPP98_IOSTREAMS */
ACE_END_VERSIONED_NAMESPACE_DECL