server/dep/include/g3dlite/G3D/Matrix3.h
Lynx3d ae3ad10bcf [10097] Update G3D up to v8.0b4
+ Got rid of zip lib requirement in G3D...
  Still can re-enable code by defining _HAVE_ZIP...

+ Remove silly X11 lib dependency from G3D
  Code doesn't seem to do anything yet anyway, and even if, we don't want it :p

+ Fix another weird G3D build problem...

+ Remove some __asm usage in g3d, which is not available on Win64
  My editor also decided to remove a ton of trailing white spaces...tss...

+ Reapply G3D fixes for 64bit VC

+ not use SSE specific header when SSE not enabled in *nix

+ Updated project files

+ New vmap_assembler VC90/VC80 Project

+ vmap assembler binaries updates

NOTE: Old vmap fikes expected work (as tests show) with new library version.
      But better use new generated versions. Its different in small parts to bad or good...

(based on Lynx3d's repo commit 44798d3)

Signed-off-by: VladimirMangos <vladimir@getmangos.com>
2010-06-23 06:45:25 +04:00

366 lines
12 KiB
C++
Raw Blame History

/**
@file Matrix3.h
3x3 matrix class
@maintainer Morgan McGuire, http://graphics.cs.williams.edu
@cite Portions based on Dave Eberly's Magic Software Library at <A HREF="http://www.magic-software.com">http://www.magic-software.com</A>
@created 2001-06-02
@edited 2006-04-05
*/
#ifndef G3D_Matrix3_h
#define G3D_Matrix3_h
#include "G3D/platform.h"
#include "G3D/Vector3.h"
#include "G3D/Vector4.h"
#include "G3D/debugAssert.h"
#include <cstring>
namespace G3D {
#ifdef _MSC_VER
// Turn off "conditional expression is constant" warning; MSVC generates this
// for debug assertions in inlined methods.
# pragma warning (disable : 4127)
#endif
class Any;
/**
3x3 matrix. Do not subclass.
*/
class Matrix3 {
private:
float elt[3][3];
// Hidden operators
bool operator<(const Matrix3&) const;
bool operator>(const Matrix3&) const;
bool operator<=(const Matrix3&) const;
bool operator>=(const Matrix3&) const;
public:
Matrix3(const Any& any);
operator Any() const;
/** Initial values are undefined for performance. See also
Matrix3::zero(), Matrix3::identity(), Matrix3::fromAxisAngle, etc.*/
inline Matrix3() {}
Matrix3 (class BinaryInput& b);
Matrix3 (const float aafEntry[3][3]);
Matrix3 (const Matrix3& rkMatrix);
Matrix3 (float fEntry00, float fEntry01, float fEntry02,
float fEntry10, float fEntry11, float fEntry12,
float fEntry20, float fEntry21, float fEntry22);
bool fuzzyEq(const Matrix3& b) const;
/** Constructs a matrix from a quaternion.
@cite Graphics Gems II, p. 351--354
@cite Implementation from Watt and Watt, pg 362*/
Matrix3(const class Quat& q);
void serialize(class BinaryOutput& b) const;
void deserialize(class BinaryInput& b);
/** Returns true if column(0).cross(column(1)).dot(column(2)) > 0. */
bool isRightHanded() const;
/**
Sets all elements.
*/
void set(float fEntry00, float fEntry01, float fEntry02,
float fEntry10, float fEntry11, float fEntry12,
float fEntry20, float fEntry21, float fEntry22);
/**
* member access, allows use of construct mat[r][c]
*/
inline float* operator[] (int iRow) {
debugAssert(iRow >= 0);
debugAssert(iRow < 3);
return (float*)&elt[iRow][0];
}
inline const float* operator[] (int iRow) const {
debugAssert(iRow >= 0);
debugAssert(iRow < 3);
return (const float*)&elt[iRow][0];
}
inline operator float* () {
return (float*)&elt[0][0];
}
inline operator const float* () const{
return (const float*)&elt[0][0];
}
Vector3 column(int c) const;
const Vector3& row(int r) const;
void setColumn(int iCol, const Vector3 &vector);
void setRow(int iRow, const Vector3 &vector);
// assignment and comparison
inline Matrix3& operator= (const Matrix3& rkMatrix) {
memcpy(elt, rkMatrix.elt, 9 * sizeof(float));
return *this;
}
bool operator== (const Matrix3& rkMatrix) const;
bool operator!= (const Matrix3& rkMatrix) const;
// arithmetic operations
Matrix3 operator+ (const Matrix3& rkMatrix) const;
Matrix3 operator- (const Matrix3& rkMatrix) const;
/** Matrix-matrix multiply */
Matrix3 operator* (const Matrix3& rkMatrix) const;
Matrix3 operator- () const;
Matrix3& operator+= (const Matrix3& rkMatrix);
Matrix3& operator-= (const Matrix3& rkMatrix);
Matrix3& operator*= (const Matrix3& rkMatrix);
/**
* matrix * vector [3x3 * 3x1 = 3x1]
*/
inline Vector3 operator* (const Vector3& v) const {
Vector3 kProd;
for (int r = 0; r < 3; ++r) {
kProd[r] =
elt[r][0] * v[0] +
elt[r][1] * v[1] +
elt[r][2] * v[2];
}
return kProd;
}
/**
* vector * matrix [1x3 * 3x3 = 1x3]
*/
friend Vector3 operator* (const Vector3& rkVector,
const Matrix3& rkMatrix);
/**
* matrix * scalar
*/
Matrix3 operator* (float fScalar) const;
/** scalar * matrix */
friend Matrix3 operator* (double fScalar, const Matrix3& rkMatrix);
friend Matrix3 operator* (float fScalar, const Matrix3& rkMatrix);
friend Matrix3 operator* (int fScalar, const Matrix3& rkMatrix);
Matrix3& operator*= (float k);
Matrix3& operator/= (float k);
private:
/** Multiplication where out != A and out != B */
static void _mul(const Matrix3& A, const Matrix3& B, Matrix3& out);
public:
/** Optimized implementation of out = A * B. It is safe (but slow) to call
with A, B, and out possibly pointer equal to one another.*/
// This is a static method so that it is not ambiguous whether "this"
// is an input or output argument.
inline static void mul(const Matrix3& A, const Matrix3& B, Matrix3& out) {
if ((&out == &A) || (&out == &B)) {
// We need a temporary anyway, so revert to the stack method.
out = A * B;
} else {
// Optimized in-place multiplication.
_mul(A, B, out);
}
}
private:
static void _transpose(const Matrix3& A, Matrix3& out);
public:
/** Optimized implementation of out = A.transpose(). It is safe (but slow) to call
with A and out possibly pointer equal to one another.
Note that <CODE>A.transpose() * v</CODE> can be computed
more efficiently as <CODE>v * A</CODE>.
*/
inline static void transpose(const Matrix3& A, Matrix3& out) {
if (&A == &out) {
out = A.transpose();
} else {
_transpose(A, out);
}
}
/** Returns true if the rows and column L2 norms are 1.0 and the rows are orthogonal. */
bool isOrthonormal() const;
Matrix3 transpose () const;
bool inverse (Matrix3& rkInverse, float fTolerance = 1e-06) const;
Matrix3 inverse (float fTolerance = 1e-06) const;
float determinant () const;
/** singular value decomposition */
void singularValueDecomposition (Matrix3& rkL, Vector3& rkS,
Matrix3& rkR) const;
/** singular value decomposition */
void singularValueComposition (const Matrix3& rkL,
const Vector3& rkS, const Matrix3& rkR);
/** Gram-Schmidt orthonormalization (applied to columns of rotation matrix) */
void orthonormalize();
/** orthogonal Q, diagonal D, upper triangular U stored as (u01,u02,u12) */
void qDUDecomposition (Matrix3& rkQ, Vector3& rkD,
Vector3& rkU) const;
/**
Polar decomposition of a matrix. Based on pseudocode from Nicholas J
Higham, "Computing the Polar Decomposition -- with Applications Siam
Journal of Science and Statistical Computing, Vol 7, No. 4, October
1986.
Decomposes A into R*S, where R is orthogonal and S is symmetric.
Ken Shoemake's "Matrix animation and polar decomposition"
in Proceedings of the conference on Graphics interface '92
seems to be better known in the world of graphics, but Higham's version
uses a scaling constant that can lead to faster convergence than
Shoemake's when the initial matrix is far from orthogonal.
*/
void polarDecomposition(Matrix3 &R, Matrix3 &S) const;
/**
* Matrix norms.
*/
float spectralNorm () const;
float squaredFrobeniusNorm() const;
float frobeniusNorm() const;
float l1Norm() const;
float lInfNorm() const;
float diffOneNorm(const Matrix3 &y) const;
/** matrix must be orthonormal */
void toAxisAngle(Vector3& rkAxis, float& rfRadians) const;
static Matrix3 fromDiagonal(const Vector3& d) {
return Matrix3(d.x, 0, 0,
0, d.y, 0,
0, 0, d.z);
}
static Matrix3 fromAxisAngle(const Vector3& rkAxis, float fRadians);
/**
* The matrix must be orthonormal. The decomposition is yaw*pitch*roll
* where yaw is rotation about the Up vector, pitch is rotation about the
* right axis, and roll is rotation about the Direction axis.
*/
bool toEulerAnglesXYZ (float& rfYAngle, float& rfPAngle,
float& rfRAngle) const;
bool toEulerAnglesXZY (float& rfYAngle, float& rfPAngle,
float& rfRAngle) const;
bool toEulerAnglesYXZ (float& rfYAngle, float& rfPAngle,
float& rfRAngle) const;
bool toEulerAnglesYZX (float& rfYAngle, float& rfPAngle,
float& rfRAngle) const;
bool toEulerAnglesZXY (float& rfYAngle, float& rfPAngle,
float& rfRAngle) const;
bool toEulerAnglesZYX (float& rfYAngle, float& rfPAngle,
float& rfRAngle) const;
static Matrix3 fromEulerAnglesXYZ (float fYAngle, float fPAngle, float fRAngle);
static Matrix3 fromEulerAnglesXZY (float fYAngle, float fPAngle, float fRAngle);
static Matrix3 fromEulerAnglesYXZ (float fYAngle, float fPAngle, float fRAngle);
static Matrix3 fromEulerAnglesYZX (float fYAngle, float fPAngle, float fRAngle);
static Matrix3 fromEulerAnglesZXY (float fYAngle, float fPAngle, float fRAngle);
static Matrix3 fromEulerAnglesZYX (float fYAngle, float fPAngle, float fRAngle);
/** eigensolver, matrix must be symmetric */
void eigenSolveSymmetric (float afEigenvalue[3],
Vector3 akEigenvector[3]) const;
static void tensorProduct (const Vector3& rkU, const Vector3& rkV,
Matrix3& rkProduct);
std::string toString() const;
static const float EPSILON;
// Special values.
// The unguaranteed order of initialization of static variables across
// translation units can be a source of annoying bugs, so now the static
// special values (like Vector3::ZERO, Color3::WHITE, ...) are wrapped
// inside static functions that return references to them.
// These functions are intentionally not inlined, because:
// "You might be tempted to write [...] them as inline functions
// inside their respective header files, but this is something you
// must definitely not do. An inline function can be duplicated
// in every file in which it appears <20><><EFBFBD><EFBFBD> and this duplication
// includes the static object definition. Because inline functions
// automatically default to internal linkage, this would result in
// having multiple static objects across the various translation
// units, which would certainly cause problems. So you must
// ensure that there is only one definition of each wrapping
// function, and this means not making the wrapping functions inline",
// according to Chapter 10 of "Thinking in C++, 2nd ed. Volume 1" by Bruce Eckel,
// http://www.mindview.net/
static const Matrix3& zero();
static const Matrix3& identity();
protected:
// support for eigensolver
void tridiagonal (float afDiag[3], float afSubDiag[3]);
bool qLAlgorithm (float afDiag[3], float afSubDiag[3]);
// support for singular value decomposition
static const float ms_fSvdEpsilon;
static const int ms_iSvdMaxIterations;
static void bidiagonalize (Matrix3& kA, Matrix3& kL,
Matrix3& kR);
static void golubKahanStep (Matrix3& kA, Matrix3& kL,
Matrix3& kR);
// support for spectral norm
static float maxCubicRoot (float afCoeff[3]);
};
//----------------------------------------------------------------------------
/** <code>v * M == M.transpose() * v</code> */
inline Vector3 operator* (const Vector3& rkPoint, const Matrix3& rkMatrix) {
Vector3 kProd;
for (int r = 0; r < 3; ++r) {
kProd[r] =
rkPoint[0] * rkMatrix.elt[0][r] +
rkPoint[1] * rkMatrix.elt[1][r] +
rkPoint[2] * rkMatrix.elt[2][r];
}
return kProd;
}
} // namespace
#endif