mirror of
https://github.com/mangosfour/server.git
synced 2025-12-13 13:37:05 +00:00
+ Got rid of zip lib requirement in G3D...
Still can re-enable code by defining _HAVE_ZIP...
+ Remove silly X11 lib dependency from G3D
Code doesn't seem to do anything yet anyway, and even if, we don't want it :p
+ Fix another weird G3D build problem...
+ Remove some __asm usage in g3d, which is not available on Win64
My editor also decided to remove a ton of trailing white spaces...tss...
+ Reapply G3D fixes for 64bit VC
+ not use SSE specific header when SSE not enabled in *nix
+ Updated project files
+ New vmap_assembler VC90/VC80 Project
+ vmap assembler binaries updates
NOTE: Old vmap fikes expected work (as tests show) with new library version.
But better use new generated versions. Its different in small parts to bad or good...
(based on Lynx3d's repo commit 44798d3)
Signed-off-by: VladimirMangos <vladimir@getmangos.com>
725 lines
19 KiB
C++
725 lines
19 KiB
C++
/**
|
|
@file Quat.h
|
|
|
|
Quaternion
|
|
|
|
@maintainer Morgan McGuire, http://graphics.cs.williams.edu
|
|
|
|
@created 2002-01-23
|
|
@edited 2009-05-10
|
|
*/
|
|
|
|
#ifndef G3D_Quat_h
|
|
#define G3D_Quat_h
|
|
|
|
#include "G3D/platform.h"
|
|
#include "G3D/g3dmath.h"
|
|
#include "G3D/Vector3.h"
|
|
#include "G3D/Matrix3.h"
|
|
#include <string>
|
|
|
|
namespace G3D {
|
|
|
|
/**
|
|
Unit quaternions are used in computer graphics to represent
|
|
rotation about an axis. Any 3x3 rotation matrix can
|
|
be stored as a quaternion.
|
|
|
|
A quaternion represents the sum of a real scalar and
|
|
an imaginary vector: ix + jy + kz + w. A unit quaternion
|
|
representing a rotation by A about axis v has the form
|
|
[sin(A/2)*v, cos(A/2)]. For a unit quaternion, q.conj() == q.inverse()
|
|
is a rotation by -A about v. -q is the same rotation as q
|
|
(negate both the axis and angle).
|
|
|
|
A non-unit quaterion q represents the same rotation as
|
|
q.unitize() (Dam98 pg 28).
|
|
|
|
Although quaternion-vector operations (eg. Quat + Vector3) are
|
|
well defined, they are not supported by this class because
|
|
they typically are bugs when they appear in code.
|
|
|
|
Do not subclass.
|
|
|
|
<B>BETA API -- subject to change</B>
|
|
@cite Erik B. Dam, Martin Koch, Martin Lillholm, Quaternions, Interpolation and Animation. Technical Report DIKU-TR-98/5, Department of Computer Science, University of Copenhagen, Denmark. 1998.
|
|
*/
|
|
class Quat {
|
|
private:
|
|
// Hidden operators
|
|
bool operator<(const Quat&) const;
|
|
bool operator>(const Quat&) const;
|
|
bool operator<=(const Quat&) const;
|
|
bool operator>=(const Quat&) const;
|
|
|
|
public:
|
|
|
|
/**
|
|
q = [sin(angle / 2) * axis, cos(angle / 2)]
|
|
|
|
In Watt & Watt's notation, s = w, v = (x, y, z)
|
|
In the Real-Time Rendering notation, u = (x, y, z), w = w
|
|
*/
|
|
float x, y, z, w;
|
|
|
|
/**
|
|
Initializes to a zero degree rotation.
|
|
*/
|
|
inline Quat() : x(0), y(0), z(0), w(1) {}
|
|
|
|
Quat(
|
|
const Matrix3& rot);
|
|
|
|
inline Quat(float _x, float _y, float _z, float _w) :
|
|
x(_x), y(_y), z(_z), w(_w) {}
|
|
|
|
/** Defaults to a pure vector quaternion */
|
|
inline Quat(const Vector3& v, float _w = 0) : x(v.x), y(v.y), z(v.z), w(_w) {
|
|
}
|
|
|
|
/**
|
|
The real part of the quaternion.
|
|
*/
|
|
inline const float& real() const {
|
|
return w;
|
|
}
|
|
|
|
inline float& real() {
|
|
return w;
|
|
}
|
|
|
|
/** Note: two quats can represent the Quat::sameRotation and not be equal. */
|
|
bool fuzzyEq(const Quat& q) {
|
|
return G3D::fuzzyEq(x, q.x) && G3D::fuzzyEq(y, q.y) && G3D::fuzzyEq(z, q.z) && G3D::fuzzyEq(w, q.w);
|
|
}
|
|
|
|
/** True if these quaternions represent the same rotation (note that every rotation is
|
|
represented by two values; q and -q).
|
|
*/
|
|
bool sameRotation(const Quat& q) {
|
|
return fuzzyEq(q) || fuzzyEq(-q);
|
|
}
|
|
|
|
inline Quat operator-() const {
|
|
return Quat(-x, -y, -z, -w);
|
|
}
|
|
|
|
/**
|
|
Returns the imaginary part (x, y, z)
|
|
*/
|
|
inline const Vector3& imag() const {
|
|
return *(reinterpret_cast<const Vector3*>(this));
|
|
}
|
|
|
|
inline Vector3& imag() {
|
|
return *(reinterpret_cast<Vector3*>(this));
|
|
}
|
|
|
|
/** q = [sin(angle/2)*axis, cos(angle/2)] */
|
|
static Quat fromAxisAngleRotation(
|
|
const Vector3& axis,
|
|
float angle);
|
|
|
|
/** Returns the axis and angle of rotation represented
|
|
by this quaternion (i.e. q = [sin(angle/2)*axis, cos(angle/2)]) */
|
|
void toAxisAngleRotation(
|
|
Vector3& axis,
|
|
double& angle) const;
|
|
|
|
void toAxisAngleRotation(
|
|
Vector3& axis,
|
|
float& angle) const {
|
|
double d;
|
|
toAxisAngleRotation(axis, d);
|
|
angle = (float)d;
|
|
}
|
|
|
|
Matrix3 toRotationMatrix() const;
|
|
|
|
void toRotationMatrix(
|
|
Matrix3& rot) const;
|
|
|
|
/**
|
|
Spherical linear interpolation: linear interpolation along the
|
|
shortest (3D) great-circle route between two quaternions.
|
|
|
|
Note: Correct rotations are expected between 0 and PI in the right order.
|
|
|
|
@cite Based on Game Physics -- David Eberly pg 538-540
|
|
@param threshold Critical angle between between rotations at which
|
|
the algorithm switches to normalized lerp, which is more
|
|
numerically stable in those situations. 0.0 will always slerp.
|
|
*/
|
|
Quat slerp(
|
|
const Quat& other,
|
|
float alpha,
|
|
float threshold = 0.05f) const;
|
|
|
|
/** Normalized linear interpolation of quaternion components. */
|
|
Quat nlerp(const Quat& other, float alpha) const;
|
|
|
|
/**
|
|
Negates the imaginary part.
|
|
*/
|
|
inline Quat conj() const {
|
|
return Quat(-x, -y, -z, w);
|
|
}
|
|
|
|
inline float sum() const {
|
|
return x + y + z + w;
|
|
}
|
|
|
|
inline float average() const {
|
|
return sum() / 4.0f;
|
|
}
|
|
|
|
inline Quat operator*(float s) const {
|
|
return Quat(x * s, y * s, z * s, w * s);
|
|
}
|
|
|
|
inline Quat& operator*=(float s) {
|
|
x *= s;
|
|
y *= s;
|
|
z *= s;
|
|
w *= s;
|
|
return *this;
|
|
}
|
|
|
|
/** @cite Based on Watt & Watt, page 360 */
|
|
friend Quat operator* (float s, const Quat& q);
|
|
|
|
inline Quat operator/(float s) const {
|
|
return Quat(x / s, y / s, z / s, w / s);
|
|
}
|
|
|
|
inline float dot(const Quat& other) const {
|
|
return (x * other.x) + (y * other.y) + (z * other.z) + (w * other.w);
|
|
}
|
|
|
|
/** Note that q<SUP>-1</SUP> = q.conj() for a unit quaternion.
|
|
@cite Dam99 page 13 */
|
|
inline Quat inverse() const {
|
|
return conj() / dot(*this);
|
|
}
|
|
|
|
Quat operator-(const Quat& other) const;
|
|
|
|
Quat operator+(const Quat& other) const;
|
|
|
|
/**
|
|
Quaternion multiplication (composition of rotations).
|
|
Note that this does not commute.
|
|
*/
|
|
Quat operator*(const Quat& other) const;
|
|
|
|
/* (*this) * other.inverse() */
|
|
Quat operator/(const Quat& other) const {
|
|
return (*this) * other.inverse();
|
|
}
|
|
|
|
|
|
/** Is the magnitude nearly 1.0? */
|
|
inline bool isUnit(float tolerance = 1e-5) const {
|
|
return abs(dot(*this) - 1.0f) < tolerance;
|
|
}
|
|
|
|
|
|
inline float magnitude() const {
|
|
return sqrtf(dot(*this));
|
|
}
|
|
|
|
inline Quat log() const {
|
|
if ((x == 0) && (y == 0) && (z == 0)) {
|
|
if (w > 0) {
|
|
return Quat(0, 0, 0, ::logf(w));
|
|
} else if (w < 0) {
|
|
// Log of a negative number. Multivalued, any number of the form
|
|
// (PI * v, ln(-q.w))
|
|
return Quat((float)pi(), 0, 0, ::logf(-w));
|
|
} else {
|
|
// log of zero!
|
|
return Quat((float)nan(), (float)nan(), (float)nan(), (float)nan());
|
|
}
|
|
} else {
|
|
// Partly imaginary.
|
|
float imagLen = sqrtf(x * x + y * y + z * z);
|
|
float len = sqrtf(imagLen * imagLen + w * w);
|
|
float theta = atan2f(imagLen, (float)w);
|
|
float t = theta / imagLen;
|
|
return Quat(t * x, t * y, t * z, ::logf(len));
|
|
}
|
|
}
|
|
/** log q = [Av, 0] where q = [sin(A) * v, cos(A)].
|
|
Only for unit quaternions
|
|
debugAssertM(isUnit(), "Log only defined for unit quaternions");
|
|
// Solve for A in q = [sin(A)*v, cos(A)]
|
|
Vector3 u(x, y, z);
|
|
double len = u.magnitude();
|
|
|
|
if (len == 0.0) {
|
|
return
|
|
}
|
|
double A = atan2((double)w, len);
|
|
Vector3 v = u / len;
|
|
|
|
return Quat(v * A, 0);
|
|
}
|
|
*/
|
|
|
|
/** exp q = [sin(A) * v, cos(A)] where q = [Av, 0].
|
|
Only defined for pure-vector quaternions */
|
|
inline Quat exp() const {
|
|
debugAssertM(w == 0, "exp only defined for vector quaternions");
|
|
Vector3 u(x, y, z);
|
|
float A = u.magnitude();
|
|
Vector3 v = u / A;
|
|
return Quat(sinf(A) * v, cosf(A));
|
|
}
|
|
|
|
|
|
/**
|
|
Raise this quaternion to a power. For a rotation, this is
|
|
the effect of rotating x times as much as the original
|
|
quaterion.
|
|
|
|
Note that q.pow(a).pow(b) == q.pow(a + b)
|
|
@cite Dam98 pg 21
|
|
*/
|
|
inline Quat pow(float x) const {
|
|
return (log() * x).exp();
|
|
}
|
|
|
|
inline void unitize() {
|
|
float mag2 = dot(*this);
|
|
if (! G3D::fuzzyEq(mag2, 1.0f)) {
|
|
*this *= rsq(mag2);
|
|
}
|
|
}
|
|
|
|
/**
|
|
Returns a unit quaterion obtained by dividing through by
|
|
the magnitude.
|
|
*/
|
|
inline Quat toUnit() const {
|
|
Quat x = *this;
|
|
x.unitize();
|
|
return x;
|
|
}
|
|
|
|
/**
|
|
The linear algebra 2-norm, sqrt(q dot q). This matches
|
|
the value used in Dam's 1998 tech report but differs from the
|
|
n(q) value used in Eberly's 1999 paper, which is the square of the
|
|
norm.
|
|
*/
|
|
inline float norm() const {
|
|
return magnitude();
|
|
}
|
|
|
|
// access quaternion as q[0] = q.x, q[1] = q.y, q[2] = q.z, q[3] = q.w
|
|
//
|
|
// WARNING. These member functions rely on
|
|
// (1) Quat not having virtual functions
|
|
// (2) the data packed in a 4*sizeof(float) memory block
|
|
const float& operator[] (int i) const;
|
|
float& operator[] (int i);
|
|
|
|
/** Generate uniform random unit quaternion (i.e. random "direction")
|
|
@cite From "Uniform Random Rotations", Ken Shoemake, Graphics Gems III.
|
|
*/
|
|
static Quat unitRandom();
|
|
|
|
void deserialize(class BinaryInput& b);
|
|
void serialize(class BinaryOutput& b) const;
|
|
|
|
// 2-char swizzles
|
|
|
|
Vector2 xx() const;
|
|
Vector2 yx() const;
|
|
Vector2 zx() const;
|
|
Vector2 wx() const;
|
|
Vector2 xy() const;
|
|
Vector2 yy() const;
|
|
Vector2 zy() const;
|
|
Vector2 wy() const;
|
|
Vector2 xz() const;
|
|
Vector2 yz() const;
|
|
Vector2 zz() const;
|
|
Vector2 wz() const;
|
|
Vector2 xw() const;
|
|
Vector2 yw() const;
|
|
Vector2 zw() const;
|
|
Vector2 ww() const;
|
|
|
|
// 3-char swizzles
|
|
|
|
Vector3 xxx() const;
|
|
Vector3 yxx() const;
|
|
Vector3 zxx() const;
|
|
Vector3 wxx() const;
|
|
Vector3 xyx() const;
|
|
Vector3 yyx() const;
|
|
Vector3 zyx() const;
|
|
Vector3 wyx() const;
|
|
Vector3 xzx() const;
|
|
Vector3 yzx() const;
|
|
Vector3 zzx() const;
|
|
Vector3 wzx() const;
|
|
Vector3 xwx() const;
|
|
Vector3 ywx() const;
|
|
Vector3 zwx() const;
|
|
Vector3 wwx() const;
|
|
Vector3 xxy() const;
|
|
Vector3 yxy() const;
|
|
Vector3 zxy() const;
|
|
Vector3 wxy() const;
|
|
Vector3 xyy() const;
|
|
Vector3 yyy() const;
|
|
Vector3 zyy() const;
|
|
Vector3 wyy() const;
|
|
Vector3 xzy() const;
|
|
Vector3 yzy() const;
|
|
Vector3 zzy() const;
|
|
Vector3 wzy() const;
|
|
Vector3 xwy() const;
|
|
Vector3 ywy() const;
|
|
Vector3 zwy() const;
|
|
Vector3 wwy() const;
|
|
Vector3 xxz() const;
|
|
Vector3 yxz() const;
|
|
Vector3 zxz() const;
|
|
Vector3 wxz() const;
|
|
Vector3 xyz() const;
|
|
Vector3 yyz() const;
|
|
Vector3 zyz() const;
|
|
Vector3 wyz() const;
|
|
Vector3 xzz() const;
|
|
Vector3 yzz() const;
|
|
Vector3 zzz() const;
|
|
Vector3 wzz() const;
|
|
Vector3 xwz() const;
|
|
Vector3 ywz() const;
|
|
Vector3 zwz() const;
|
|
Vector3 wwz() const;
|
|
Vector3 xxw() const;
|
|
Vector3 yxw() const;
|
|
Vector3 zxw() const;
|
|
Vector3 wxw() const;
|
|
Vector3 xyw() const;
|
|
Vector3 yyw() const;
|
|
Vector3 zyw() const;
|
|
Vector3 wyw() const;
|
|
Vector3 xzw() const;
|
|
Vector3 yzw() const;
|
|
Vector3 zzw() const;
|
|
Vector3 wzw() const;
|
|
Vector3 xww() const;
|
|
Vector3 yww() const;
|
|
Vector3 zww() const;
|
|
Vector3 www() const;
|
|
|
|
// 4-char swizzles
|
|
|
|
Vector4 xxxx() const;
|
|
Vector4 yxxx() const;
|
|
Vector4 zxxx() const;
|
|
Vector4 wxxx() const;
|
|
Vector4 xyxx() const;
|
|
Vector4 yyxx() const;
|
|
Vector4 zyxx() const;
|
|
Vector4 wyxx() const;
|
|
Vector4 xzxx() const;
|
|
Vector4 yzxx() const;
|
|
Vector4 zzxx() const;
|
|
Vector4 wzxx() const;
|
|
Vector4 xwxx() const;
|
|
Vector4 ywxx() const;
|
|
Vector4 zwxx() const;
|
|
Vector4 wwxx() const;
|
|
Vector4 xxyx() const;
|
|
Vector4 yxyx() const;
|
|
Vector4 zxyx() const;
|
|
Vector4 wxyx() const;
|
|
Vector4 xyyx() const;
|
|
Vector4 yyyx() const;
|
|
Vector4 zyyx() const;
|
|
Vector4 wyyx() const;
|
|
Vector4 xzyx() const;
|
|
Vector4 yzyx() const;
|
|
Vector4 zzyx() const;
|
|
Vector4 wzyx() const;
|
|
Vector4 xwyx() const;
|
|
Vector4 ywyx() const;
|
|
Vector4 zwyx() const;
|
|
Vector4 wwyx() const;
|
|
Vector4 xxzx() const;
|
|
Vector4 yxzx() const;
|
|
Vector4 zxzx() const;
|
|
Vector4 wxzx() const;
|
|
Vector4 xyzx() const;
|
|
Vector4 yyzx() const;
|
|
Vector4 zyzx() const;
|
|
Vector4 wyzx() const;
|
|
Vector4 xzzx() const;
|
|
Vector4 yzzx() const;
|
|
Vector4 zzzx() const;
|
|
Vector4 wzzx() const;
|
|
Vector4 xwzx() const;
|
|
Vector4 ywzx() const;
|
|
Vector4 zwzx() const;
|
|
Vector4 wwzx() const;
|
|
Vector4 xxwx() const;
|
|
Vector4 yxwx() const;
|
|
Vector4 zxwx() const;
|
|
Vector4 wxwx() const;
|
|
Vector4 xywx() const;
|
|
Vector4 yywx() const;
|
|
Vector4 zywx() const;
|
|
Vector4 wywx() const;
|
|
Vector4 xzwx() const;
|
|
Vector4 yzwx() const;
|
|
Vector4 zzwx() const;
|
|
Vector4 wzwx() const;
|
|
Vector4 xwwx() const;
|
|
Vector4 ywwx() const;
|
|
Vector4 zwwx() const;
|
|
Vector4 wwwx() const;
|
|
Vector4 xxxy() const;
|
|
Vector4 yxxy() const;
|
|
Vector4 zxxy() const;
|
|
Vector4 wxxy() const;
|
|
Vector4 xyxy() const;
|
|
Vector4 yyxy() const;
|
|
Vector4 zyxy() const;
|
|
Vector4 wyxy() const;
|
|
Vector4 xzxy() const;
|
|
Vector4 yzxy() const;
|
|
Vector4 zzxy() const;
|
|
Vector4 wzxy() const;
|
|
Vector4 xwxy() const;
|
|
Vector4 ywxy() const;
|
|
Vector4 zwxy() const;
|
|
Vector4 wwxy() const;
|
|
Vector4 xxyy() const;
|
|
Vector4 yxyy() const;
|
|
Vector4 zxyy() const;
|
|
Vector4 wxyy() const;
|
|
Vector4 xyyy() const;
|
|
Vector4 yyyy() const;
|
|
Vector4 zyyy() const;
|
|
Vector4 wyyy() const;
|
|
Vector4 xzyy() const;
|
|
Vector4 yzyy() const;
|
|
Vector4 zzyy() const;
|
|
Vector4 wzyy() const;
|
|
Vector4 xwyy() const;
|
|
Vector4 ywyy() const;
|
|
Vector4 zwyy() const;
|
|
Vector4 wwyy() const;
|
|
Vector4 xxzy() const;
|
|
Vector4 yxzy() const;
|
|
Vector4 zxzy() const;
|
|
Vector4 wxzy() const;
|
|
Vector4 xyzy() const;
|
|
Vector4 yyzy() const;
|
|
Vector4 zyzy() const;
|
|
Vector4 wyzy() const;
|
|
Vector4 xzzy() const;
|
|
Vector4 yzzy() const;
|
|
Vector4 zzzy() const;
|
|
Vector4 wzzy() const;
|
|
Vector4 xwzy() const;
|
|
Vector4 ywzy() const;
|
|
Vector4 zwzy() const;
|
|
Vector4 wwzy() const;
|
|
Vector4 xxwy() const;
|
|
Vector4 yxwy() const;
|
|
Vector4 zxwy() const;
|
|
Vector4 wxwy() const;
|
|
Vector4 xywy() const;
|
|
Vector4 yywy() const;
|
|
Vector4 zywy() const;
|
|
Vector4 wywy() const;
|
|
Vector4 xzwy() const;
|
|
Vector4 yzwy() const;
|
|
Vector4 zzwy() const;
|
|
Vector4 wzwy() const;
|
|
Vector4 xwwy() const;
|
|
Vector4 ywwy() const;
|
|
Vector4 zwwy() const;
|
|
Vector4 wwwy() const;
|
|
Vector4 xxxz() const;
|
|
Vector4 yxxz() const;
|
|
Vector4 zxxz() const;
|
|
Vector4 wxxz() const;
|
|
Vector4 xyxz() const;
|
|
Vector4 yyxz() const;
|
|
Vector4 zyxz() const;
|
|
Vector4 wyxz() const;
|
|
Vector4 xzxz() const;
|
|
Vector4 yzxz() const;
|
|
Vector4 zzxz() const;
|
|
Vector4 wzxz() const;
|
|
Vector4 xwxz() const;
|
|
Vector4 ywxz() const;
|
|
Vector4 zwxz() const;
|
|
Vector4 wwxz() const;
|
|
Vector4 xxyz() const;
|
|
Vector4 yxyz() const;
|
|
Vector4 zxyz() const;
|
|
Vector4 wxyz() const;
|
|
Vector4 xyyz() const;
|
|
Vector4 yyyz() const;
|
|
Vector4 zyyz() const;
|
|
Vector4 wyyz() const;
|
|
Vector4 xzyz() const;
|
|
Vector4 yzyz() const;
|
|
Vector4 zzyz() const;
|
|
Vector4 wzyz() const;
|
|
Vector4 xwyz() const;
|
|
Vector4 ywyz() const;
|
|
Vector4 zwyz() const;
|
|
Vector4 wwyz() const;
|
|
Vector4 xxzz() const;
|
|
Vector4 yxzz() const;
|
|
Vector4 zxzz() const;
|
|
Vector4 wxzz() const;
|
|
Vector4 xyzz() const;
|
|
Vector4 yyzz() const;
|
|
Vector4 zyzz() const;
|
|
Vector4 wyzz() const;
|
|
Vector4 xzzz() const;
|
|
Vector4 yzzz() const;
|
|
Vector4 zzzz() const;
|
|
Vector4 wzzz() const;
|
|
Vector4 xwzz() const;
|
|
Vector4 ywzz() const;
|
|
Vector4 zwzz() const;
|
|
Vector4 wwzz() const;
|
|
Vector4 xxwz() const;
|
|
Vector4 yxwz() const;
|
|
Vector4 zxwz() const;
|
|
Vector4 wxwz() const;
|
|
Vector4 xywz() const;
|
|
Vector4 yywz() const;
|
|
Vector4 zywz() const;
|
|
Vector4 wywz() const;
|
|
Vector4 xzwz() const;
|
|
Vector4 yzwz() const;
|
|
Vector4 zzwz() const;
|
|
Vector4 wzwz() const;
|
|
Vector4 xwwz() const;
|
|
Vector4 ywwz() const;
|
|
Vector4 zwwz() const;
|
|
Vector4 wwwz() const;
|
|
Vector4 xxxw() const;
|
|
Vector4 yxxw() const;
|
|
Vector4 zxxw() const;
|
|
Vector4 wxxw() const;
|
|
Vector4 xyxw() const;
|
|
Vector4 yyxw() const;
|
|
Vector4 zyxw() const;
|
|
Vector4 wyxw() const;
|
|
Vector4 xzxw() const;
|
|
Vector4 yzxw() const;
|
|
Vector4 zzxw() const;
|
|
Vector4 wzxw() const;
|
|
Vector4 xwxw() const;
|
|
Vector4 ywxw() const;
|
|
Vector4 zwxw() const;
|
|
Vector4 wwxw() const;
|
|
Vector4 xxyw() const;
|
|
Vector4 yxyw() const;
|
|
Vector4 zxyw() const;
|
|
Vector4 wxyw() const;
|
|
Vector4 xyyw() const;
|
|
Vector4 yyyw() const;
|
|
Vector4 zyyw() const;
|
|
Vector4 wyyw() const;
|
|
Vector4 xzyw() const;
|
|
Vector4 yzyw() const;
|
|
Vector4 zzyw() const;
|
|
Vector4 wzyw() const;
|
|
Vector4 xwyw() const;
|
|
Vector4 ywyw() const;
|
|
Vector4 zwyw() const;
|
|
Vector4 wwyw() const;
|
|
Vector4 xxzw() const;
|
|
Vector4 yxzw() const;
|
|
Vector4 zxzw() const;
|
|
Vector4 wxzw() const;
|
|
Vector4 xyzw() const;
|
|
Vector4 yyzw() const;
|
|
Vector4 zyzw() const;
|
|
Vector4 wyzw() const;
|
|
Vector4 xzzw() const;
|
|
Vector4 yzzw() const;
|
|
Vector4 zzzw() const;
|
|
Vector4 wzzw() const;
|
|
Vector4 xwzw() const;
|
|
Vector4 ywzw() const;
|
|
Vector4 zwzw() const;
|
|
Vector4 wwzw() const;
|
|
Vector4 xxww() const;
|
|
Vector4 yxww() const;
|
|
Vector4 zxww() const;
|
|
Vector4 wxww() const;
|
|
Vector4 xyww() const;
|
|
Vector4 yyww() const;
|
|
Vector4 zyww() const;
|
|
Vector4 wyww() const;
|
|
Vector4 xzww() const;
|
|
Vector4 yzww() const;
|
|
Vector4 zzww() const;
|
|
Vector4 wzww() const;
|
|
Vector4 xwww() const;
|
|
Vector4 ywww() const;
|
|
Vector4 zwww() const;
|
|
Vector4 wwww() const;
|
|
};
|
|
|
|
inline Quat exp(const Quat& q) {
|
|
return q.exp();
|
|
}
|
|
|
|
inline Quat log(const Quat& q) {
|
|
return q.log();
|
|
}
|
|
|
|
inline G3D::Quat operator*(double s, const G3D::Quat& q) {
|
|
return q * (float)s;
|
|
}
|
|
|
|
inline G3D::Quat operator*(float s, const G3D::Quat& q) {
|
|
return q * s;
|
|
}
|
|
|
|
inline float& Quat::operator[] (int i) {
|
|
debugAssert(i >= 0);
|
|
debugAssert(i < 4);
|
|
return ((float*)this)[i];
|
|
}
|
|
|
|
inline const float& Quat::operator[] (int i) const {
|
|
debugAssert(i >= 0);
|
|
debugAssert(i < 4);
|
|
return ((float*)this)[i];
|
|
}
|
|
|
|
inline Quat Quat::operator-(const Quat& other) const {
|
|
return Quat(x - other.x, y - other.y, z - other.z, w - other.w);
|
|
}
|
|
|
|
inline Quat Quat::operator+(const Quat& other) const {
|
|
return Quat(x + other.x, y + other.y, z + other.z, w + other.w);
|
|
}
|
|
|
|
} // Namespace G3D
|
|
|
|
// Outside the namespace to avoid overloading confusion for C++
|
|
inline G3D::Quat pow(const G3D::Quat& q, double x) {
|
|
return q.pow((float)x);
|
|
}
|
|
|
|
|
|
#endif
|