mirror of
https://github.com/mangosfour/server.git
synced 2025-12-31 22:37:05 +00:00
+ Got rid of zip lib requirement in G3D...
Still can re-enable code by defining _HAVE_ZIP...
+ Remove silly X11 lib dependency from G3D
Code doesn't seem to do anything yet anyway, and even if, we don't want it :p
+ Fix another weird G3D build problem...
+ Remove some __asm usage in g3d, which is not available on Win64
My editor also decided to remove a ton of trailing white spaces...tss...
+ Reapply G3D fixes for 64bit VC
+ not use SSE specific header when SSE not enabled in *nix
+ Updated project files
+ New vmap_assembler VC90/VC80 Project
+ vmap assembler binaries updates
NOTE: Old vmap fikes expected work (as tests show) with new library version.
But better use new generated versions. Its different in small parts to bad or good...
(based on Lynx3d's repo commit 44798d3)
Signed-off-by: VladimirMangos <vladimir@getmangos.com>
179 lines
3.9 KiB
C++
179 lines
3.9 KiB
C++
/**
|
|
@file Capsule.cpp
|
|
|
|
@maintainer Morgan McGuire, http://graphics.cs.williams.edu
|
|
|
|
@created 2003-02-07
|
|
@edited 2005-08-18
|
|
|
|
Copyright 2000-2009, Morgan McGuire.
|
|
All rights reserved.
|
|
*/
|
|
|
|
#include "G3D/Capsule.h"
|
|
#include "G3D/BinaryInput.h"
|
|
#include "G3D/BinaryOutput.h"
|
|
#include "G3D/LineSegment.h"
|
|
#include "G3D/Sphere.h"
|
|
#include "G3D/CoordinateFrame.h"
|
|
#include "G3D/Line.h"
|
|
#include "G3D/AABox.h"
|
|
|
|
namespace G3D {
|
|
|
|
Capsule::Capsule(class BinaryInput& b) {
|
|
deserialize(b);
|
|
}
|
|
|
|
|
|
Capsule::Capsule() {
|
|
}
|
|
|
|
|
|
Capsule::Capsule(const Vector3& _p1, const Vector3& _p2, float _r)
|
|
: p1(_p1), p2(_p2), _radius(_r) {
|
|
}
|
|
|
|
|
|
void Capsule::serialize(class BinaryOutput& b) const {
|
|
p1.serialize(b);
|
|
p2.serialize(b);
|
|
b.writeFloat64(_radius);
|
|
}
|
|
|
|
|
|
void Capsule::deserialize(class BinaryInput& b) {
|
|
p1.deserialize(b);
|
|
p2.deserialize(b);
|
|
_radius = b.readFloat64();
|
|
}
|
|
|
|
|
|
Line Capsule::axis() const {
|
|
return Line::fromTwoPoints(p1, p2);
|
|
}
|
|
|
|
|
|
float Capsule::volume() const {
|
|
return
|
|
// Sphere volume
|
|
pow(_radius, 3) * pi() * 4 / 3 +
|
|
|
|
// Cylinder volume
|
|
pow(_radius, 2) * (p1 - p2).magnitude();
|
|
}
|
|
|
|
|
|
float Capsule::area() const {
|
|
|
|
return
|
|
// Sphere area
|
|
pow(_radius, 2) * 4 * pi() +
|
|
|
|
// Cylinder area
|
|
twoPi() * _radius * (p1 - p2).magnitude();
|
|
}
|
|
|
|
|
|
void Capsule::getBounds(AABox& out) const {
|
|
Vector3 min = p1.min(p2) - (Vector3(1, 1, 1) * _radius);
|
|
Vector3 max = p1.max(p2) + (Vector3(1, 1, 1) * _radius);
|
|
|
|
out = AABox(min, max);
|
|
}
|
|
|
|
|
|
bool Capsule::contains(const Vector3& p) const {
|
|
return LineSegment::fromTwoPoints(p1, p2).distanceSquared(p) <= square(radius());
|
|
}
|
|
|
|
|
|
void Capsule::getRandomSurfacePoint(Vector3& p, Vector3& N) const {
|
|
float h = height();
|
|
float r = radius();
|
|
|
|
// Create a random point on a standard capsule and then rotate to the global frame.
|
|
|
|
// Relative areas
|
|
float capRelArea = sqrt(r) / 2.0f;
|
|
float sideRelArea = r * h;
|
|
|
|
float r1 = uniformRandom(0, capRelArea * 2 + sideRelArea);
|
|
|
|
if (r1 < capRelArea * 2) {
|
|
|
|
// Select a point uniformly at random on a sphere
|
|
N = Sphere(Vector3::zero(), 1).randomSurfacePoint();
|
|
p = N * r;
|
|
p.y += sign(p.y) * h / 2.0f;
|
|
} else {
|
|
// Side
|
|
float a = uniformRandom(0, (float)twoPi());
|
|
N.x = cos(a);
|
|
N.y = 0;
|
|
N.z = sin(a);
|
|
p.x = N.x * r;
|
|
p.z = N.y * r;
|
|
p.y = uniformRandom(-h / 2.0f, h / 2.0f);
|
|
}
|
|
|
|
// Transform to world space
|
|
CoordinateFrame cframe;
|
|
getReferenceFrame(cframe);
|
|
|
|
p = cframe.pointToWorldSpace(p);
|
|
N = cframe.normalToWorldSpace(N);
|
|
}
|
|
|
|
|
|
void Capsule::getReferenceFrame(CoordinateFrame& cframe) const {
|
|
cframe.translation = center();
|
|
|
|
Vector3 Y = (p1 - p2).direction();
|
|
Vector3 X = (abs(Y.dot(Vector3::unitX())) > 0.9) ? Vector3::unitY() : Vector3::unitX();
|
|
Vector3 Z = X.cross(Y).direction();
|
|
X = Y.cross(Z);
|
|
cframe.rotation.setColumn(0, X);
|
|
cframe.rotation.setColumn(1, Y);
|
|
cframe.rotation.setColumn(2, Z);
|
|
}
|
|
|
|
|
|
Vector3 Capsule::randomInteriorPoint() const {
|
|
float h = height();
|
|
float r = radius();
|
|
|
|
// Create a random point in a standard capsule and then rotate to the global frame.
|
|
|
|
Vector3 p;
|
|
|
|
float hemiVolume = pi() * (r*r*r) * 4 / 6.0;
|
|
float cylVolume = pi() * square(r) * h;
|
|
|
|
float r1 = uniformRandom(0, 2.0 * hemiVolume + cylVolume);
|
|
|
|
if (r1 < 2.0 * hemiVolume) {
|
|
|
|
p = Sphere(Vector3::zero(), r).randomInteriorPoint();
|
|
|
|
p.y += sign(p.y) * h / 2.0f;
|
|
|
|
} else {
|
|
|
|
// Select a point uniformly at random on a disk
|
|
float a = uniformRandom(0, (float)twoPi());
|
|
float r2 = sqrt(uniformRandom(0, 1)) * r;
|
|
|
|
p = Vector3(cos(a) * r2,
|
|
uniformRandom(-h / 2.0f, h / 2.0f),
|
|
sin(a) * r2);
|
|
}
|
|
|
|
// Transform to world space
|
|
CoordinateFrame cframe;
|
|
getReferenceFrame(cframe);
|
|
|
|
return cframe.pointToWorldSpace(p);
|
|
}
|
|
|
|
} // namespace
|