server/dep/acelite/ace/POSIX_Proactor.h
Salja f4be15a7af Some missing from merge.
Signed-off-by: Salja <salja2012@hotmail.de>
2020-02-16 02:50:23 +00:00

659 lines
24 KiB
C++

// -*- C++ -*-
//=============================================================================
/**
* @file POSIX_Proactor.h
*
* $Id: POSIX_Proactor.h 80826 2008-03-04 14:51:23Z wotte $
*
* @author Irfan Pyarali <irfan@cs.wustl.edu>
* @author Tim Harrison <harrison@cs.wustl.edu>
* @author Alexander Babu Arulanthu <alex@cs.wustl.edu>
* @author Roger Tragin <r.tragin@computer.org>
* @author Alexander Libman <alibman@baltimore.com>
*/
//=============================================================================
#ifndef ACE_POSIX_PROACTOR_H
#define ACE_POSIX_PROACTOR_H
#include /**/ "ace/config-all.h"
#if !defined (ACE_LACKS_PRAGMA_ONCE)
#pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */
#if defined (ACE_HAS_AIO_CALLS)
// POSIX implementation of Proactor depends on the <aio_> family of
// system calls.
#include "ace/Proactor_Impl.h"
#include "ace/Free_List.h"
#include "ace/Pipe.h"
#include "ace/POSIX_Asynch_IO.h"
#include "ace/Asynch_Pseudo_Task.h"
#define ACE_AIO_MAX_SIZE 2048
#define ACE_AIO_DEFAULT_SIZE 1024
ACE_BEGIN_VERSIONED_NAMESPACE_DECL
/**
* @class ACE_POSIX_Proactor
*
* @brief POSIX implementation of the Proactor.
*
* There are two different strategies by which Proactor can get
* to know the completion of <aio> operations. One is based on
* Asynchronous I/O Control Blocks (AIOCB) where a list of
* AIOCBs are stored and completion status of the corresponding
* operations are queried on them. The other one is based on
* POSIX Real Time signals. This class abstracts out the common
* code needed for both the strategies. ACE_POSIX_AIOCB_Proactor and
* ACE_POSIX_SIG_Proactor specialize this class for each strategy.
*/
class ACE_Export ACE_POSIX_Proactor : public ACE_Proactor_Impl
{
public:
enum Proactor_Type
{
/// Base class type
PROACTOR_POSIX = 0,
/// Aio_suspend() based
PROACTOR_AIOCB = 1,
/// Signals notifications
PROACTOR_SIG = 2,
/// SUN specific aiowait()
PROACTOR_SUN = 3,
/// Callback notifications
PROACTOR_CB = 4
};
enum SystemType // open for future extention
{
ACE_OS_UNDEFINED= 0x0000,
ACE_OS_WIN = 0x0100, // for future
ACE_OS_WIN_NT = ACE_OS_WIN | 0x0001,
ACE_OS_WIN_2000 = ACE_OS_WIN | 0x0002,
ACE_OS_SUN = 0x0200, // Sun Solaris family
ACE_OS_SUN_55 = ACE_OS_SUN | 0x0001,
ACE_OS_SUN_56 = ACE_OS_SUN | 0x0002,
ACE_OS_SUN_57 = ACE_OS_SUN | 0x0004,
ACE_OS_SUN_58 = ACE_OS_SUN | 0x0008,
ACE_OS_HPUX = 0x0400, // HPUX family
ACE_OS_HPUX_11 = ACE_OS_HPUX | 0x0001,
ACE_OS_LINUX = 0x0800, // Linux family
ACE_OS_FREEBSD = 0x1000, // FreeBSD family
ACE_OS_IRIX = 0x2000, // SGI IRIX family
ACE_OS_OPENBSD = 0x4000 // OpenBSD familty
};
enum Opcode {
ACE_OPCODE_READ = 1,
ACE_OPCODE_WRITE = 2
};
virtual Proactor_Type get_impl_type (void);
/// Virtual destructor.
virtual ~ACE_POSIX_Proactor (void);
/// Close down the Proactor.
virtual int close (void);
/**
* Dispatch a single set of events. If @a wait_time elapses before
* any events occur, return 0. Return 1 on success i.e., when a
* completion is dispatched, non-zero (-1) on errors and errno is
* set accordingly.
*/
virtual int handle_events (ACE_Time_Value &wait_time) = 0;
/**
* Block indefinitely until at least one event is dispatched.
* Dispatch a single set of events.Return 1 on success i.e., when a
* completion is dispatched, non-zero (-1) on errors and errno is
* set accordingly.
*/
virtual int handle_events (void) = 0;
/**
* Post a result to the completion port of the Proactor. If errors
* occur, the result will be deleted by this method. If successful,
* the result will be deleted by the Proactor when the result is
* removed from the completion port. Therefore, the result should
* have been dynamically allocated and should be orphaned by the
* user once this method is called.
*/
virtual int post_completion (ACE_POSIX_Asynch_Result *result) = 0;
virtual int start_aio (ACE_POSIX_Asynch_Result *result, Opcode op) = 0;
virtual int cancel_aio (ACE_HANDLE h) = 0;
/// Task to process pseudo-asynchronous operations
ACE_Asynch_Pseudo_Task &get_asynch_pseudo_task ();
/// This function is a no-op function for Unix systems. Returns 0.
virtual int register_handle (ACE_HANDLE handle,
const void *completion_key);
/// @@ This is a no-op on POSIX platforms. Returns 0.
int wake_up_dispatch_threads (void);
/// @@ This is a no-op on POSIX platforms. Returns 0.
int close_dispatch_threads (int wait);
/// @@ This is a no-op on POSIX platforms. Returns 0.
size_t number_of_threads (void) const;
void number_of_threads (size_t threads);
/// This is a no-op in POSIX. Returns ACE_INVALID_HANDLE.
virtual ACE_HANDLE get_handle (void) const;
// Methods used to create Asynch IO factory and result objects. We
// create the right objects here in these methods.
virtual ACE_Asynch_Read_Stream_Impl *create_asynch_read_stream (void);
virtual ACE_Asynch_Read_Stream_Result_Impl *
create_asynch_read_stream_result (const ACE_Handler::Proxy_Ptr &handler_proxy,
ACE_HANDLE handle,
ACE_Message_Block &message_block,
size_t bytes_to_read,
const void *act,
ACE_HANDLE event = ACE_INVALID_HANDLE,
int priority = 0,
int signal_number = ACE_SIGRTMIN);
virtual ACE_Asynch_Write_Stream_Impl *create_asynch_write_stream (void);
virtual ACE_Asynch_Write_Stream_Result_Impl *
create_asynch_write_stream_result (const ACE_Handler::Proxy_Ptr &handler_proxy,
ACE_HANDLE handle,
ACE_Message_Block &message_block,
size_t bytes_to_write,
const void *act,
ACE_HANDLE event = ACE_INVALID_HANDLE,
int priority = 0,
int signal_number = ACE_SIGRTMIN);
virtual ACE_Asynch_Read_File_Impl *create_asynch_read_file (void);
virtual ACE_Asynch_Read_File_Result_Impl *
create_asynch_read_file_result (const ACE_Handler::Proxy_Ptr &handler_proxy,
ACE_HANDLE handle,
ACE_Message_Block &message_block,
size_t bytes_to_read,
const void *act,
u_long offset,
u_long offset_high,
ACE_HANDLE event = ACE_INVALID_HANDLE,
int priority = 0,
int signal_number = ACE_SIGRTMIN);
virtual ACE_Asynch_Write_File_Impl *create_asynch_write_file (void);
virtual ACE_Asynch_Write_File_Result_Impl *
create_asynch_write_file_result (const ACE_Handler::Proxy_Ptr &handler_proxy,
ACE_HANDLE handle,
ACE_Message_Block &message_block,
size_t bytes_to_write,
const void *act,
u_long offset,
u_long offset_high,
ACE_HANDLE event = ACE_INVALID_HANDLE,
int priority = 0,
int signal_number = ACE_SIGRTMIN);
virtual ACE_Asynch_Read_Dgram_Impl *create_asynch_read_dgram (void);
virtual ACE_Asynch_Read_Dgram_Result_Impl *
create_asynch_read_dgram_result (const ACE_Handler::Proxy_Ptr &handler_proxy,
ACE_HANDLE handle,
ACE_Message_Block *message_block,
size_t bytes_to_read,
int flags,
int protocol_family,
const void* act,
ACE_HANDLE event = ACE_INVALID_HANDLE,
int priority = 0,
int signal_number = ACE_SIGRTMIN);
virtual ACE_Asynch_Write_Dgram_Impl *create_asynch_write_dgram (void);
virtual ACE_Asynch_Write_Dgram_Result_Impl *
create_asynch_write_dgram_result (const ACE_Handler::Proxy_Ptr &handler_proxy,
ACE_HANDLE handle,
ACE_Message_Block *message_block,
size_t bytes_to_write,
int flags,
const void* act,
ACE_HANDLE event = ACE_INVALID_HANDLE,
int priority = 0,
int signal_number = ACE_SIGRTMIN);
virtual ACE_Asynch_Accept_Impl *create_asynch_accept (void);
virtual ACE_Asynch_Accept_Result_Impl *
create_asynch_accept_result (const ACE_Handler::Proxy_Ptr &handler_proxy,
ACE_HANDLE listen_handle,
ACE_HANDLE accept_handle,
ACE_Message_Block &message_block,
size_t bytes_to_read,
const void *act,
ACE_HANDLE event = ACE_INVALID_HANDLE,
int priority = 0,
int signal_number = ACE_SIGRTMIN);
virtual ACE_Asynch_Connect_Impl *create_asynch_connect (void);
virtual ACE_Asynch_Connect_Result_Impl *
create_asynch_connect_result (const ACE_Handler::Proxy_Ptr &handler_proxy,
ACE_HANDLE connect_handle,
const void *act,
ACE_HANDLE event = ACE_INVALID_HANDLE,
int priority = 0,
int signal_number = ACE_SIGRTMIN);
virtual ACE_Asynch_Transmit_File_Impl *create_asynch_transmit_file (void);
virtual ACE_Asynch_Transmit_File_Result_Impl *
create_asynch_transmit_file_result (const ACE_Handler::Proxy_Ptr &handler_proxy,
ACE_HANDLE socket,
ACE_HANDLE file,
ACE_Asynch_Transmit_File::Header_And_Trailer *header_and_trailer,
size_t bytes_to_write,
u_long offset,
u_long offset_high,
size_t bytes_per_send,
u_long flags,
const void *act,
ACE_HANDLE event = ACE_INVALID_HANDLE,
int priority = 0,
int signal_number = ACE_SIGRTMIN);
/// Create a timer result object which can be used with the Timer
/// mechanism of the Proactor.
virtual ACE_Asynch_Result_Impl *
create_asynch_timer (const ACE_Handler::Proxy_Ptr &handler_proxy,
const void *act,
const ACE_Time_Value &tv,
ACE_HANDLE event = ACE_INVALID_HANDLE,
int priority = 0,
int signal_number = ACE_SIGRTMIN);
protected:
/// Constructor.
ACE_POSIX_Proactor (void);
/**
* Protect against structured exceptions caused by user code when
* dispatching handles. The <completion_key> is not very useful
* compared to <AST> that can be associated each asynchronous
* operation. <completion_key> is implemented right now for the
* POSIX Proators.
*/
void application_specific_code (ACE_POSIX_Asynch_Result *asynch_result,
size_t bytes_transferred,
const void *completion_key,
u_long error);
/**
* Post <how_many> completions to the completion port so that all
* threads can wake up. This is used in conjunction with the
* <run_event_loop>.
*/
virtual int post_wakeup_completions (int how_many);
protected:
/// Handler to handle the wakeups. This works in conjunction with the
/// <ACE_Proactor::run_event_loop>.
ACE_Handler wakeup_handler_;
int os_id_;
private:
/// Task to process pseudo-asynchronous accept/connect
ACE_Asynch_Pseudo_Task pseudo_task_;
};
// Forward declarations.
class ACE_AIOCB_Notify_Pipe_Manager;
/**
* @class ACE_POSIX_AIOCB_Proactor
*
* @brief This Proactor makes use of Asynchronous I/O Control Blocks
* (AIOCB) to notify/get the completion status of the <aio_>
* operations issued.
*/
class ACE_Export ACE_POSIX_AIOCB_Proactor : public ACE_POSIX_Proactor
{
/// Handler needs to call application specific code.
friend class ACE_AIOCB_Notify_Pipe_Manager;
/// This class does the registering of Asynch Operations with the
/// Proactor which is necessary in the AIOCB strategy.
friend class ACE_POSIX_Asynch_Operation;
friend class ACE_POSIX_Asynch_Accept;
friend class ACE_POSIX_Asynch_Connect;
public:
/// Constructor defines max number asynchronous operations
/// which can be started at the same time
ACE_POSIX_AIOCB_Proactor (size_t nmaxop = ACE_AIO_DEFAULT_SIZE);
virtual Proactor_Type get_impl_type (void);
/// Destructor.
virtual ~ACE_POSIX_AIOCB_Proactor (void);
/// Close down the Proactor.
virtual int close (void);
/**
* Dispatch a single set of events. If @a wait_time elapses before
* any events occur, return 0. Return 1 on success i.e., when a
* completion is dispatched, non-zero (-1) on errors and errno is
* set accordingly.
*/
virtual int handle_events (ACE_Time_Value &wait_time);
/**
* Block indefinitely until at least one event is dispatched.
* Dispatch a single set of events. If @a wait_time elapses before
* any events occur, return 0. Return 1 on success i.e., when a
* completion is dispatched, non-zero (-1) on errors and errno is
* set accordingly.
*/
virtual int handle_events (void);
/// Post a result to the completion port of the Proactor.
virtual int post_completion (ACE_POSIX_Asynch_Result *result);
virtual int start_aio (ACE_POSIX_Asynch_Result *result,
ACE_POSIX_Proactor::Opcode op);
/**
* This method should be called from
* ACE_POSIX_Asynch_Operation::cancel()
* instead of usual ::aio_cancel.
* For all deferred AIO requests with handle "h"
* it removes its from the lists and notifies user.
* For all running AIO requests with handle "h"
* it calls ::aio_cancel. According to the POSIX standards
* we will receive ECANCELED for all ::aio_canceled AIO requests
* later on return from ::aio_suspend
*/
virtual int cancel_aio (ACE_HANDLE h);
protected:
/// Special constructor for ACE_SUN_Proactor
/// and ACE_POSIX_SIG_Proactor
ACE_POSIX_AIOCB_Proactor (size_t nmaxop,
ACE_POSIX_Proactor::Proactor_Type ptype);
/// Check AIO for completion, error and result status
/// Return: 1 - AIO completed , 0 - not completed yet
virtual int get_result_status (ACE_POSIX_Asynch_Result *asynch_result,
int &error_status,
size_t &transfer_count);
/// Create aiocb list
int create_result_aiocb_list (void);
/// Call this method from derived class when virtual table is
/// built.
int delete_result_aiocb_list (void);
/// Call these methods from derived class when virtual table is
/// built.
void create_notify_manager (void);
void delete_notify_manager (void);
/// Define the maximum number of asynchronous I/O requests
/// for the current OS
void check_max_aio_num (void) ;
/// To identify requests from Notify_Pipe_Manager
void set_notify_handle (ACE_HANDLE h);
/**
* Dispatch a single set of events. If <milli_seconds> elapses
* before any events occur, return 0. Return 1 if a completion
* dispatched. Return -1 on errors.
*/
int handle_events_i (u_long milli_seconds);
/// Start deferred AIO if necessary
int start_deferred_aio (void);
/// Cancel running or deferred AIO
virtual int cancel_aiocb (ACE_POSIX_Asynch_Result * result);
/// Extract the results of aio.
ACE_POSIX_Asynch_Result *find_completed_aio (int &error_status,
size_t &transfer_count,
size_t &index,
size_t &count);
/// Find free slot to store result and aiocb pointer
virtual ssize_t allocate_aio_slot (ACE_POSIX_Asynch_Result *result);
/// Initiate an aio operation.
virtual int start_aio_i (ACE_POSIX_Asynch_Result *result);
/// Notify queue of "post_completed" ACE_POSIX_Asynch_Results
/// called from post_completion method
virtual int notify_completion (int sig_num);
/// Put "post_completed" result into the internal queue
int putq_result (ACE_POSIX_Asynch_Result *result);
/// Get "post_completed" result from the internal queue
ACE_POSIX_Asynch_Result * getq_result (void);
/// Clear the internal results queue
int clear_result_queue (void);
/// Process the internal results queue
int process_result_queue (void);
/// This class takes care of doing <accept> when we use
/// AIO_CONTROL_BLOCKS strategy.
ACE_AIOCB_Notify_Pipe_Manager *aiocb_notify_pipe_manager_;
/// Use a dynamically allocated array to keep track of all the aio's
/// issued currently.
aiocb **aiocb_list_;
ACE_POSIX_Asynch_Result **result_list_;
/// To maintain the maximum size of the array (list).
size_t aiocb_list_max_size_;
/// To maintain the current size of the array (list).
size_t aiocb_list_cur_size_;
/// Mutex to protect work with lists.
ACE_SYNCH_MUTEX mutex_;
/// The purpose of this member is only to identify asynchronous request
/// from NotifyManager. We will reserve for it always slot 0
/// in the list of aiocb's to be sure that don't lose notifications.
ACE_HANDLE notify_pipe_read_handle_ ;
/// Number of ACE_POSIX_Asynch_Result's waiting for start
/// i.e. deferred AIOs
size_t num_deferred_aiocb_ ;
/// Number active,i.e. running requests
size_t num_started_aio_ ;
/// Queue which keeps "post_completed" ACE_POSIX_Asynch_Result's
ACE_Unbounded_Queue<ACE_POSIX_Asynch_Result *> result_queue_;
};
#if defined(ACE_HAS_POSIX_REALTIME_SIGNALS)
/**
* @class ACE_POSIX_SIG_Proactor
*
* @brief This Proactor implementation does completion event detection using
* POSIX Real Time signals. @c sigtimedwait() or @c sigwaitinfo() is
* used to wait for completions.
* The real-time signals that are going to be used with this
* Proactor should be given apriori in the constructor, so that
* those signals can be masked from asynchronous delivery.
*/
class ACE_Export ACE_POSIX_SIG_Proactor : public ACE_POSIX_AIOCB_Proactor
{
/**
* This class does the registering of Asynch Operations with the
* Proactor which is necessary in the SIG strategy, because we need
* to store the signal number.
*/
friend class ACE_POSIX_SIG_Asynch_Operation;
public:
/**
* This constructor masks only the <ACE_SIGRTMIN>
* real-time signal. Only this signal should be used to issue
* asynchronous operations using this Proctor.
*/
ACE_POSIX_SIG_Proactor (size_t nmaxop = ACE_AIO_DEFAULT_SIZE);
virtual Proactor_Type get_impl_type (void);
/**
* This constructor should be used to tell the Proactor to mask and
* wait for the real-time signals specified in this set. Only these
* signals should be used by the asynchronous operations when they
* use this Proactor.
*/
ACE_POSIX_SIG_Proactor (const sigset_t mask_set,
size_t nmaxop = ACE_AIO_DEFAULT_SIZE);
/// Destructor.
virtual ~ACE_POSIX_SIG_Proactor (void);
/**
* Dispatch a single set of events. If @a wait_time elapses before
* any events occur, return 0. Return 1 on success i.e., when a
* completion is dispatched, non-zero (-1) on errors and errno is
* set accordingly.
*/
virtual int handle_events (ACE_Time_Value &wait_time);
/**
* Block indefinitely until at least one event is dispatched.
* Dispatch a single set of events. If <wait_time> elapses before
* any events occur, return 0. Return 1 on success i.e., when a
* completion is dispatched, non-zero (-1) on errors and errno is
* set accordingly.
*/
virtual int handle_events (void);
/// Post a result to the completion port of the Proactor.
/// now it is implemented in base ACE_POSIX_AIOCB_Proactor class
///virtual int post_completion (ACE_POSIX_Asynch_Result *result);
/**
* If @a signal_number is -1, check with the Proactor and use one of
* the signals that is present in the mask set (i.e., the signals for
* which the Proactor will be waiting) of the Proactor. If there are
* more than one signal, the higher numbered signal will be chosen.
*/
virtual ACE_Asynch_Result_Impl *create_asynch_timer
(const ACE_Handler::Proxy_Ptr &handler_proxy,
const void *act,
const ACE_Time_Value &tv,
ACE_HANDLE event = ACE_INVALID_HANDLE,
int priority = 0,
int signal_number = ACE_SIGRTMIN);
protected:
/// To setup the handler for a real-time signbal.
int setup_signal_handler (int signal_number) const;
/// Insures that RT_completion_signals_ are blocked in the calling thread.
int block_signals (void) const;
/**
* Dispatch a single set of events. @a timeout is a pointer to a
* relative time representing the maximum amount of time to wait for
* an event to occur. If 0, wait indefinitely.
*
* @retval 0 A timeout occurred before any event was detected.
* @retval 1 A completion was dispatched.
* @retval -1 An error occurred; errno contains an error code.
*/
virtual int handle_events_i (const ACE_Time_Value *timeout);
/// Find free slot to store result and aiocb pointer
virtual ssize_t allocate_aio_slot (ACE_POSIX_Asynch_Result *result);
/// Notify queue of "post_completed" ACE_POSIX_Asynch_Results
/// called from post_completion method
virtual int notify_completion (int sig_num);
/**
* These signals are used for completion notification by the
* Proactor. The signals specified while issuing asynchronous
* operations are stored here in this set. These signals are masked
* for a thread when it calls handle_events().
*/
sigset_t RT_completion_signals_;
};
#endif /* ACE_HAS_POSIX_REALTIME_SIGNALS */
/**
* @class ACE_POSIX_Asynch_Timer
*
* @brief This class is posted to the completion port when a timer
* expires. When the @c complete() method of this object is
* called, the handler's @c handle_timeout() method will be
* called.
*/
class ACE_Export ACE_POSIX_Asynch_Timer : public ACE_POSIX_Asynch_Result
{
/// The factory method for this class is with the POSIX_Proactor
/// class.
friend class ACE_POSIX_Proactor;
#if defined(ACE_HAS_POSIX_REALTIME_SIGNALS)
friend class ACE_POSIX_SIG_Proactor;
#endif
protected:
/// Constructor.
ACE_POSIX_Asynch_Timer (const ACE_Handler::Proxy_Ptr &handler_proxy,
const void *act,
const ACE_Time_Value &tv,
ACE_HANDLE event = ACE_INVALID_HANDLE,
int priority = 0,
int signal_number = ACE_SIGRTMIN);
/// Destructor.
virtual ~ACE_POSIX_Asynch_Timer (void) {}
/// This method calls the handler's handle_timeout method.
virtual void complete (size_t bytes_transferred,
int success,
const void *completion_key,
u_long error = 0);
/// Time value requested by caller
ACE_Time_Value time_;
};
ACE_END_VERSIONED_NAMESPACE_DECL
#if defined (__ACE_INLINE__)
#include "ace/POSIX_Proactor.inl"
#endif /* __ACE_INLINE__ */
#endif /* ACE_HAS_AIO_CALLS && ACE_HAS_POSIX_REALTIME_SIGNALS */
#endif /* ACE_POSIX_PROACTOR_H */