server/dep/acelite/ace/Timer_Queue_Adapters.cpp
Salja f4be15a7af Some missing from merge.
Signed-off-by: Salja <salja2012@hotmail.de>
2020-02-16 02:50:23 +00:00

375 lines
12 KiB
C++

// $Id: Timer_Queue_Adapters.cpp 97493 2013-12-31 07:45:27Z johnnyw $
#ifndef ACE_TIMER_QUEUE_ADAPTERS_CPP
#define ACE_TIMER_QUEUE_ADAPTERS_CPP
#include "ace/Timer_Queue_Adapters.h"
#if defined (ACE_HAS_DEFERRED_TIMER_COMMANDS)
#include "ace/Functor.h"
#endif /* ACE_HAS_DEFERRED_TIMER_COMMANDS */
#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */
# if !defined (__ACE_INLINE__)
# include "ace/Timer_Queue_Adapters.inl"
# endif /* __ACE_INLINE__ */
#include "ace/Reverse_Lock_T.h"
#include "ace/Signal.h"
#include "ace/OS_NS_unistd.h"
#include "ace/OS_NS_sys_time.h"
ACE_BEGIN_VERSIONED_NAMESPACE_DECL
template <class TQ, class TYPE> TQ &
ACE_Async_Timer_Queue_Adapter<TQ, TYPE>::timer_queue (void)
{
return this->timer_queue_;
}
template <class TQ, class TYPE> int
ACE_Async_Timer_Queue_Adapter<TQ, TYPE>::cancel (long timer_id,
const void **act)
{
// Block designated signals.
ACE_Sig_Guard sg (&this->mask_);
ACE_UNUSED_ARG (sg);
return this->timer_queue_.cancel (timer_id, act);
}
template <class TQ, class TYPE> int
ACE_Async_Timer_Queue_Adapter<TQ, TYPE>::expire (void)
{
// Block designated signals.
ACE_Sig_Guard sg (&this->mask_);
ACE_UNUSED_ARG (sg);
return this->timer_queue_.expire ();
}
template <class TQ, class TYPE> int
ACE_Async_Timer_Queue_Adapter<TQ, TYPE>::schedule_ualarm (void)
{
ACE_Time_Value tv = this->timer_queue_.earliest_time ()
- this->timer_queue_.gettimeofday ();
// Beware of negative times and zero times (which cause problems for
// <ualarm>).
if (tv < ACE_Time_Value::zero)
tv = ACE_Time_Value (0, 1);
// @@ This code should be clever enough to avoid updating the
// <ualarm> if we haven't actually changed the earliest time.
// Schedule a new timer.
ACE_OS::ualarm (tv);
return 0;
}
template <class TQ, class TYPE> long
ACE_Async_Timer_Queue_Adapter<TQ, TYPE>::schedule (TYPE eh,
const void *act,
const ACE_Time_Value &future_time,
const ACE_Time_Value &interval)
{
ACE_UNUSED_ARG (act);
ACE_UNUSED_ARG (interval);
// Block designated signals.
ACE_Sig_Guard sg (&this->mask_);
ACE_UNUSED_ARG (sg);
// @@ We still need to implement interval timers...
long tid = this->timer_queue_.schedule (eh, act, future_time);
if (tid == -1)
ACELIB_ERROR_RETURN ((LM_ERROR,
ACE_TEXT ("%p\n"),
ACE_TEXT ("schedule_timer")),
-1);
if (this->schedule_ualarm () == -1)
return 0;
return tid;
}
template <class TQ, class TYPE>
ACE_Async_Timer_Queue_Adapter<TQ, TYPE>::ACE_Async_Timer_Queue_Adapter (ACE_Sig_Set *mask)
// If <mask> == 0, block *all* signals when the SIGARLM handler is
// running, else just block those in the mask.
: mask_ (mask)
{
// The following code is necessary to selectively "block" certain
// signals when SIGALRM is running. Also, we always restart system
// calls that are interrupted by the signals.
ACE_Sig_Action sa ((ACE_SignalHandler) 0,
this->mask_,
SA_RESTART);
if (this->sig_handler_.register_handler (SIGALRM, this, &sa) == -1)
ACELIB_ERROR ((LM_ERROR,
ACE_TEXT ("%p\n"),
ACE_TEXT ("register_handler")));
}
// This is the signal handler function for the asynchronous timer
// list. It gets invoked asynchronously when the SIGALRM signal
// occurs.
template <class TQ, class TYPE> int
ACE_Async_Timer_Queue_Adapter<TQ, TYPE>::handle_signal (int signum,
siginfo_t *,
ucontext_t *)
{
switch (signum)
{
case SIGALRM:
{
// Expire the pending timers.
// @@ We need to figure out how to implement interval
// timers...
this->timer_queue_.expire ();
// Only schedule a new timer if there is one in the list.
// @@ This code should also become smarter to avoid
// unnecessary calls to ualarm().
if (this->timer_queue_.is_empty () == 0)
return this->schedule_ualarm ();
else
return 0;
/* NOTREACHED */
}
default:
ACELIB_ERROR_RETURN ((LM_ERROR,
"unexpected signal %S\n",
signum),
-1);
/* NOTREACHED */
}
}
template<class TQ, class TYPE>
ACE_Thread_Timer_Queue_Adapter<TQ, TYPE>::ACE_Thread_Timer_Queue_Adapter (ACE_Thread_Manager *tm,
TQ* timer_queue)
: ACE_Task_Base (tm),
timer_queue_(timer_queue),
delete_timer_queue_(false),
condition_ (mutex_),
active_ (true), // Assume that we start in active mode.
thr_id_ (ACE_OS::NULL_thread)
{
if (timer_queue_ == 0)
{
ACE_NEW (this->timer_queue_,
TQ);
this->delete_timer_queue_ = true;
}
}
template<class TQ, class TYPE>
ACE_Thread_Timer_Queue_Adapter<TQ, TYPE>::~ACE_Thread_Timer_Queue_Adapter (void)
{
if (this->delete_timer_queue_)
{
delete this->timer_queue_;
this->timer_queue_ = 0;
this->delete_timer_queue_ = false;
}
else if (this->timer_queue_)
{
this->timer_queue_->close ();
this->timer_queue_ = 0;
}
}
template<class TQ, class TYPE> ACE_SYNCH_RECURSIVE_MUTEX &
ACE_Thread_Timer_Queue_Adapter<TQ, TYPE>::mutex (void)
{
return this->mutex_;
}
template<class TQ, class TYPE> long
ACE_Thread_Timer_Queue_Adapter<TQ, TYPE>::schedule
(TYPE handler,
const void *act,
const ACE_Time_Value &future_time,
const ACE_Time_Value &interval)
{
ACE_GUARD_RETURN (ACE_SYNCH_RECURSIVE_MUTEX, guard, this->mutex_, -1);
long result = this->timer_queue_->schedule (handler, act, future_time, interval);
this->condition_.signal ();
return result;
}
template<class TQ, class TYPE> int
ACE_Thread_Timer_Queue_Adapter<TQ, TYPE>::cancel (long timer_id,
const void **act)
{
ACE_GUARD_RETURN (ACE_SYNCH_RECURSIVE_MUTEX, guard, this->mutex_, -1);
int result = this->timer_queue_->cancel (timer_id, act);
condition_.signal ();
return result;
}
template<class TQ, class TYPE> void
ACE_Thread_Timer_Queue_Adapter<TQ, TYPE>::deactivate (void)
{
ACE_GUARD (ACE_SYNCH_RECURSIVE_MUTEX, guard, this->mutex_);
this->active_ = false;
this->condition_.signal ();
}
template<class TQ, class TYPE> int
ACE_Thread_Timer_Queue_Adapter<TQ, TYPE>::svc (void)
{
ACE_GUARD_RETURN (ACE_SYNCH_RECURSIVE_MUTEX, guard, this->mutex_, -1);
this->thr_id_ = ACE_Thread::self ();
// Thread cancellation point, if ACE supports it.
//
// Note: This call generates a warning under Solaris because the header
// file /usr/include/pthread.h redefines the routine argument. This
// is a bug in the Solaris header files and has nothing to do with
// ACE.
# if !defined (ACE_LACKS_PTHREAD_CANCEL)
ACE_PTHREAD_CLEANUP_PUSH (&this->condition_.mutex ().get_nesting_mutex ());
# endif /* ACE_LACKS_PTHREAD_CANCEL */
while (this->active_)
{
# if defined (ACE_HAS_DEFERRED_TIMER_COMMANDS)
// Temporarily suspend ownership of the timer queue mutex in
// order to dispatch deferred execution commands. These
// commands are to be treated as executing in a context
// "external" to the timer queue adapter, and thus must compete
// separately for this lock.
mutex_.release ();
this->dispatch_commands ();
// Re-acquire ownership of the timer queue mutex in order to
// restore the "internal" timer queue adapter context
mutex_.acquire ();
# endif /* ACE_HAS_DEFERRED_TIMER_COMMANDS */
// If the queue is empty, sleep until there is a change on it.
if (this->timer_queue_->is_empty ())
this->condition_.wait ();
else
{
// Compute the remaining time, being careful not to sleep
// for "negative" amounts of time.
ACE_Time_Value const tv_curr =
this->timer_queue_->gettimeofday ();
ACE_Time_Value const tv_earl =
this->timer_queue_->earliest_time ();
if (tv_earl > tv_curr)
{
// The earliest time on the Timer_Queue lies in future;
// convert the tv to an absolute time.
ACE_Time_Value const tv = this->timer_queue_->gettimeofday () + (tv_earl - tv_curr);
// ACELIB_DEBUG ((LM_DEBUG, ACE_TEXT ("waiting until %u.%3.3u secs\n"),
// tv.sec(), tv.msec()));
this->condition_.wait (&tv);
}
}
// Expire timers anyway, at worst this is a no-op. Release the lock
// while dispatching; the timer queue has its own lock to protect
// itself.
{
ACE_Reverse_Lock<ACE_SYNCH_RECURSIVE_MUTEX> rel (this->mutex_);
ACE_GUARD_RETURN (ACE_Reverse_Lock<ACE_SYNCH_RECURSIVE_MUTEX>,
rmon, rel, -1);
this->timer_queue_->expire ();
}
}
// Thread cancellation point, if ACE supports it.
# if !defined (ACE_LACKS_PTHREAD_CANCEL)
ACE_PTHREAD_CLEANUP_POP (0);
# endif /* ACE_LACKS_PTHREAD_CANCEL */
return 0;
}
template<class TQ, class TYPE> int
ACE_Thread_Timer_Queue_Adapter<TQ, TYPE>::activate (long flags,
int ,
int ,
long priority,
int grp_id,
ACE_Task_Base *task,
ACE_hthread_t [],
void *stack[],
size_t stack_size[],
ACE_thread_t thread_ids[],
const char* thr_name[])
{
// Make sure to set this flag in case we were deactivated earlier.
this->active_ = true;
// Make sure that we only allow a single thread to be spawned for
// our adapter. Otherwise, too many weird things can happen.
return ACE_Task_Base::activate (flags, 1, 0, priority, grp_id, task, 0,
stack, stack_size, thread_ids, thr_name);
}
# if defined (ACE_HAS_DEFERRED_TIMER_COMMANDS)
// Enqueues a command object for execution just before waiting on the next
// timer event. This allows deferred execution of commands that cannot
// be performed in the timer event handler context, such as registering
// or cancelling timers on platforms where the timer queue mutex is not
// recursive.
template<class TQ, class TYPE> int
ACE_Thread_Timer_Queue_Adapter<TQ, TYPE>::enqueue_command (ACE_Command_Base *cmd,
COMMAND_ENQUEUE_POSITION pos)
{
// Serialize access to the command queue.
ACE_GUARD_RETURN (ACE_SYNCH_MUTEX, guard, this->command_mutex_, -1);
if (pos == ACE_Thread_Timer_Queue_Adapter<TQ, TYPE>::TAIL)
return command_queue_.enqueue_tail (cmd);
else
return command_queue_.enqueue_head (cmd);
}
// Dispatches all command objects enqueued in the most recent event
// handler context.
template<class TQ, class TYPE> int
ACE_Thread_Timer_Queue_Adapter<TQ, TYPE>::dispatch_commands (void)
{
// Serialize access to the command queue.
ACE_GUARD_RETURN (ACE_SYNCH_MUTEX, guard, this->command_mutex_, -1);
// loop through the enqueued commands
ACE_Command_Base *cmd = 0;
while (command_queue_.dequeue_head (cmd) == 0)
if (cmd)
{
cmd->execute ();
delete cmd;
}
return 0;
}
# endif /* ACE_HAS_DEFERRED_TIMER_COMMANDS */
ACE_END_VERSIONED_NAMESPACE_DECL
#endif /* ACE_TIMER_QUEUE_ADAPTERS_CPP */