Memory changes 2.2

A few more internal changes to the RangeList systems.

* No longer using a QuickAccess dictionary.

  * The performance of the dictionary wasn't much faster than just doing binary searches.

  * Using just binary searches allows us to take advantage of span and array returns as they're are faster than linked lists when iterating or copying the overlaps.

Small code optimizations.

Fixes a few leftover crashes.
This commit is contained in:
LotP 2025-09-06 11:10:55 -05:00 committed by KeatonTheBot
parent c2f54d0a5c
commit dae7ae7eaf
14 changed files with 242 additions and 239 deletions

View file

@ -81,13 +81,11 @@ namespace Ryujinx.Graphics.Gpu.Memory
MemoryRange subRange = range.GetSubRange(index);
_buffers.Lock.EnterReadLock();
(RangeItem<Buffer> first, RangeItem<Buffer> last) = _buffers.FindOverlaps(subRange.Address, subRange.Size);
Span<RangeItem<Buffer>> overlaps = _buffers.FindOverlapsAsSpan(subRange.Address, subRange.Size);
RangeItem<Buffer> current = first;
while (last != null && current != last.Next)
for (int i = 0; i < overlaps.Length; i++)
{
current.Value.Unmapped(subRange.Address, subRange.Size);
current = current.Next;
overlaps[i].Value.Unmapped(subRange.Address, subRange.Size);
}
_buffers.Lock.ExitReadLock();
@ -490,9 +488,9 @@ namespace Ryujinx.Graphics.Gpu.Memory
private void CreateBufferAligned(ulong address, ulong size, BufferStage stage)
{
_buffers.Lock.EnterWriteLock();
(RangeItem<Buffer> first, RangeItem<Buffer> last) = _buffers.FindOverlaps(address, size);
Span<RangeItem<Buffer>> overlaps = _buffers.FindOverlapsAsSpan(address, size);
if (first is not null)
if (overlaps.Length > 0)
{
// The buffer already exists. We can just return the existing buffer
// if the buffer we need is fully contained inside the overlapping buffer.
@ -502,7 +500,7 @@ namespace Ryujinx.Graphics.Gpu.Memory
ulong endAddress = address + size;
if (first.Address > address || first.EndAddress < endAddress)
if (overlaps[0].Address > address || overlaps[0].EndAddress < endAddress)
{
bool anySparseCompatible = false;
@ -515,39 +513,40 @@ namespace Ryujinx.Graphics.Gpu.Memory
// sequential memory.
// Allowing for 2 pages (rather than just one) is necessary to catch cases where the
// range crosses a page, and after alignment, ends having a size of 2 pages.
if (first == last &&
address >= first.Address &&
endAddress - first.EndAddress <= BufferAlignmentSize * 2)
if (overlaps.Length == 1 &&
address >= overlaps[0].Address &&
endAddress - overlaps[0].EndAddress <= BufferAlignmentSize * 2)
{
// Try to grow the buffer by 1.5x of its current size.
// This improves performance in the cases where the buffer is resized often by small amounts.
ulong existingSize = first.Value.Size;
ulong existingSize = overlaps[0].Value.Size;
ulong growthSize = (existingSize + Math.Min(existingSize >> 1, MaxDynamicGrowthSize)) & ~BufferAlignmentMask;
size = Math.Max(size, growthSize);
endAddress = address + size;
(first, last) = _buffers.FindOverlaps(address, size);
overlaps = _buffers.FindOverlapsAsSpan(address, size);
}
address = Math.Min(address, first.Address);
endAddress = Math.Max(endAddress, last.EndAddress);
address = Math.Min(address, overlaps[0].Address);
endAddress = Math.Max(endAddress, overlaps[^1].EndAddress);
List<Buffer> overlaps = [];
RangeItem<Buffer>[] overlapsArray = overlaps.ToArray();
RangeItem<Buffer> current = first;
while (current != last.Next)
for (int i = 0; i < overlaps.Length; i++)
{
anySparseCompatible |= current.Value.SparseCompatible;
overlaps.Add(current.Value);
_buffers.Remove(current.Value);
current = current.Next;
anySparseCompatible |= overlaps[i].Value.SparseCompatible;
}
_buffers.RemoveRange(overlaps[0], overlaps[^1]);
_buffers.Lock.ExitWriteLock();
ulong newSize = endAddress - address;
Buffer newBuffer = CreateBufferAligned(address, newSize, stage, anySparseCompatible, overlaps);
Buffer newBuffer = CreateBufferAligned(address, newSize, stage, anySparseCompatible, overlapsArray);
_buffers.Lock.EnterWriteLock();
_buffers.Add(newBuffer);
}
@ -577,19 +576,19 @@ namespace Ryujinx.Graphics.Gpu.Memory
bool sparseAligned = alignment >= SparseBufferAlignmentSize;
_buffers.Lock.EnterWriteLock();
(RangeItem<Buffer> first, RangeItem<Buffer> last) = _buffers.FindOverlaps(address, size);
Span<RangeItem<Buffer>> overlaps = _buffers.FindOverlapsAsSpan(address, size);
if (first is not null)
if (overlaps.Length > 0)
{
// If the buffer already exists, make sure if covers the entire range,
// and make sure it is properly aligned, otherwise sparse mapping may fail.
ulong endAddress = address + size;
if (first.Address > address ||
first.EndAddress < endAddress ||
(first.Address & (alignment - 1)) != 0 ||
(!first.Value.SparseCompatible && sparseAligned))
if (overlaps[0].Address > address ||
overlaps[0].EndAddress < endAddress ||
(overlaps[0].Address & (alignment - 1)) != 0 ||
(!overlaps[0].Value.SparseCompatible && sparseAligned))
{
// We need to make sure the new buffer is properly aligned.
// However, after the range is aligned, it is possible that it
@ -597,33 +596,30 @@ namespace Ryujinx.Graphics.Gpu.Memory
// and ensure we cover all overlaps.
RangeItem<Buffer> oldFirst;
endAddress = Math.Max(endAddress, last.EndAddress);
endAddress = Math.Max(endAddress, overlaps[^1].EndAddress);
do
{
address = Math.Min(address, first.Address);
address = Math.Min(address, overlaps[0].Address);
address &= ~(alignment - 1);
oldFirst = first;
(first, last) = _buffers.FindOverlaps(address, endAddress - address);
oldFirst = overlaps[0];
overlaps = _buffers.FindOverlapsAsSpan(address, endAddress - address);
}
while (oldFirst != first);
while (oldFirst != overlaps[0]);
ulong newSize = endAddress - address;
List<Buffer> overlaps = [];
RangeItem<Buffer>[] overlapsArray = overlaps.ToArray();
RangeItem<Buffer> current = first;
while (current != last.Next)
{
overlaps.Add(current.Value);
_buffers.Remove(current.Value);
current = current.Next;
}
_buffers.RemoveRange(overlaps[0], overlaps[^1]);
Buffer newBuffer = CreateBufferAligned(address, newSize, stage, sparseAligned, overlaps);
_buffers.Lock.ExitWriteLock();
Buffer newBuffer = CreateBufferAligned(address, newSize, stage, sparseAligned, overlapsArray);
_buffers.Lock.EnterWriteLock();
_buffers.Add(newBuffer);
}
@ -635,6 +631,7 @@ namespace Ryujinx.Graphics.Gpu.Memory
_buffers.Add(buffer);
}
_buffers.Lock.ExitWriteLock();
}
@ -648,13 +645,13 @@ namespace Ryujinx.Graphics.Gpu.Memory
/// <param name="stage">The type of usage that created the buffer</param>
/// <param name="sparseCompatible">Indicates if the buffer can be used in a sparse buffer mapping</param>
/// <param name="overlaps">Buffers overlapping the range</param>
private Buffer CreateBufferAligned(ulong address, ulong size, BufferStage stage, bool sparseCompatible, List<Buffer> overlaps)
private Buffer CreateBufferAligned(ulong address, ulong size, BufferStage stage, bool sparseCompatible, RangeItem<Buffer>[] overlaps)
{
Buffer newBuffer = new(_context, _physicalMemory, address, size, stage, sparseCompatible, overlaps);
for (int index = 0; index < overlaps.Count; index++)
for (int index = 0; index < overlaps.Length; index++)
{
Buffer buffer = overlaps[index];
Buffer buffer = overlaps[index].Value;
int dstOffset = (int)(buffer.Address - newBuffer.Address);
@ -930,7 +927,7 @@ namespace Ryujinx.Graphics.Gpu.Memory
if (size != 0)
{
buffer = _buffers.FindOverlapFast(address, size).Value;
buffer = _buffers.FindOverlap(address, size).Value;
buffer.CopyFromDependantVirtualBuffers();
buffer.SynchronizeMemory(address, size);