pound-emu_pound/scripts/generate_jit_decoder_tests.py
Ronald Caesar e714dc47d0
jit/decoder: rename decoder script
Renames generate_decoder_tests.py to generate_jit_decoder_tests.py.

Signed-off-by: Ronald Caesar <github43132@proton.me>
2025-12-06 00:16:18 -04:00

454 lines
17 KiB
Python

"""
This script employs several sophisticated techniques to ensure the quality and
correctness of the generated tests.
# Instruction Parsing
The script begins by parsing the `arm32.inc` file. It uses a regular expression
to find all occurrences of the `INST()` macro and extracts three key pieces of
information for each instruction:
1. **Mnemonic**: A short, unique identifier (e.g., `ADD_imm`).
2. **Name**: A human-readable description (e.g., `"ADD (imm)"`).
3. **Bitstring**: A 32-character string representing the instruction's binary
encoding.
The bitstring is the most critical piece. It's a mix of `'0'`, `'1'`, and
wildcard characters (like `v`, `n`, `c`) that represent variable fields.
# Randomized Instantiation & Constraint System
To create a concrete test case from an abstract bitstring, the script must
generate a valid 32-bit integer. It does this by:
1. Setting the fixed `'0'` and `'1'` bits.
2. Randomly generating `'0'` or `'1'` for all wildcard bits.
However, simple randomization can be problematic. Certain ARM instructions
are specializations of more general patterns. For example, the `SXTB`
instruction is a special case of the `SXTAB` instruction where the `Rn`
register field is `1111`.
If we randomly generate an `SXTAB` test case where `Rn` happens to be `1111`,
the decoder might (correctly) identify it as `SXTB`. This would cause the
`SXTAB` test to fail.
To prevent this, the script uses a **constraint system**
(`get_instruction_constraints`). This function defines rules to avoid
generating ambiguous encodings. When generating a test for a general
instruction (`SXTAB`), it forces the specialized bits (`Rn`) to be a value other
than the one that would cause it to alias to the more specific instruction
(`SXTB`). This ensures each test validates exa ctly one unique instruction
definition.
# Oracle-Based Negative Testing
The most powerful feature of this script is its **negative verification**
strategy. For every fixed `'0'` or `'1'` bit in an instruction's bitstring,
the script generates a test case where that single bit is flipped.
This creates an instruction that is intentionally invalid *for that specific
pattern*.
The script then uses an "oracle" — a Python-based reference decoder
(`python_decode`) — to predict what this corrupted instruction *should*
decode to. The corrupted value might match a different valid instruction, or
it might be completely invalid (decode to `NULL`).
The generated C++ test then asserts that the actual C++ decoder's output
exactly matches the oracle's prediction. This guarantees that the decoder
rejects invalid patterns that are only one bit off from a valid one.
# Fuzz Testing
Finally, the script generates a fuzz test that feeds a large number (100,000)
of completely random 32-bit integers to the decoder. This test serves as a
stability and integrity check. If the decoder identifies any of these random
inputs as a valid instruction, it cross-verifies that the input truly matches
the mask and expected value for that instruction. This ensures the decoder
never produces "false positives" and is robust against arbitrary data.
"""
#!/usr/bin/env python3
import re
import sys
import argparse
import random
from typing import List, Dict, Optional, Tuple
CPP_HEADER = """/*
* GENERATED FILE - DO NOT EDIT
*
* This file is generated by scripts/generate_jit_decoder_tests.py
*
* PURPOSE:
* Provides 100% requirements-based test coverage for the ARM32 Instruction Decoder.
*/
#include "jit/frontend/decoder/arm32.h"
#include <gtest/gtest.h>
#include <random>
class Arm32DecoderGeneratedTest : public ::testing::Test {
protected:
void SetUp() override {
}
};
"""
class Instruction:
"""A container for a parsed instruction definition."""
def __init__(
self,
mnemonic: str,
name: str,
bitstring: str,
val: int,
mask: int,
expected: int,
):
self.mnemonic: str = mnemonic
self.name: str = name
self.bitstring: str = bitstring
self.val: int = val # A randomly generated valid encoding
self.mask: int = mask
self.expected: int = expected
def get_instruction_constraints(name: str) -> Dict[int, int]:
"""
Returns a dictionary of {bit_index: value} to force specific instructions
to avoid generating encodings that belong to other, more specific instructions.
This prevents instruction aliasing during randomized test case generation.
Args:
name: The human-readable name of the instruction (e.g., "SXTAB").
Returns:
A dictionary mapping bit positions (31-0) to a required value (0 or 1).
"""
constraints: Dict[int, int] = {}
# -------------------------------------------------------------------------
# Load/Store & Coprocessor Collisions
# -------------------------------------------------------------------------
# To ensure LDC doesn't look like MRRC, we force P=1 (Bit 24). MRRC requires bit 24=0.
if name in ["LDC", "LDC2", "STC", "STC2"]:
constraints[24] = 1
# Unprivileged Loads (LDRT/STRT) become aliases if P=0, W=1.
# Force P=1 for standard loads to avoid these aliases.
if name in [
"LDR (reg)",
"LDRB (reg)",
"LDRH (reg)",
"LDRSB (reg)",
"LDRSH (reg)",
"STR (reg)",
"STRB (reg)",
"STRH (reg)",
"LDRD (reg)",
"STRD (reg)",
]:
constraints[24] = 1
if name in ["LDR (imm)", "LDRB (imm)", "STR (imm)", "STRB (imm)"]:
constraints[24] = 1
# -------------------------------------------------------------------------
# Extend Instructions (e.g., SXTB/SXTAB)
# -------------------------------------------------------------------------
# SXTB is SXTAB with Rn=1111 (bits 19-16).
# When testing the more generic SXTAB, ensure Rn is not 1111. We force 0.
if name in ["SXTAB", "SXTAB16", "SXTAH", "UXTAB", "UXTAB16", "UXTAH"]:
constraints[19] = 0
constraints[18] = 0
constraints[17] = 0
constraints[16] = 0
# -------------------------------------------------------------------------
# Multiply Instructions
# -------------------------------------------------------------------------
# SMMUL is SMMLA with Ra=1111. Force Ra!=1111 for SMMLA tests.
if name in ["SMMLA", "SMMLS"]:
constraints[15] = 0
constraints[14] = 0
constraints[13] = 0
constraints[12] = 0
# SMUAD is SMLAD with Ra=1111. Force Ra!=1111 for SMLAD-family tests.
if name in ["SMLAD", "SMLSD", "SMLALD", "SMLSLD"]:
constraints[15] = 0
constraints[14] = 0
constraints[13] = 0
constraints[12] = 0
return constraints
def calculate_mask_and_expected(bitstring: str) -> Tuple[int, int]:
"""
Calculates the mask and expected value from a bitstring pattern.
- '1' sets the bit in both mask and expected.
- '0' sets the bit in the mask only.
- Wildcards leave the bit as 0 in both.
Args:
bitstring: The 32-character instruction pattern.
Returns:
A tuple containing the (mask, expected) integer values.
"""
mask: int = 0
expected: int = 0
for i, char in enumerate(bitstring):
bit_pos = 31 - i
if char == "0":
mask |= 1 << bit_pos
elif char == "1":
mask |= 1 << bit_pos
expected |= 1 << bit_pos
return mask, expected
def parse_bitstring_randomized(name: str, bitstring: str) -> int:
"""
Generates a concrete, valid instruction word from a bitstring pattern.
Applies constraints to avoid generating ambiguous instruction aliases.
Args:
name: The human-readable name of the instruction.
bitstring: The 32-character instruction pattern.
Returns:
A 32-bit integer representing a valid encoding of the instruction.
"""
val: int = 0
if len(bitstring) != 32:
raise ValueError(f"Invalid bitstring length: {len(bitstring)}")
constraints = get_instruction_constraints(name)
for i, char in enumerate(bitstring):
bit_pos = 31 - i
# Apply constraints first if they exist for this bit
if bit_pos in constraints:
if constraints[bit_pos] == 1:
val |= 1 << bit_pos
continue
# Set fixed bits or randomize wildcard bits
if char == "1":
val |= 1 << bit_pos
elif char not in ("0", "1"):
if random.choice([True, False]):
val |= 1 << bit_pos
return val
def parse_inc_file(input_path: str) -> List[Instruction]:
"""
Parses an arm32.inc file and returns a list of Instruction objects.
Args:
input_path: The path to the arm32.inc file.
Returns:
A list of Instruction objects, one for each INST macro found.
"""
instructions: List[Instruction] = []
regex = re.compile(r'INST\(\s*([A-Za-z0-9_]+),\s*"(.*?)",\s*"(.*?)"\s*\)')
try:
with open(input_path, "r") as f:
lines = f.readlines()
except FileNotFoundError:
print(f"Error: Could not find input file: {input_path}")
sys.exit(1)
for line in lines:
line = line.strip()
if not line or line.startswith("//"):
continue
match = regex.search(line)
if match:
mnemonic = match.group(1)
name = match.group(2)
bitstring = match.group(3)
val = parse_bitstring_randomized(name, bitstring)
mask, expected = calculate_mask_and_expected(bitstring)
# Manual Patch for MSR (imm), which has a complex, non-randomizable constraint.
# The bitstring is cccc00110010mmmm1111rrrrvvvvvvvv, but if `vvvv` fields are all 0,
# it becomes a different instruction. We force a non-zero immediate to ensure a valid MSR.
if name == "MSR (imm)":
val |= 1 << 16 # Set bit 16 of the immediate field
instructions.append(
Instruction(mnemonic, name, bitstring, val, mask, expected)
)
return instructions
def python_decode(val: int, instructions: List[Instruction]) -> Optional[str]:
"""
Acts as a reference decoder (oracle). Returns the name of the first instruction that matches 'val'.
This simulates the linear scan of the C decoder to predict the correct result.
Args:
val: The 32-bit instruction word to decode.
instructions: The list of instruction definitions, in order of precedence.
Returns:
The name of the matching instruction, or None if no match is found.
"""
for inst in instructions:
if (val & inst.mask) == inst.expected:
return inst.name
return None
def generate_cpp_tests(instructions: List[Instruction], output_path: str) -> None:
"""
Generates the C++ test file content and writes it to the output path.
Args:
instructions: A list of all instruction definitions.
output_path: The path to write the generated .cpp file.
"""
with open(output_path, "w") as f:
f.write(CPP_HEADER)
mnemonic_counts: Dict[str, int] = {}
for inst in instructions:
base_mnemonic = inst.mnemonic
val = inst.val
name = inst.name
bitstring = inst.bitstring
# Generate a unique test name, handling multiple definitions for one mnemonic
if base_mnemonic not in mnemonic_counts:
mnemonic_counts[base_mnemonic] = 1
test_name = f"Verify_{base_mnemonic}"
else:
mnemonic_counts[base_mnemonic] += 1
count = mnemonic_counts[base_mnemonic]
test_name = f"Verify_{base_mnemonic}_{count}"
f.write(f"TEST_F(Arm32DecoderGeneratedTest, {test_name}) {{\n")
# --- 1. Positive Verification ---
f.write(
f' // 1. Positive Verification: Ensures "{name}" is correctly identified.\n'
)
f.write(f" const uint32_t valid_inst = {val:#010x};\n")
f.write(
f" const pvm_jit_decoder_arm32_instruction_info_t* info = pvm_jit_decoder_arm32_decode(valid_inst);\n\n"
)
f.write(
f' ASSERT_NE(info, nullptr) << "Failed to decode known valid pattern for {name}: {val:#x}";\n'
)
f.write(
f' EXPECT_STREQ(info->name, "{name}") << "Decoded as the wrong instruction variant.";\n'
)
f.write(
f' EXPECT_EQ((valid_inst & info->mask), info->expected) << "Mask/Expected mismatch on positive test.";\n\n'
)
# --- 2. Negative Verification (Oracle Based) ---
f.write(
f" // 2. Negative Verification: Flip each fixed bit to ensure correct alternative decoding or rejection.\n"
)
for i, char in enumerate(bitstring):
bit_pos = 31 - i
# We only test the fixed bits, as they define the instruction pattern.
if char in ("0", "1"):
mask = 1 << bit_pos
corrupt_inst = val ^ mask
# ORACLE: Determine what this corrupted instruction SHOULD decode to.
expected_decoded_name = python_decode(corrupt_inst, instructions)
f.write(f" {{\n")
f.write(f" // Test case: Flipping fixed bit {bit_pos}\n")
f.write(
f" const uint32_t corrupt_inst = {corrupt_inst:#010x};\n"
)
f.write(
f" const pvm_jit_decoder_arm32_instruction_info_t* neg_info = pvm_jit_decoder_arm32_decode(corrupt_inst);\n\n"
)
if expected_decoded_name is None:
# Should decode to NOTHING
f.write(f" // Oracle predicts no match.\n")
f.write(
f' EXPECT_EQ(neg_info, nullptr) << "Safety Violation: Should have decoded to nullptr, but got " << (neg_info ? neg_info->name : "nullptr");\n'
)
else:
# Should decode to the OTHER valid instruction
f.write(
f" // Oracle predicts this should decode as: {expected_decoded_name}\n"
)
f.write(
f" ASSERT_NE(neg_info, nullptr) << \"Safety Violation: Python Oracle predicted '{expected_decoded_name}' but C++ decoder returned null\";\n"
)
f.write(
f' EXPECT_STREQ(neg_info->name, "{expected_decoded_name}") << "Safety Violation: Incorrect decode on single-bit corruption.";\n'
)
f.write(f" }}\n")
f.write(f"}}\n\n")
# --- 3. Generate Fuzz Test for overall stability ---
f.write("TEST_F(Arm32DecoderGeneratedTest, Stability_Fuzz_Test) {\n")
f.write(
" // Feeds a large number of random inputs to the decoder to check for crashes or false positives.\n"
)
f.write(" std::mt19937 rng(42); // Fixed seed for deterministic runs\n")
f.write(" std::uniform_int_distribution<uint32_t> dist;\n\n")
f.write(" for(int i = 0; i < 100000; ++i) {\n")
f.write(" uint32_t random_inst = dist(rng);\n")
f.write(
" const pvm_jit_decoder_arm32_instruction_info_t* info = pvm_jit_decoder_arm32_decode(random_inst);\n"
)
f.write(" if (info) {\n")
f.write(
" // If the decoder claims a match, it MUST be a valid match.\n"
)
f.write(" ASSERT_EQ((random_inst & info->mask), info->expected) \n")
f.write(
' << "Integrity Violation: Decoded " << std::hex << random_inst << " as \\"" << info->name << "\\" but mask/expected failed.";\n'
)
f.write(" }\n")
f.write(" }\n")
f.write("}\n")
def main() -> None:
"""Main entry point for the script."""
parser = argparse.ArgumentParser(description="Generate ARM32 Decoder Tests")
parser.add_argument("input", help="Path to arm32.inc")
parser.add_argument("output", help="Path to output test_arm32_generated.cpp")
args = parser.parse_args()
print(f"{args.input} -> {args.output}")
# Use a fixed seed for deterministic test generation. This is crucial for reproducibility.
random.seed(12345)
instructions = parse_inc_file(args.input)
generate_cpp_tests(instructions, args.output)
if __name__ == "__main__":
main()