pound-emu_pound/core/aarch64/isa.cpp
Ronald Caesar e7b5349980 aarch64/mem: Introduce a dedicated guest memory access layer
This commit introduces a proper abstraction layer for all read and write
operations.

The previous approach of directly calculating a Host Virtual Address
(HVA) from a Guest Physical Address (GPA) via gpa_to_hva() forces every
part of the emulator that touches guest memory to be aware of the
underlying host pointer, which is poor design.

This new layer introduces a suite of guest_mem_read{b,w,l,q} and
guest_mem_write{b,w,l,q} fuctions. All future memory accesses from the
emulated CPU should be performed through these functions.

The code has also been moved into the pound::aarch64 namespace for
better organization.

Signed-off-by: Ronald Caesar <github43132@proton.me>
2025-08-14 20:07:29 -04:00

223 lines
9.4 KiB
C++

#include "isa.h"
#include "Base/Assert.h"
#include "memory/arena.h"
// TODO(GloriousTacoo:aarch64) Implement big to little endian conversion for guest_mem read and write functions.
namespace pound::aarch64
{
static inline uint8_t* gpa_to_hva(guest_memory_t* memory, uint64_t gpa)
{
ASSERT(nullptr != memory);
ASSERT(nullptr != memory->base);
ASSERT(gpa < memory->size);
uint8_t* hva = memory->base + gpa;
return hva;
}
/*
* ============================================================================
* Guest Memory Read Functions
* ============================================================================
*/
static inline uint8_t guest_mem_readb(guest_memory_t* memory, uint64_t gpa)
{
ASSERT(nullptr != memory);
ASSERT(nullptr != memory->base);
ASSERT(gpa <= memory->size);
uint8_t* hva = gpa_to_hva(memory, gpa);
return *hva;
}
static inline uint16_t guest_mem_readw(guest_memory_t* memory, uint64_t gpa)
{
ASSERT(nullptr != memory);
ASSERT(nullptr != memory->base);
ASSERT((gpa + sizeof(uint16_t)) <= memory->size);
// Check if gpa is aligned to 2 bytes.
ASSERT((gpa & 1) == 0);
uint16_t* hva = (uint16_t*)gpa_to_hva(memory, gpa);
return *hva;
}
static inline uint32_t guest_mem_readl(guest_memory_t* memory, uint64_t gpa)
{
ASSERT(nullptr != memory);
ASSERT(nullptr != memory->base);
ASSERT((gpa + sizeof(uint32_t)) <= memory->size);
// Check if gpa is aligned to 4 bytes.
ASSERT((gpa & 3) == 0);
uint32_t* hva = (uint32_t*)gpa_to_hva(memory, gpa);
return *hva;
}
static inline uint64_t guest_mem_readq(guest_memory_t* memory, uint64_t gpa)
{
ASSERT(nullptr != memory);
ASSERT(nullptr != memory->base);
ASSERT((gpa + sizeof(uint64_t)) <= memory->size);
// Check if gpa is aligned to 8 bytes.
ASSERT((gpa & 7) == 0);
uint64_t* hva = (uint64_t*)gpa_to_hva(memory, gpa);
return *hva;
}
/*
* ============================================================================
* Guest Memory Write Functions
* ============================================================================
*/
static inline void guest_mem_writeb(guest_memory_t* memory, uint64_t gpa, uint8_t val)
{
ASSERT(nullptr != memory);
ASSERT(nullptr != memory->base);
ASSERT(gpa <= memory->size);
uint8_t* hva = gpa_to_hva(memory, gpa);
*hva = val;
}
static inline void guest_mem_writew(guest_memory_t* memory, uint64_t gpa, uint16_t val)
{
ASSERT(nullptr != memory);
ASSERT(nullptr != memory->base);
ASSERT((gpa + sizeof(uint16_t)) <= memory->size);
// Check if gpa is aligned to 2 bytes.
ASSERT((gpa & 1) == 0);
uint16_t* hva = (uint16_t*)gpa_to_hva(memory, gpa);
*hva = val;
}
static inline void guest_mem_writel(guest_memory_t* memory, uint64_t gpa, uint32_t val)
{
ASSERT(nullptr != memory->base);
ASSERT((gpa + sizeof(uint32_t)) <= memory->size);
// Check if gpa is aligned to 4 bytes.
ASSERT((gpa & 3) == 0);
uint32_t* hva = (uint32_t*)gpa_to_hva(memory, gpa);
*hva = val;
}
static inline void guest_mem_writeq(guest_memory_t* memory, uint64_t gpa, uint64_t val)
{
ASSERT(nullptr != memory);
ASSERT(nullptr != memory->base);
ASSERT((gpa + sizeof(uint64_t)) <= memory->size);
// Check if gpa is aligned to 8 bytes.
ASSERT((gpa & 7) == 0);
uint64_t* hva = (uint64_t*)gpa_to_hva(memory, gpa);
*hva = val;
}
/** THIS FUNCTION WAS MADE WITH AI AND IS CALLED WHEN RUNNING THE CPU TEST FROM THE GUI!
*
* @brief Runs a comprehensive suite of tests on the guest memory access functions using the project's logging system.
*
* This function systematically tests the read and write capabilities of the memory
* subsystem for all standard data sizes (8, 16, 32, and 64 bits). It verifies
* that data written to memory can be correctly read back.
*
* It specifically checks:
* 1. A standard aligned address in the middle of RAM.
*
* @param memory A pointer to an initialized guest_memory_t struct.
* @return true if all tests pass, false otherwise.
*/
bool test_guest_ram_access(guest_memory_t* memory)
{
LOG_INFO(Memory, "--- [ Starting Guest RAM Access Test ] ---");
if (memory == nullptr || memory->base == nullptr || memory->size < 4096)
{
LOG_CRITICAL(Memory, "Invalid memory block provided. Cannot run tests.");
return false;
}
bool all_tests_passed = true;
#define RUN_TEST(description, condition) \
do \
{ \
char log_buffer[256]; \
if (condition) \
{ \
snprintf(log_buffer, sizeof(log_buffer), " [TEST] %-45s... [PASS]", description); \
LOG_INFO(Memory, log_buffer); \
} \
else \
{ \
snprintf(log_buffer, sizeof(log_buffer), " [TEST] %-45s... [FAIL]", description); \
LOG_ERROR(Memory, log_buffer); \
all_tests_passed = false; \
} \
} while (0)
#define VERIFY_ACCESS(size, suffix, addr, write_val) \
do \
{ \
guest_mem_write##suffix(memory, addr, write_val); \
uint##size##_t read_val = guest_mem_read##suffix(memory, addr); \
bool success = (read_val == write_val); \
RUN_TEST("Write/Read " #size "-bit", success); \
if (!success) \
{ \
char error_buffer[256]; \
snprintf(error_buffer, sizeof(error_buffer), " -> At GPA 0x%016llx, Expected 0x%016llx, Got 0x%016llx", \
(unsigned long long)addr, (unsigned long long)write_val, (unsigned long long)read_val); \
LOG_ERROR(Memory, error_buffer); \
} \
} while (0)
// --- 1. Test a typical, aligned address in the middle of memory ---
LOG_INFO(Memory, "[INFO] Testing standard access at a midrange address (GPA 0x1000)...");
uint64_t test_addr = 0x1000;
VERIFY_ACCESS(8, b, test_addr + 0, 0xA5);
VERIFY_ACCESS(16, w, test_addr + 2, 0xBEEF);
VERIFY_ACCESS(32, l, test_addr + 4, 0xDEADBEEF);
VERIFY_ACCESS(64, q, test_addr + 8, 0xCAFEBABE01234567);
// --- 2. Test the very beginning of the memory block ---
LOG_INFO(Memory, "[INFO] Testing boundary access at the start of RAM (GPA 0x0)...");
VERIFY_ACCESS(64, q, 0x0, 0xFEEDFACEDEADBEEF);
// --- 3. Test the very end of the memory block ---
LOG_INFO(Memory, "[INFO] Testing boundary access at the end of RAM...");
uint64_t end_addr_b = memory->size - 1;
uint64_t end_addr_w = (memory->size - 2) & ~1ULL;
uint64_t end_addr_l = (memory->size - 4) & ~3ULL;
uint64_t end_addr_q = (memory->size - 8) & ~7ULL;
VERIFY_ACCESS(8, b, end_addr_b, 0xFE);
VERIFY_ACCESS(16, w, end_addr_w, 0xFEFE);
VERIFY_ACCESS(32, l, end_addr_l, 0xFEFEFEFE);
VERIFY_ACCESS(64, q, end_addr_q, 0xFEFEFEFEFEFEFEFE);
// --- 4. Final Verdict ---
LOG_INFO(Memory, "--- [ Guest RAM Access Test Finished ] ---");
if (all_tests_passed)
{
LOG_INFO(Memory, ">>> Result: ALL TESTS PASSED");
}
else
{
LOG_ERROR(Memory, ">>> Result: SOME TESTS FAILED");
}
LOG_INFO(Memory, "----------------------------------------------");
return all_tests_passed;
}
void cpuTest()
{
vcpu_state_t vcpu_states[CPU_CORES] = {};
memory::arena_t guest_memory_arena = memory::arena_init(GUEST_RAM_SIZE);
ASSERT(nullptr != guest_memory_arena.data);
guest_memory_t guest_ram = {};
guest_ram.base = static_cast<uint8_t*>(guest_memory_arena.data);
guest_ram.size = guest_memory_arena.capacity;
(void)test_guest_ram_access(&guest_ram);
}
} // namespace pound::aarch64