Initial public commit

This commit is contained in:
Rasmus Andersson 2017-08-22 00:05:20 -07:00
commit 3b1fffade1
6648 changed files with 363948 additions and 0 deletions

View file

@ -0,0 +1,308 @@
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from fontTools.misc.transform import Transform
import numpy as np
from numpy.linalg import norm
from scipy.sparse.linalg import cg
from scipy.ndimage.filters import gaussian_filter1d as gaussian
from scipy.cluster.vq import vq, whiten
from fontbuild.alignpoints import alignCorners
from fontbuild.curveFitPen import fitGlyph, segmentGlyph
def italicizeGlyph(f, g, angle=10, stemWidth=185, meanYCenter=-825, narrowAmount=1):
unic = g.unicode #save unicode
glyph = f[g.name]
slope = np.tanh(math.pi * angle / 180)
# determine how far on the x axis the glyph should slide
# to compensate for the slant.
# meanYCenter:
# -600 is a magic number that assumes a 2048 unit em square,
# and -825 for a 2816 unit em square. (UPM*0.29296875)
m = Transform(1, 0, slope, 1, 0, 0)
xoffset, junk = m.transformPoint((0, meanYCenter))
m = Transform(narrowAmount, 0, slope, 1, xoffset, 0)
if len(glyph) > 0:
g2 = italicize(f[g.name], angle, xoffset=xoffset, stemWidth=stemWidth)
f.insertGlyph(g2, g.name)
transformFLGlyphMembers(f[g.name], m)
if unic > 0xFFFF: #restore unicode
g.unicode = unic
def italicize(glyph, angle=12, stemWidth=180, xoffset=-50):
CURVE_CORRECTION_WEIGHT = .03
CORNER_WEIGHT = 10
# decompose the glyph into smaller segments
ga, subsegments = segmentGlyph(glyph,25)
va, e = glyphToMesh(ga)
n = len(va)
grad = mapEdges(lambda a,(p,n): normalize(p-a), va, e)
cornerWeights = mapEdges(lambda a,(p,n): normalize(p-a).dot(normalize(a-n)), grad, e)[:,0].reshape((-1,1))
smooth = np.ones((n,1)) * CURVE_CORRECTION_WEIGHT
controlPoints = findControlPointsInMesh(glyph, va, subsegments)
smooth[controlPoints > 0] = 1
smooth[cornerWeights < .6] = CORNER_WEIGHT
# smooth[cornerWeights >= .9999] = 1
out = va.copy()
hascurves = False
for c in glyph.contours:
for s in c.segments:
if s.type == "curve":
hascurves = True
break
if hascurves:
break
if stemWidth > 100:
outCorrected = skewMesh(recompose(skewMesh(out, angle * 1.6), grad, e, smooth=smooth), -angle * 1.6)
# out = copyMeshDetails(va, out, e, 6)
else:
outCorrected = out
# create a transform for italicizing
normals = edgeNormals(out, e)
center = va + normals * stemWidth * .4
if stemWidth > 130:
center[:, 0] = va[:, 0] * .7 + center[:,0] * .3
centerSkew = skewMesh(center.dot(np.array([[.97,0],[0,1]])), angle * .9)
# apply the transform
out = outCorrected + (centerSkew - center)
out[:,1] = outCorrected[:,1]
# make some corrections
smooth = np.ones((n,1)) * .1
out = alignCorners(glyph, out, subsegments)
out = copyMeshDetails(skewMesh(va, angle), out, e, 7, smooth=smooth)
# grad = mapEdges(lambda a,(p,n): normalize(p-a), skewMesh(outCorrected, angle*.9), e)
# out = recompose(out, grad, e, smooth=smooth)
out = skewMesh(out, angle * .1)
out[:,0] += xoffset
# out[:,1] = outCorrected[:,1]
out[va[:,1] == 0, 1] = 0
gOut = meshToGlyph(out, ga)
# gOut.width *= .97
# gOut.width += 10
# return gOut
# recompose the glyph into original segments
return fitGlyph(glyph, gOut, subsegments)
def transformFLGlyphMembers(g, m, transformAnchors = True):
# g.transform(m)
g.width = g.width * m[0]
p = m.transformPoint((0,0))
for c in g.components:
d = m.transformPoint(c.offset)
c.offset = (d[0] - p[0], d[1] - p[1])
if transformAnchors:
for a in g.anchors:
aa = m.transformPoint((a.x,a.y))
a.x = aa[0]
# a.x,a.y = (aa[0] - p[0], aa[1] - p[1])
# a.x = a.x - m[4]
def glyphToMesh(g):
points = []
edges = {}
offset = 0
for c in g.contours:
if len(c) < 2:
continue
for i,prev,next in rangePrevNext(len(c)):
points.append((c[i].points[0].x, c[i].points[0].y))
edges[i + offset] = np.array([prev + offset, next + offset], dtype=int)
offset += len(c)
return np.array(points), edges
def meshToGlyph(points, g):
g1 = g.copy()
j = 0
for c in g1.contours:
if len(c) < 2:
continue
for i in range(len(c)):
c[i].points[0].x = points[j][0]
c[i].points[0].y = points[j][1]
j += 1
return g1
def quantizeGradient(grad, book=None):
if book == None:
book = np.array([(1,0),(0,1),(0,-1),(-1,0)])
indexArray = vq(whiten(grad), book)[0]
out = book[indexArray]
for i,v in enumerate(out):
out[i] = normalize(v)
return out
def findControlPointsInMesh(glyph, va, subsegments):
controlPointIndices = np.zeros((len(va),1))
index = 0
for i,c in enumerate(subsegments):
segmentCount = len(glyph.contours[i].segments) - 1
for j,s in enumerate(c):
if j < segmentCount:
if glyph.contours[i].segments[j].type == "line":
controlPointIndices[index] = 1
index += s[1]
return controlPointIndices
def recompose(v, grad, e, smooth=1, P=None, distance=None):
n = len(v)
if distance == None:
distance = mapEdges(lambda a,(p,n): norm(p - a), v, e)
if (P == None):
P = mP(v,e)
P += np.identity(n) * smooth
f = v.copy()
for i,(prev,next) in e.iteritems():
f[i] = (grad[next] * distance[next] - grad[i] * distance[i])
out = v.copy()
f += v * smooth
for i in range(len(out[0,:])):
out[:,i] = cg(P, f[:,i])[0]
return out
def mP(v,e):
n = len(v)
M = np.zeros((n,n))
for i, edges in e.iteritems():
w = -2 / float(len(edges))
for index in edges:
M[i,index] = w
M[i,i] = 2
return M
def normalize(v):
n = np.linalg.norm(v)
if n == 0:
return v
return v/n
def mapEdges(func,v,e,*args):
b = v.copy()
for i, edges in e.iteritems():
b[i] = func(v[i], [v[j] for j in edges], *args)
return b
def getNormal(a,b,c):
"Assumes TT winding direction"
p = np.roll(normalize(b - a), 1)
n = -np.roll(normalize(c - a), 1)
p[1] *= -1
n[1] *= -1
# print p, n, normalize((p + n) * .5)
return normalize((p + n) * .5)
def edgeNormals(v,e):
"Assumes a mesh where each vertex has exactly least two edges"
return mapEdges(lambda a,(p,n) : getNormal(a,p,n),v,e)
def rangePrevNext(count):
c = np.arange(count,dtype=int)
r = np.vstack((c, np.roll(c, 1), np.roll(c, -1)))
return r.T
def skewMesh(v,angle):
slope = np.tanh([math.pi * angle / 180])
return v.dot(np.array([[1,0],[slope,1]]))
def labelConnected(e):
label = 0
labels = np.zeros((len(e),1))
for i,(prev,next) in e.iteritems():
labels[i] = label
if next <= i:
label += 1
return labels
def copyGradDetails(a,b,e,scale=15):
n = len(a)
labels = labelConnected(e)
out = a.astype(float).copy()
for i in range(labels[-1]+1):
mask = (labels==i).flatten()
out[mask,:] = gaussian(b[mask,:], scale, mode="wrap", axis=0) + a[mask,:] - gaussian(a[mask,:], scale, mode="wrap", axis=0)
return out
def copyMeshDetails(va,vb,e,scale=5,smooth=.01):
gradA = mapEdges(lambda a,(p,n): normalize(p-a), va, e)
gradB = mapEdges(lambda a,(p,n): normalize(p-a), vb, e)
grad = copyGradDetails(gradA, gradB, e, scale)
grad = mapEdges(lambda a,(p,n): normalize(a), grad, e)
return recompose(vb, grad, e, smooth=smooth)
def condenseGlyph(glyph, scale=.8, stemWidth=185):
ga, subsegments = segmentGlyph(glyph, 25)
va, e = glyphToMesh(ga)
n = len(va)
normals = edgeNormals(va,e)
cn = va.dot(np.array([[scale, 0],[0,1]]))
grad = mapEdges(lambda a,(p,n): normalize(p-a), cn, e)
# ograd = mapEdges(lambda a,(p,n): normalize(p-a), va, e)
cn[:,0] -= normals[:,0] * stemWidth * .5 * (1 - scale)
out = recompose(cn, grad, e, smooth=.5)
# out = recompose(out, grad, e, smooth=.1)
out = recompose(out, grad, e, smooth=.01)
# cornerWeights = mapEdges(lambda a,(p,n): normalize(p-a).dot(normalize(a-n)), grad, e)[:,0].reshape((-1,1))
# smooth = np.ones((n,1)) * .1
# smooth[cornerWeights < .6] = 10
#
# grad2 = quantizeGradient(grad).astype(float)
# grad2 = copyGradDetails(grad, grad2, e, scale=10)
# grad2 = mapEdges(lambda a,e: normalize(a), grad2, e)
# out = recompose(out, grad2, e, smooth=smooth)
out[:,0] += 15
out[:,1] = va[:,1]
# out = recompose(out, grad, e, smooth=.5)
gOut = meshToGlyph(out, ga)
gOut = fitGlyph(glyph, gOut, subsegments)
for i,seg in enumerate(gOut):
gOut[i].points[0].y = glyph[i].points[0].y
return gOut